The present disclosure relates to strapping machines, and more particularly to strapping machine strap-feeding assemblies with features that enable adjustment of the strap-feeding assemblies for use with different strap sizes.
A strapping machine forms a tensioned loop of plastic strap (such as polyester or polypropylene strap) or metal strap (such as steel strap) around a load. A typical strapping machine includes a support surface that supports the load, a strap chute that circumscribes the support surface, a strapping head that forms the strap loop, a controller that controls the strapping head to strap the load, and a frame that supports these components. A typical strapping head includes a strap-feeding assembly for feeding strap from a strap supply into and around the strap chute and for retracting the strap so it exits the strap chute and moves radially inwardly into contact with the load, a strap-tensioning assembly for tensioning the strap around the load, and a strap-sealing assembly for cutting the strap from the strap supply and attaching two areas of the strap together to form the strap loop. Each of these assemblies includes a guide that defines a strap channel that the strap passes through as it moves through the assembly. The strap channels and the strap chute together define a strap path that the strap moves through.
To strap the load, the strap-feeding assembly feeds strap (leading strap end first) from the strap supply through the strap-tensioning assembly, through the strap-sealing assembly, and into and around the strap chute until the leading strap end returns to the strap-sealing assembly. While the strap-sealing assembly holds the leading strap end, the strap-feeding assembly retracts the strap to pull the strap out of the strap chute and onto and around the load. The strap-tensioning assembly then tensions the strap to a designated strap tension. The strap-sealing assembly cuts the strap from the strap supply to form a trailing strap end and attaches the leading and trailing strap ends to one another, thereby forming a tensioned strap loop around the load.
Different applications require strap of different sizes. For instance, strap that is 8 millimeters wide and 0.3 millimeters thick may be used for light-duty applications, while strap that is 16 millimeters wide and 0.85 millimeters thick may be used for heavy-duty applications. Certain known strapping machines are configured so they can operate with strap of different widths and thicknesses. The strap-feeding assemblies (and in some cases the strap-tensioning and/or strap-sealing assemblies) of these strapping machines have guide members that define fixed-width and fixed-thickness strap channels that are sized to accommodate the widest and thickest strap used with those strapping machines. These fixed-width and fixed-thickness strap channels become problematic when smaller-width and/or thinner strap is used. Specifically, since there is more empty space in the strap channels when smaller-width and/or thinner strap is used, the strap tends to “wander” laterally and/or vertically in the strap channel and can snag and become stuck in the strap channel. This results in a strap mis-feed and requires the strap-feeding assembly to retract the strap and re-feed it, which results in unwanted downtime. It could also damage the leading end of the strap, leading to material waste or (if not recognized) sub-optimal welds.
Various embodiments of the present disclosure provide a strapping machine strap-feeding assembly with features that enable adjustment of the strap-feeding assembly to accommodate different strap sizes.
Various embodiments of the strap-feeding assembly comprise a strap-feeding-assembly frame, a strap-driving assembly supported by the strap-feeding-assembly frame and comprising a feed wheel and an actuator operably connected to the feed wheel to drive the feed wheel, and a strap-guiding assembly supported by the strap-feeding-assembly frame. The strap-guiding assembly comprises a strap-guiding-assembly frame; a guide member mounted to the strap-guiding-assembly frame and at least partially defining a strap channel having an adjustable strap-channel width, the guide member movable relative to the strap-guiding-assembly frame frame between a first position corresponding to a first strap-channel width and a second position corresponding to a second strap-channel width different from the first strap-channel width; and a strap-channel-width adjuster operably connected to the guide member to move the guide member from its first position to its second position.
Other embodiments of the strap-feeding assembly comprise a strap-feeding-assembly frame, a strap-driving assembly supported by the strap-feeding-assembly frame and comprising a feed wheel and an actuator operably connected to the feed wheel to drive the feed wheel, a first strap-guiding assembly supported by the strap-feeding-assembly frame and including one or more guide members partially defining a strap channel, and a second strap-guiding assembly supported by the strap-feeding-assembly frame. The second strap-guiding assembly comprises a housing; and a counter-roller assembly comprising: a support mounted to the housing; a counter roller mounted to the support and rotatable relative to the support; and a height adjuster operably connected to the counter roller to move the counter roller from a first position in which a first distance separates the counter roller and the feed wheel to a second position in which a second distance separates the counter roller and the feed wheel, wherein the second distance is greater than the first distance.
