Strap for a snowboard boot, binding or interface

Information

  • Patent Grant
  • 6416074
  • Patent Number
    6,416,074
  • Date Filed
    Tuesday, June 15, 1999
    25 years ago
  • Date Issued
    Tuesday, July 9, 2002
    22 years ago
Abstract
An apparatus comprising a snowboard boot and a strap to hold down a rider's foot in the snowboard boot. The strap includes a tightening element attached to the snowboard boot, a strap body supported by the tightening element, and a closure device including a spool about which the tightening element is wrapped to tighten the strap down onto the snowboard boot. In one aspect, the closure device includes a body and an actuator that is rotatably mounted to the body and is coupled to the tightening element so that rotation of the actuator causes the tightening element to be drawn into the closure device body to tighten the strap.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to snowboard boots and bindings, and more particularly to straps for use on snowboard boots, bindings and interfaces.




2. Related Art




Snowboarding, which has become an increasingly popular sport, typically involves the use of a snowboard, a pair of snowboard boots worn by a rider, and a snowboard binding that secures the snowboard boots to the snowboard. While there are other types of snowboard boots, the most widely used variety is known as a soft snowboard boot, which typically includes a soft and flexible upper made from a resilient material (e.g., leather). There are two primary types of snowboard bindings used with soft snowboard boots, i.e., tray bindings and step-in bindings. Tray bindings typically employ a rigid highback into which the heel of the boot is placed, and one or more straps that secure the boot to the binding. Conversely, step-in bindings have eliminated the need for binding straps, and provide the rider with the convenience of engaging the boot to the binding by simply stepping into the binding. Examples of step-in binding systems each of which are assigned to the present assignee and which are thereby incorporated herein by reference, include Examples of step-in binding systems each of which are assigned to the present assignee and which are thereby incorporated herein by reference, include U.S. Ser. No. 08/375,971, Snowboard Boot Binding Mechanism; U.S. Ser. No. 08/584,053, Method and Apparatus for Interfacing A Snowboard Boot to a Binding; U.S. Pat. No. 5,722,680, Step-in Snowboard Binding; U.S. Ser. No. 08/780,721, Step-in Snowboard Binding.




The development of soft boot step-in bindings has presented a problem not previously encountered. In particular, tremendous lifting forces are generated at the heel of a snowboard rider during riding. It is desirable to prevent the rider's foot, particularly the heel, from lifting from the bottom of the boot to maximize control. In a tray binding, the straps can be tightened down over the boot sufficiently to hold the rider's foot down and prevent heel lift. However, with a strapless soft boot step-in binding, the binding does not employ any straps to perform this function. Although the laces of the snowboard boot are available to resist lifting forces, the laces alone are often not capable of sufficiently holding down the heel of the boot to provide the desired control.




To hold down the rider's heel in the boot, many soft boots adapted for use with a step-in binding employ an ankle strap in addition to the lacing system used to close the front of the boot. The ankle strap is typically a two-piece strap including a ratchet tongue and a buckle mechanism. Each of the two strap components has a fixed end that is attached to one side of the boot, and a free end that is adapted to mate with the other strap component. Typically, the buckle mechanism is a ratchet type fastener to engage with the ratchet tongue, such that when tightening the strap typically involves, a relative sliding motion between the two strap components, with one of the components sliding between the boot and the other strap component.




When tightening a ratchet-type ankle strap attached to the boot in the manner described above, significant frictional forces between the strap and the boot can cause the strap to bear against the rider's foot in a non-uniform way, resulting in high pressure points that can be uncomfortable on the rider's foot. Compounding the problem is the fact that the two straps components lie in slightly different planes (with one component overlying the other), so that the tension extending through the two strap components can cause a moment tending to twist the buckle slightly, which can tend to dig the buckle into the boot, potentially creating another uncomfortable pressure point for the rider.




Two-piece ratchet-type straps of the type described above have also been used to form the straps (e.g., both a toe strap and a heel strap) in a tray binding, and in systems that employ an interface for attaching the snowboard boot to the binding, wherein the strap attaches the interface to the boot. While not as severe as when the strap is attached directly to the snowboard boot, the above-described issues involving the creation of pressure points bearing on the rider's foot can also be experienced when two-piece ratchet-type straps are employed on a tray binding, or are used to attach an interface to a snowboard boot.