Other embodiments of the strap-feeding assembly comprise a strap-feeding-assembly frame comprising first and second strap-guiding-assembly mounts; and a strap-guiding assembly removably mountable to the strap-feeding-assembly frame and comprising: a strap-guiding-assembly frame defining a mounting opening sized to receive the first strap-guiding-assembly mount and comprising a strap-guiding-assembly retainer; and a guide member mounted to the strap-guiding-assembly frame and at least partially defining a strap channel, wherein the first and second strap-guiding-assembly mounts are positioned such that the strap-guiding assembly is mounted to the strap-feeding-assembly frame and in an operational position when: (1) the first strap-guiding-assembly mount is received in the mounting opening of the strap-guiding-assembly frame; and (2) the strap-guiding-assembly retainer lockingly engages the second strap-guiding-assembly mount.
While the systems, devices, and methods described herein may be embodied in various forms, the drawings show and the specification describes certain exemplary and non-limiting embodiments. Not all of the components shown in the drawings and described in the specification may be required, and certain implementations may include additional, different, or fewer components. Variations in the arrangement and type of the components; the shapes, sizes, and materials of the components; and the manners of connections of the components may be made without departing from the spirit or scope of the claims. Unless otherwise indicated, any directions referred to in the specification reflect the orientations of the components shown in the corresponding drawings and do not limit the scope of the present disclosure. Further, terms that refer to mounting methods, such as mounted, connected, etc., are not intended to be limited to direct mounting methods but should be interpreted broadly to include indirect and operably mounted, connected, and like mounting methods. This specification is intended to be taken as a whole and interpreted in accordance with the principles of the present disclosure and as understood by one of ordinary skill in the art.
The strapping-machine frame is configured to support some (or all) of the other components of the strapping machine 1 and may be formed of any suitable components arranged in any suitable configuration. The load supporter LS is configured to support loads—such as the palletized load L—as they are strapped by and as they move through the strapping machine 1. The load supporter LS includes a support surface (not labeled) on which loads are positioned during strapping and over which loads move as they move through the strapping machine 1. In this example embodiment, the support surface includes multiple rollers that facilitate movement of the loads through the strapping machine 1. The rollers may be driven or undriven. In other embodiments, the support surface includes a driven conveyor instead of rollers.
The strap chute CH circumscribes the support surface of the load supporter LS and defines a strap path that the strap follows when fed through the strap chute CH and from which the strap is removed when retracted. The strap chute CH includes two spaced-apart first and second upstanding legs (not labeled), an upper connecting portion (not labeled) that spans the first and second legs, a lower connecting portion (not labeled) that spans the first and second legs and is positioned in the load supporter LS, and elbows (not labeled) that connect these portions. As is known in the art, the radially inward wall of the strap chute CH is formed from multiple overlapping gates that are spring biased to a closed position that enables the strap to traverse the strap path when fed through the strap chute CH. When the strap-feeding assembly 10 exerts a pulling force on the strap to retract the strap, the pulling force overcomes the biasing force of the springs and causes the gates to pivot to an open position, thereby releasing the strap from the strap chute CH so the strap moves radially inward into contact with the load L.
The strap-feeding assembly 10, the strap-tensioning assembly TM, and the strap-sealing assembly SM are together configured to form a tensioned strap loop around the load by feeding the strap through the strap chute CH, holding the leading strap end while retracting the strap to remove it from the strap chute CH so it contacts the load L, tensioning the strap around the load L to a designated tension, cutting the strap from the strap supply to form a trailing strap end, and connecting the leading strap end and the trailing strap end to one another. In this example embodiment, the strap-feeding assembly 10, the strap-tensioning assembly TM, and the strap-sealing assembly SM are distinct modules that are individually attachable to and removable from the strapping-machine frame. The guide G1 extends between the strap-feeding and strap-tensioning assemblies 10 and TM and is configured to guide the strap as it moves between those assemblies. Similarly, the guide G2 extends between the strap-tensioning and strap-sealing assembly TM and SM and is configured to guide the strap as it moves between those assemblies. In other embodiments, these assemblies form a strapping head that is not comprised of self-contained and individually removable modules.
Generally, the strap-feeding assembly 10 feeds strap from a strap supply (not shown) and into and around the strap chute CH and retracts the strap so it exits the strap chute CH and contacts the load L. The strap-feeding assembly 10 is described in more detail below with respect to
The strap-tensioning assembly TM is configured to tension the strap around the load L. Briefly, the strap-tensioning assembly includes a tensioning wheel driven by a tension actuator. Once the strap-feeding assembly 10 retracts the strap so it contacts the load L, the tension actuator drives the tensioning wheel to tension the strap to a designated (typically preset) tension.
The strap-sealing assembly SM is configured to, after the strap-tensioning assembly TM tensions the strap to the designated tension, cut the strap from the strap supply and form the strap loop. The manner of attaching the leading and trailing strap ends to one another depends on the type of strapping machine and the type of strap. Certain strapping machines configured for plastic strap include a strap-sealing assembly with a friction welder, a heated blade, or an ultrasonic welder configured to attach the leading and trailing strap ends to one another. Some strapping machines configured for plastic strap or metal strap include a strap-sealing assembly with jaws that mechanically deform (referred to as “crimping” in the industry) or cut notches into (referred to as “notching” in the industry) a seal element positioned around the leading and trailing strap ends to attach them to one another. Other strapping machines configured for metal strap include a strap-sealing assembly with punches and dies configured to form a set of mechanically interlocking cuts in the leading and trailing strap ends to attach them to one another (referred to in the strapping industry as a “sealless” attachment). Still other strapping machines configured for metal strap include a strap-sealing assembly with spot, inert-gas, or other welders configured to weld the leading and trailing strap ends to one another.
The controller C includes a processing device (or devices) communicatively connected to a memory device (or devices). For instance, the controller may be a programmable logic controller. The processing device may include any suitable processing device such as, but not limited to, a general-purpose processor, a special-purpose processor, a digital-signal processor, one or more microprocessors, one or more microprocessors in association with a digital-signal processor core, one or more application-specific integrated circuits, one or more field-programmable gate array circuits, one or more integrated circuits, and/or a state machine. The memory device may include any suitable memory device such as, but not limited to, read-only memory, random-access memory, one or more digital registers, cache memory, one or more semiconductor memory devices, magnetic media such as integrated hard disks and/or removable memory, magneto-optical media, and/or optical media. The memory device stores instructions executable by the processing device to control operation of the strapping machine 1. In certain embodiments, the strapping machine includes a single controller, while in other embodiments the strapping machine 1 has multiple controllers that operate together. In certain embodiments, the controller C is part of the strap-feeding assembly 10, the strap-tensioning assembly TM, and/or the strap-sealing assembly SM.
Returning to the strap-feeding assembly 10, the strap-feeding assembly 10 feeds strap from a strap supply (not shown) and into and around the strap chute CH and retracts the strap so it exits the strap chute CH and contacts the load L. The strap-feeding assembly 10 includes features that enable the strap-feeding assembly 10 to be adjusted to accommodate different strap sizes (e.g., different strap widths and thicknesses).
The strap-feeding-assembly frame 100, which is best shown in
The front and back frame members 110 and 120 are spaced-apart from one another, and the infeed side and outfeed side frame members 130 and 140 are spaced-apart from one another. The infeed side frame member 130 extends between one end of the front frame member 110 and one end of the back frame member 120, and the outfeed side frame member 140 extends between the other end of the front frame member 110 and the other end of the back frame member 120. The first support member 150 extends between the front and back frame members 110 and 120 adjacent the infeed side frame member 130 and is mounted to the front and back frame members 110 and 120 via the first-support-member mounting elements 152, 154, 156, and 158, which are pins in this example embodiment but may be any other suitable components (such as threaded fasteners). The second support member 160 extends between the front and back frame members 110 and 120 adjacent the outfeed side frame member 140 and is mounted to the front and back frame members 110 and 120 via the second-support-member mounting elements 162, 164, 166, and 168, which are pins in this example embodiment but may be any other suitable components (such as threaded fasteners).