SUMMARY OF THE INVENTION




In one illustrative embodiment of the invention, an apparatus is provided. The apparatus includes a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding and a strap to hold the interface to the snowboard boot. The strap includes a tightening element attached to the snowboard boot. The strap also includes a closure device including a spool about which the tightening element is wrapped to tighten the strap to secure the interface to the boot.




In another illustrative embodiment of the invention, an apparatus is provided. The apparatus includes a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding and a strap to hold the interface to the snowboard boot. The strap includes a tightening element attached to the interface. The strap also includes a closure device including a body and an actuator that is rotatably mounted to the body and is coupled to the tightening element so that rotation of the actuator causes the tightening element to be drawn into the closure device body to tighten the strap.




In yet another embodiment of the invention, an apparatus is provided. The apparatus includes a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding. The interface includes at least one strap anchor and a strap to hold the interface to the snowboard boot. The strap includes a tightening cable attached to the at least one anchor. The tightening cable is routed to and redirected by a portion of the at least one anchor so that the tightening cable can be drawn in one direction about the portion of the at least one anchor to tighten the strap.




In still another embodiment of the invention, an apparatus is provided. The apparatus includes a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding and a strap to hold the interface to the snowboard boot. The strap includes at least one load bearing strap component that is attached to the interface at first and second locations on opposite sides of the interface. The at least one load bearing strap component has a first portion that is attached to the first location on the interface and a second portion that is attached to the second location on the interface. The strap also includes a strap body movably mounted to each of the first and second portions of the at least one load bearing strap component and adapted to overlie the snowboard boot. The strap also includes a single closure device to tighten the strap by simultaneously tensioning the first and second portions of the at least one load bearing component and causing relative movement between the strap body and each of the first and second portions of the at least one load bearing component.











BRIEF DESCRIPTION OF THE DRAWINGS




Various embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:





FIG. 1

is a perspective view of a boot securing strap according to one aspect of the present invention;





FIG. 2

is a perspective view showing the securing strap attached to a soft snowboard boot;





FIG. 3

is a perspective view of the boot securing strap shown in an unsecured position on one side of the boot;





FIG. 4

is a fragmenting cross-sectional view taken along line


4





4


of

FIG. 3

;





FIG. 5

is a side view of the boot securing strap of

FIG. 1

attached to a soft snowboard boot in an alternative manner, and wherein the boot is engaged by a step-in binding;





FIG. 6

is a fragmenting cross-sectional view taken along line


6





6


of

FIG. 5

;





FIG. 7

is an alternative embodiment of the boot securing strap attached to a soft snowboard boot in an alternative manner on one side of the boot, and being in an unsecured position on the other side of the boot;





FIG. 8

is another alternative embodiment of the boot securing strap attached to a soft snowboard boot in a different manner;





FIG. 9

is an enlarged view of area encircled by arrows


9





9


of

FIG. 8

showing a closure device for the boot securing strap of

FIG. 8

;





FIGS. 10 and 11

are exploded perspective views showing a boot securing strap according to the present invention for use in attaching a binding interface to a snowboard boot;





FIG. 12

is a side view showing a pair of boot securing straps according to the present invention on a tray binding for securing a snowboard boot to the tray binding; and





FIGS. 13-15

are perspective views showing alternative views of a tongue stiffener for use with the present invention.











DETAILED DESCRIPTION




One illustrative embodiment of the present invention is directed to an improved strap that can be used in any of numerous applications, including for use as a strap (e.g., a heel strap) attached directly to a snowboard boot, as a strap (e.g., a toe strap or heel strap) in a tray binding, or as a strap for attaching a binding interface to a snowboard boot. In one embodiment, the strap employs a tightening mechanism that evenly distributes pressure throughout the strap, to avoid the creation of uneven pressure points as can occur with conventional two-piece ratchet-type straps of the type described above. In another embodiment, tightening of the strap does not result in a sliding movement of the strap across the surface of the snowboard boot, thereby avoiding the creation of significant frictional forces between the strap and the snowboard boot. In a further embodiment, the tensioned or load bearing components of the strap lie in a common plane, so that no moment is created as in conventional ratchet-type straps, thereby avoiding uncomfortable pressure points that can result therefrom.




One illustrative embodiment of a strap


20


in accordance with the present invention is shown in FIG.