Two covers 1000a and 1000b are removably attached to the strap-feeding-assembly frame 100 to at least partially enclose certain components of the strap-driving assembly 200 and the lower strap-guiding assembly 300.
The strap-driving assembly 200, which is best shown in
The lower strap-guiding assembly 300, which is best shown in
The first guide frame member 310 includes a body 312 having a first (infeed) end 314 and a second (outfeed) end 316. A mounting opening 314a is defined in the first (infeed) end 314. The second (outfeed) end 316 includes a foot 316a that includes the lower-strap-guiding-assembly retainer 399a. The second guide frame member 320 includes a body 322 having a first (infeed) end 324 and a second (outfeed) end 326. A mounting opening 324a is defined in the first (infeed) end 324. The second (outfeed) end 326 includes a foot 326a that includes the lower-strap-guiding-assembly retainer 399b. In other embodiments (not shown), the mounting openings are defined at the second (outfeed) ends of the first and second guide frame members, and the lower-strap-guiding-assembly retainers are included in the first (infeed) ends of the first and second guide frame members.
The lower-strap-guiding-assembly retainers 399a and 399b retain the lower strap-guiding assembly 300 on the strap-feeding-assembly frame 100, as described below. In this example embodiment, the lower-strap-guiding-assembly retainers include spring plungers, though they may be any other suitable components in other embodiments.
The first and second guide frame members 310 and 320 and the center guide member 350 (which is a plate in this example embodiment) are fixedly connected to one another by the spacers 370a-370d and the fasteners 390 to form a lower strap-guiding-assembly frame. Due to this fixed connection in this example embodiment, there is a first fixed distance between the first and second guide frame members 310 and 320, a second fixed distance between the first guide frame member 310 and the center guide member 350, and a third fixed distance (which here is the same as the second fixed distance) between the second guide frame member 320 and the center guide member 350. The first outer guide member 330 is slidably mounted to the spacers 370a-370d (which extend through corresponding openings in the first outer guide member 330) between the first guide frame member 310 and the center guide member 350 such that the first outer guide member 330 can move relative to the frame members and the center guide member between a first position adjacent the first guide frame member 310 (
As best shown in
The first and second biasing elements 380a and 380b bias the first outer guide member 330 to its first position, and the third and fourth biasing elements 380c and 380d bias the second outer guide member 340 to its first position. In this example embodiment, the biasing elements 380a-380d are compression springs. Also, in this example embodiment: the first biasing element 380a circumscribes the portion of the first spacer 370a between the first guide frame member 310 and the center guide member 350 and engages the first outer guide member 330 and the center guide member 350, the second biasing element 380b circumscribes the portion of the fourth spacer 370d between the first guide frame member 310 and the center guide member 350 and engages the first outer guide member 330 and the center guide member 350, the third biasing element 380c circumscribes the portion of the first spacer 370a between the second guide frame member 320 and the center guide member 350 and engages the second outer guide member 340 and the center guide member 350, and the fourth biasing element 380d circumscribes the portion of the fourth spacer 370d between the second guide frame member 320 and the center guide member 350 and engages the second outer guide member 340 and the center guide member 350.
The first and second strap-channel-width adjusters 360a and 360b control the positions of the first and second outer guide members 330 and 340 and therefore the width of the strap channel partially defined by the lower strap-guiding assembly 300, as described in detail below. In this example embodiment, the first and second strap-channel-width adjusters 360a and 360b are identical, so only the first strap-channel-width adjuster 360a is shown and described in detail. Turning to
The first and second strap-channel-width adjusters 360a and 360b extend through openings defined in the first and second guide frame members 310 and 320, the first and second outer guide members 330 and 340, and the center guide member 350. The first and second strap-channel-width adjusters 360a and 360b are secured (such as via set screws, retaining clips or rings, or in any other suitable manner) such that they cannot move relative to these components parallel or transverse to their respective rotational axes A360a and A360b but can rotate relative to these components about their respective rotational axes A360a and A360b. The first outer-guide-member director 332 has a threaded body 332a and a projection 332b extending from the body 332a. The body 332a of the first outer-guide-member director 332 is threadably received in the first outer guide member 330 such that the projection 332b of the first outer-guide-member director is received in the width-control groove 366a1 of the body 366a of the first strap-channel-width adjuster 360a. The second outer-guide-member director 334 has a threaded body 334a and a projection 334b extending from the body 334a. The body 334a of the second outer-guide-member director 334 is threadably received in the first outer guide member 330 such that the projection 334b of the second outer-guide-member director is received in the width-control groove 366b1 of the body 366b of the second strap-channel-width adjuster 360b. The third outer-guide-member director 342 has a threaded body 342a and a projection 342b extending from the body 342a. The body 342a of the third outer-guide-member director 342 is threadably received in the second outer guide member 340 such that the projection 342b of the third outer-guide-member director is received in the width-control groove 366a2 of the body 366a of the first strap-channel-width adjuster 360a. The fourth outer-guide-member director 344 has a threaded body 344a and a projection 344b extending from the body 344a. The body 344a of the fourth outer-guide-member director 344 is threadably received in the second outer guide member 340 such that the projection 344b of the fourth outer-guide-member director is received in the width-control groove 366b2 of the body 366b of the second strap-channel-width adjuster 360b.