1


. The strap


20


includes four major components, e.g., a strap body


22


, a tightening element or load bearing strap component


24


, a guide


30


for guiding the tightening element


24


across the strap body


22


, and a closure device


26


that is used to tighten the tightening element


24


. The tightening element


24


includes loop ends


34


and


36


that may be attached to anchors on a snowboard boot, a snowboard binding or a binding interface any of various ways as discussed below. As shown in

FIG. 1

, the tightening element


24


is guided via the guide


30


from one opening


26




a


of the closure device


26


, through an upper portion


30




a


of the guide


30


, to the loop end


36


, through a lower portion


30




b


of the guide


30


to the loop end


34


, and through a second upper portion


30




c


of the guide


30


back into the closure device


26


through a second opening thereof


26




b.






Operation of the strap


20


will now be described in connection with

FIG. 2

, which illustrates an embodiment of the present invention wherein the strap


20


is attached to a soft snowboard boot


28


that may include a lace


31


that closes the front of the boot. The boot includes a pair of anchors


40


(only of one of which is shown in

FIG. 2

) for mounting the loop ends


34


and


36


of the tightening element


24


to the boot. The anchors


40


can be implemented in any of numerous ways as discussed below. The closure device


26


tightens the strap


20


by taking up slack in the tightening element


24


, so that the strap


20


is tightened down over the top surface of the snowboard boot. The closure device


26


can include a housing or body into which the tightening element


24


is drawn to take up the slack in the tightening element. The closure device can include a spool (not shown) about which the tightening element


24


can be wrapped to take up the slack therein. For example, the spool can be implemented as a substantially cylindrical body, that is rotatably mounted relative to the housing of the closure device. However, the spool can also be implemented in any of numerous other ways, and is not limited to any particular configuration. For example of the spool need not be cylindrical, as any of numerous other configurations (square, triangular, elliptical, hexagonal) can be employed. In addition, the spool could be provided as simply two or more spaced apart members about which the tightening element can be wrapped.




Preferably, the closure device


26


is capable of providing a plurality of incremental tightening positions, to provide the rider with tremendous flexibility in determining the desired tightness for the strap


20


. In the illustrative embodiment shown in

FIGS. 1-2

, the closure device


26


is a rotary closure device having a spool around which the tightening element


24


is wound to take up the slack in the tightening element


24


, and further including a ratchet and pawl to provide one-way incremental locking adjustments. Such closure devices are well known for use in other applications, such as for use with a cable tightening system to replace conventional laces in an athletic shoe, and examples of such rotary closure devices are described in U.S. Pat. Nos. 3,738,027; 3,808,644; 4,433,456; 4,616,524; 4,660,300; 4,748,726; 4,761,859; 4,787,124; 4,796,829; 4,841,649; 4,884,760; 4,961,544; 5,042,177; 5,065,481; 5,150,537; 5,152,038; 5,157,813; 5,325,613; 5,600,874; 5,606,778; 5,638,588; and 5,669,116; and European patent applications EP056,953 and EP264,712. It should be appreciated that the present invention is not limited to the use of any particular type of closure device, as any mechanism that is capable of taking up slack in the tightening element


24


and providing a plurality of tightening positions can be used in connection with the present invention.




In the illustrative embodiment shown in

FIGS. 1-2

, the closure device


26


is attached to the strap body


22


in a center area


22




a


thereof. However, it should be appreciated that the present invention is not limited in this respect, and that the closure device


26


can be attached in numerous other places on the strap body


22


. Furthermore, as discussed below, in an alternative embodiment of the invention, the closure device


26


need not be mounted to the strap


20


at all, but rather, can be mounted to the snowboard boot, the binding or the binding interface with which the strap


20


is employed.




In use, the strap


20


can be disengaged to enable the rider to place his or her foot into the snowboard boot in any of numerous ways. In accordance with one embodiment of the present invention, a sufficient length of the tightening element


24


is provided within the closure device


26


, so that when the closure device


26


is actuated to release the tightening element


24


, sufficient slack can be provided therein to enable the rider to place his or her foot into the snowboard boot


28


. Thereafter, the lace


31


on the boot, if used, can be tightened. Next, the tightening mechanism


26


can be actuated to take up the slack in the tightening element


24


, thereby causing the strap


20


to cinch down over the top of the snowboard boot


28


.




In an alternative embodiment of the invention, the anchor


40


on at least one side of the snowboard boot can be adapted to releasably engage the tightening element


24


, so that the rider can disengage the strap


20


from one side of the snowboard boot to facilitate entry and exit of the rider's foot into the boot


28


. When the rider is putting on the boot


28


, and after placing his or her foot therein and tightening the lace


31


, the free end of the strap


20


can be attached to its anchor


40


. Thereafter, the closure device


26


can be actuated to reduce slack in the tightening element


24


and achieve the desired level of tightness in the strap


20


.




As should be appreciated from the foregoing, when the strap


20


is tightened down onto the boot, the strap body


22


cinches down over the top of the boot. In this respect, when the tightening element


24


is tensioned, it can move relative to the strap body


22


, so that the strap body


22


moves relative to the tightening element


24


, toward the snowboard boot on both sides thereof. Thus, in contrast to conventional two-piece ratchet-type straps, there is no significant relative sliding between the strap body


22


and the upper surface of the boot


28


, thereby avoiding the creation of uncomfortable pressure points that can be caused with conventional straps as discussed above. In addition, the strap components that are tensioned when the strap is tightened (i.e., the tightening element


24


) can be located in a single plane, such that no moment is created on the strap as it is tightened as with conventional two-piece ratchet-type straps, thereby avoiding the uncomfortable pressure points that can result therefrom. In addition, since the strap


20


does not include two major strap components that overlie one another, the strap


20


has a low profile that can be integrated into the boot in an aesthetically pleasing manner.




The strap body


22


can be formed in any of numerous ways, as the present invention is not limited to any particular construction. The strap body


22


may be formed of any suitable material, such as plastic, leather, fabric or any suitable combination, and may be made using any suitable manufacturing technique, such as cutting, stamping, injection or compression molding or stitching. Although shown in the figures as a single component, it should be appreciated that the strap body


22


can be made of any number of components formed of a single or multiple materials, which may be joined together using any suitable joining technique (e.g., gluing, stitching, heat bonding, etc.). The strap body


22


may be rigid and shaped to conform to the portion of the boot


28


which it overlies. Alternatively, the strap body


22


may be flexible and resilient so that it will conform to the shape of the boot as the strap


20


is tightened down. Plastic components in the strap body


22


may be molded into the desired shape, whereas leather or fabric components in the strap body


22


may be stitched into the desired shape.




In one embodiment of the invention, the strap body


22


includes a padded support (not shown) disposed on an inner surface for increased comfort. In addition, the strap body


22


can be provided with an opening adapted to overlie the instep bone of the rider to further increase the comfort of the strap, as described in co-pending U.S. patent application Ser. No. 08/619,358, entitled Snowboard Boot and Binding Strap, which is hereby incorporated herein by reference. In one embodiment, the strap body


22


is sized to extend from substantially one side of the boot to the other, thereby maximizing distribution of pressure across the top surface of the boot


28


. In addition, by extending from substantially one side of the boot to the other, the strap body


22


is essentially self-centering between the anchors


40


. Although providing the advantages discussed above, it should be appreciated that the present invention is not limited to employing a strap body


22


that extends substantially the entire length between the anchors


40


. For example, a smaller strap body


22


can be employed along with a guide


30


having ends


32


that extend well beyond the strap body


22


and are incompressible, so that the guides


30


can achieve the self-centering effect. Furthermore, although this self-centering feature is advantageous, it should be appreciated that the present invention is not limited in this respect, and that a strap


20


can be implemented in accordance with the teachings of the present invention without a self-centering capability.




The guides


30


can be implemented in any of numerous ways, and the present invention is not limited to any particular implementation. In this respect, the function performed by the guides


30


is to guide the tightening element


24


from the closure device


26


, through the strap body


22


to the anchors


40


. In the embodiment shown in

FIG. 1

, the guides


30


extend substantially along a longitudinal axis


23


of the strap body


22


, which is advantageous in that a large portion of the strap body


22


is held down onto the boot


28


via the tightening element


24


. However, it should be appreciated that the present invention is not limited in this respect, and that numerous other configurations for the guides


30


are possible. In the embodiment shown in

FIG. 1

, the guide


30


does not completely enclose the tightening element


24


(e.g., the tightening element exits the guide


30


at the loop ends


34


and


36


), so that the length of the tightening element can be altered to tighten or loosen the strap


20


independently of the guide


30


. In one embodiment of the invention, the guide


30


can be formed of a low-friction high abrasion resistant material, to minimize friction between the tightening element


24


and the guide


30


, and thereby facilitate even distribution of the tightening pressure exerted by the tightening element


24


on the strap body


22


. Although advantageous, it should be appreciated that the present invention is not limited to the use of a low-friction and/or high abrasion resistant material for the guide


30


.