As best shown in
Specifically, as explained above, the projections of the outer-guide-member directors are received in the spiral-shaped width-control grooves of the strap-channel-width adjusters. As the strap-channel-width adjusters are rotated, the projections follow the grooves and force the outer guide members to move toward or away from one another (depending on the direction of rotation).
The strap-channel-width-adjuster retainers 398 engage the strap-channel-width adjusters 360a and 360b to help maintain the strap-channel-width adjusters 360a and 360b in their rotational positions by resisting rotation. In this example embodiment, the strap-channel-width-adjuster retainers 398 include spring plungers, though they may be any other suitable components in other embodiments.
As shown in
To mount the lower strap-guiding assembly 300 to the strap-feeding-assembly frame 100, the lower portions of the first ends 314 and 324 of the first and second guide frame members 310 and 320 are inserted into the openings 150a and 150b in the first platform 150, respectively, and positioned so the first-support-member mounting elements 152 and 154 (i.e., the first lower-strap-guiding-assembly mount in this example embodiment) are received in their respective mounting openings 314a and 324a, as shown in
Once the lower strap-guiding assembly 300 is in this operational position, the lower-strap-guiding-assembly retainers 399a and 399b retain it in place. More specifically, the spring-biased noses 399a2 and 399b2 resist rotation of the strap-guiding assembly 300 away from its operational position. To remove the lower strap-guiding assembly 300 from the strap-feeding assembly frame 100, the operator reverses the above sequence, making sure to lift with enough force to overcome the forces of the springs 399a3 and 399b3 of the lower-strap-guiding-assembly retainers 399a and 399b. The operator therefore does not need any tools to remove the lower strap-guiding assembly from the strap-feeding-assembly frame (at least in this example embodiment), making removal quick and easy.
In certain embodiments, the second strap-guiding-assembly mount defines an opening sized to receive part of the nose when the strap-guiding assembly is in its operational position.
As shown in
The upper strap-guiding assembly 400, which is best shown in
The upper strap-guiding assembly 400 is mounted to the strap-feeding-assembly frame 100 and pivotable relative to the strap-feeding-assembly frame 100, the strap-driving assembly 200, and the lower strap-guiding assembly 300 about a pivot (not shown) between a closed position (
The housing 405 supports some (or all) of the other components of the upper strap-guiding assembly 400 and may be formed of any suitable component(s) arranged in any suitable configuration. In this example embodiment, the housing 405 includes a handle 405b to facilitate carrying the strap-feeding assembly 10.