In the embodiment shown, the guide


30


includes five distinct components, e.g., upper guide components


30




a


and


30




c


, each of which is disposed within and extends beyond a lumen (indicated by the dotted lines in

FIG. 1

) in the strap body


22


, a lower guide component


30




b


that is similarly disposed within a lumen in the strap body


22


and extends therebeyond at each of its ends, and upper guide components


30




d


and


30




e


that respectively couple the guide components


30




a


and


30




c


to the closure device


26


. The strap


20


further includes a pair of connectors


35




a


and


35




b


that respectively connect the guide components


30




a


and


30




c


to the guide components


30




d


and


30




e


. It should be appreciated that the present invention is not limited to the particular implementation shown, and that the guide


30


can be formed in numerous other configurations to route the tightening element


24


through sufficient portions of the strap body


22


to effectively hold the strap


20


down atop the boot


28


.




In the embodiment shown in

FIG. 1

, the upper portion of the guide


30


extending toward each side of the strap body


22


is formed from two components (e.g., guide components


30




a


and


30




d


that route the tightening element from the closure device


26


to the right side of the strap body


22


in

FIG. 1

, and guide components


30




c


and


30




e


that guide the tightening element to the left side of the strap body


22


). While each of the two components of the guide


30


that route the tightening element from the closure device


26


to one side of the strap body


22


can be formed from a low-friction high abrasion resistant material, in one embodiment of the present invention the flexibility of and/or compressibility of these components differs. In this respect, in one embodiment of the present invention, the guide components


30




d


and


30




e


are made from a substantially non-compressible material. While not limited in this respect, in one embodiment of the present invention the guide components


30




d


and


30




e


are formed from a substantially incompressible steel coated with plastic, similar to the type of material used to route bicycle cables from the brake handles to the brakes. Of course, it should be appreciated that other incompressible materials can also be employed. In contrast the guide components


30




d


and


30




e


, the other guide components


30




a


-


30




c


can be formed from more flexible and compressible material to better conform to the shape of the snowboard boot


28


as the strap


20


is tightened down. Again, while not limited in this respect, the guide components


30




a


-


30




c


can be formed from a low-friction high abrasion resistant plastic material.




The effect achieved by forming the guide components


30




d


-


30




e


from an incompressible material is that they maintain their shape as the tightening element


24


is tensioned. In this respect, if the guide elements


30




d


-


30




e


were compressible, it should be appreciated that when the tightening element


24


was tensioned in response to actuation of the closure device


26


, the guide elements


30




d


-


30




e


would simply collapse under the tension. In one embodiment of the present invention, it is desirable to route the tightening element


24


from the closure device


26


, so that it is constrained to extend substantially in-line with the incompressible guide channels


30




a


and


30




c


at the locations where the tightening element


24


enters those guide channel components (e.g., in the area of the connectors


35




a


and


35




b


). It should be appreciated that this achieved by forming the guide components


30




d


-


30




e


from incompressible material, so that these components of the guide


30


will maintain the shape shown in

FIG. 1

, such that even when tensioned, the tightening element


24


will extend substantially in-line with the guide components


30




a


and


30




c


. By ensuring that the tightening element


24


is in-line with the guide components


30




a


and


30




c


, the embodiment of the present invention shown in

FIG. 1

ensures that the configuration of these guide components will not be altered when the tightening element


24


is tensioned.




In the embodiment shown in

FIG. 1

, the guide components


30




d


and


30




e


are arranged in a criss-cross fashion, such that each routes the tightening element


24


from one side of the closure device


26


to the opposite side of the strap body


22


. As a result of this criss-cross pattern, the radius of curvature of the guide components


30




d


and


30




e


is larger than if the tightening element


24


were to take a sharper turn when extending from the closure device


26


to the guide components


30




a


and


30




c


. As a result, less friction is exerted on the tightening element


24


when passing through the guide components


30




d


and


30




e


. Although advantageous, it should be appreciated that the present invention is not limited in this respect, and that the tightening element


24


can be routed from an opening on one side of the closure device


26


to the same side of the strap body


22


. Furthermore, alternative designs can also be employed wherein no incompressible components of the guide channel


30


are employed. For example, the mounting position for the closure device


26


can be altered so that its openings


26




a


and


26




b


are substantially in-line with the guide components


30




c


and


30




a


, respectively, thereby achieving the same benefit as provided by the incompressible guide components


30




d


and


30




e


. Furthermore, it should be appreciated that the present invention is not limited to orienting the openings


26




a


-


26




b


of the closure device


26


in any particular manner relative to the strap body


22


, as numerous orientations are possible. In addition, as discussed below, the closure device


26


need not employ a pair of openings


26




a


and


26




b


for the tightening element


24


, as a single opening can alternatively be employed.




As mentioned above, in the embodiment shown in

FIG. 1

, the strap body


22


includes three lumens (not specifically shown, but represented by the dotted lines in

FIG. 1

) that receive the guide channels


30




a


-


30




c


. The lumens enclose substantially all of the guide channels


30




a


-


30




c


except for their ends


32




a


-


32




c


. It should be appreciated that the present invention is not limited in this respect, as numerous other configurations are possible. For example, the ends of the guides channels


30




a


-


30




c


need not extend beyond the lumens, and can terminate in-line with the lumens. Alternatively, the guide channels


30




a


-


30




c


can be attached to the strap body


22


in other ways, rather than being enclosed within a lumen as shown in FIG.


1


. For example, the guide channels can simply be affixed to the outer surface of the strap body


22


. Furthermore, although the tightening element


24


extends substantially in-line with the longitudinal axis


23


of the strap body


22


in the embodiment shown in

FIG. 1

, the present invention is not limited in this respect. The tightening element can be routed across the strap body


22


in any of numerous ways, including in routing patterns that zig-zag in directions transverse to the longitudinal axis


23


of the strap body


22


, as discussed in more detail below. Furthermore, although the provision of distinct guide channels


30


provides advantages as discussed above, it should be appreciated that the present invention is not limited to their use, as guide elements (e.g., lumens or protrusions) can be provided directly from the material of the strap body


22


itself, rather than employing discrete guide channels. As should be clear fro the foregoing, the present invention is not limited in any respect to the particular manner of routing the tightening element


24


through the strap body


22


.




The tightening element


24


can be implemented in any of numerous ways, and the present invention is not limited to any particular implementation. The tightening element


24


should be sufficiently strong to resist the substantial lifting forces that can be encountered when snowboarding, and in this respect may require greater strength than the tightening elements employed in the above-referenced patents relating to rotary closure devices for use on athletic shoes. The tightening element


24


can be formed from a monofilament or a multi-strand line. In accordance with one illustrative embodiment of the invention, the tightening element is formed of a low-friction material capable of resisting a high tensile force without elongation to minimize frictional engagement between the tightening element


24


and the guide


30


, and thereby facilitate even pressure distribution along the entirety of the strap body


22


in the manner discussed above. While not limited to any particular material, examples of materials that can be used for the tightening element


24


include various types of plastics or metals, Kevlar® and Spectra Cord®.




In the embodiment shown, the tightening element


24


is formed as a single piece component, with each of the free ends attached to the closure device


26


in a manner that cooperates therewith to enable the tightening element to be drawn into the closure device to tighten the strap


20


. As mentioned above, the present invention can employ any of numerous types of closure devices, and is not limited to any particular type of closure device. In one embodiment of the invention, the closure device


26


is a rotary closure device, wherein each of the ends of the tightening element


24


is attached to a spool, such that rotation of the closure device draws both ends of the tightening element


24


into the closure device to wrap around the spool. As mentioned above, in alternative embodiments of the present invention discussed below, the tightening element


24


can alternatively be attached at only one end to the closure device


26


.