The strap-channel cover 410 covers the lower strap-guiding assembly 300 when the upper strap-guiding assembly 400 is in its closed position and, along with the lower strap-guiding assembly 300, forms the strap channel SC. The strap-channel cover 410 includes a base including first and second outer guide members 412a and 412b and a center guide member 414 extending along the lateral center of the base between the first and second outer guide members. As best shown in
The strap-channel cover 410 is removably mounted to the housing 405 via first and second eccentric mounting pins 470 and 480 (explained below with respect to
As shown in
The counter-roller assembly 420, best shown in
The height adjuster 425, best shown in
As shown in
As best shown in
As best shown in
The height adjuster 425 is movable relative to the support 421 and the height-adjuster locking pin 424 in two ways. First, the height adjuster 425 is longitudinally movable relative to the support 421 and the height-adjuster locking pin 424 parallel to the axis A425ab between a locked position and an unlocked position. When the height adjuster 425 is in its locked position (
Second, the height adjuster 425 is—when in its unlocked position—rotatable relative to the support 421 and the height-adjuster locking pin 424 among a first rotational position that corresponds to the first locking-pin-receiving bore 424a5, a second rotational position that corresponds to the second locking-pin-receiving bore 424a6, and a third rotational position that corresponds to the third locking-pin-receiving bore 424a7. Specifically, when the height adjuster 425 is in its first rotational position, the height-adjuster locking pin 424 is received in (when the height adjuster 425 is in its locked position) the first locking-pin-receiving bore 425a5 or in front of (when the height adjuster 425 is in its unlocked position) the first locking-pin-receiving bore 425a5. When the height adjuster 425 is in its second rotational position, the height-adjuster locking pin 424 is received in (when the height adjuster 425 is in its locked position) the second locking-pin-receiving bore 425a6 or in front of (when the height adjuster 425 is in its unlocked position) the second locking-pin-receiving bore 425a6. When the height adjuster 425 is in its third rotational position, the height-adjuster locking pin 424 is received in (when the height adjuster 425 is in its locked position) the third locking-pin-receiving bore 425a7 or in front of (when the height adjuster 425 is in its unlocked position) the third locking-pin-receiving bore 425a7. As described below, the rotational position of the height adjuster 425 controls the height of the counter roller 422 above the feed wheel 210.
The counter-roller assembly 420 is mounted to the housing 405 via the counter-roller-assembly mounting pin 430. Specifically, the counter-roller-assembly mounting pin 430 is received in and extends through the mounting-pin-receiving bore 425c of the height adjuster 425. The ends of the counter-roller-assembly mounting pin 430 are supported by the housing 405. As shown in
The biasing assembly 440, best shown in
The rotational position of the height adjuster 425 determines the distance between the strap-engaging surfaces 422a and 422b of the counter roller 422 and the strap-engaging surfaces 210a and 210b of the feed wheel 210. Specifically, as shown in
In operation, strap is received in an inlet IN (
The strap feeder improves upon prior art strap feeders because it enables an operator to quickly and easily (and in certain embodiments, toollessly) adjust the width of the strap channel, the height of the strap channel, and the distance between the counter roller and the feed wheel to accommodate straps of different widths and/or thicknesses. Specifically, and as described in more detail above, by simply manipulating the strap-channel-width adjusters, the eccentric mounting pins, and the height adjuster, the operator can ensure that these components are in the optimal position for the particular strap being used.
In other embodiments, the lower strap-guiding assembly includes only one movable outer guide member that (along with another stationary outer guide member and/or the strap-guiding-assembly frame) partially defines the strap channel. In this embodiment, rotation of the strap-channel-width adjusters causes the movable outer guide member to move as described above.
In other embodiments, the lower strap-guiding assembly includes only one strap-channel-width adjuster or more than one strap-channel-width adjuster.
In other embodiments, the strap-feeding assembly comprises an actuator operably connected to the strap-channel width adjuster (or to the outer guide member) and configured to manipulate the strap-channel width adjuster to move the outer guide member. In further embodiments, the strap-channel width adjuster comprises an actuator directly connected to the outer guide member and configured to move the outer guide member.
In various embodiments, the strap-feeding assembly includes only one of: (1) the lower strap-guiding assembly including one or more outer guide members movable to vary the width of the strap channel; and (2) the upper strap-guiding assembly including the height adjuster manipulatable to vary the distance between the counter roller and the feed wheel. In certain embodiments, one or more of the other assemblies (such as the strap-tensioning assembly and/or the strap-sealing assembly) of the strapping machine include the lower strap-guiding assembly and/or the upper strap-guiding assembly.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 63/114,777, filed Nov. 17, 2020, and U.S. Provisional Patent Application No. 63/166,666, filed Mar. 26, 2021, the entire contents of both of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/072146 | 11/1/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63166666 | Mar 2021 | US | |
63114777 | Nov 2020 | US |