In the embodiment shown in

FIGS. 1-2

, a single tightening element


24


and a single closure device


26


are employed. However, the present invention is not limited in this respect, as multiple tightening elements


24


and/or multiple closure devices


26


can be employed. When multiple tightening elements


24


are employed, each can be routed through a different portion of the strap body


20


, and the multiple tightening elements


24


can be attached to a single common closure device


26


. Alternatively, multiple tightening elements


24


can be employed wherein each is attached to a separate closure device


26


.




As discussed above, in the embodiment of

FIG. 2

, the strap


20


can be attached to the snowboard boot


28


by securing the tightening element


24


to two or more anchors


40


disposed on the boot. The anchors


40


(only one of which is shown in

FIG. 2

) can be implemented in any of numerous ways, and the present invention is not limited to any particular implementation. In this respect, the function performed by the anchors


40


is to enable the tightening element


24


to be routed thereto, and then be redirected by the anchor. For example, in shown in

FIG. 2

, the anchor


40


redirects the tightening element


24


at the loop end


36


, in that the upper portion of the tightening element


24


travels from the closure device


26


out toward the side of the boot, and then is redirected by the anchor


40


back toward the lace area of the boot. The anchors


40


may be formed of any suitable material (e.g., plastic or metal) that is sufficiently strong to withstand the lifting forces exerted on the strap


20


. The anchors


40


may be integrally formed into the boot


28


, or may be attached thereto using any suitable attachment method, such as stitching, riveting, screwing, heat welding, adhesive bonding, etc. As shown in

FIGS. 3 and 4

, each anchor


40


may be provided with a lumen


42


through which the tightening element


24


can be threaded to secure the tightening element


24


to the anchor


40


. When a lumen


42


is employed, the tightening element


24


will not separate from the anchor, even when significant slack is provided in the tightening element


24


. Although the use of a through lumen as the attachment feature on the anchor


40


for mating with the tightening element


24


advantageously provides such secure engagement, it should be appreciated that the present invention is not limited in this respect, and that numerous other types of mating features can be employed. In an alternative embodiment of the present invention, the anchor


40


can include a pulley about which the tightening element


24


is wrapped, to further reduce friction between the anchor


40


and the tightening element


24


.




In the embodiment of the invention shown in

FIG. 2

wherein the strap


20


is attached in the ankle area of the boot to hold down the heel of the rider, the position at which the anchors


40


are attached to the boot can be as taught in co-pending application Ser. No. 08/619,358, entitled Snowboard Boot and Binding Strap, which is hereby incorporated herein by reference. However, it should be appreciated that the present invention is not limited in this respect, as the strap


20


can alternatively be attached at other locations.




In the embodiment shown in

FIGS. 1-2

, the snowboard boot


28


is provided with a single strap


20


that is attached at a pair of anchors


40


disposed in the ankle area of the boot, so that the strap is adapted to hold down the rider's heel in the boot. It should be appreciated that the present invention is not limited in this respect, and that a strap embodying the present invention can be attached at other locations on the snowboard boot (e.g., as a toe strap or shin strap), and that a single snowboard boot


28


can employ two or more straps in accordance with the present invention. For example, a strap can be provided to hold down the toe of the rider, one can be attached about the shin area of the snowboard boot


28


, and/or a heel strap can be provided. When multiple straps are employed on the snowboard boot


28


, each can be provided with its own closure device


26


, or a single tightening element


24


can be routed through the multiple straps and can be tightened by a single closure device


26


.





FIGS. 5 and 6

illustrate an alternative anchor


41


for mounting the strap


20


to a snowboard boot


28


. In

FIG. 5

, the snowboard boot is illustrated as being engaged via a step-in binding


44


that is attached to a snowboard


46


. The step-in snowboard binding conceptually illustrated in

FIG. 5

is that disclosed in co-pending application Ser. No. 08/780,721. However, it should be appreciated that the present invention is not limited to use on a snowboard boot compatible with that particular step-in binding, and can be employed with any type of snowboard boot, including boots compatible with any other type of step-in binding.





FIG. 6

illustrates the construction of anchor


41


for attaching the tightening element


24


to a snowboard boot


28


. In the embodiment shown in

FIG. 6

, the anchor


41


includes a hook


43


that defines an opening


48


to receive the tightening element


24


. In contrast with the embodiment shown in

FIG. 4

, can the rider can engage and disengage the tightening element


24


from the hook, without separating the free ends of the tightening element


24


from the closure device


26


, removing the anchor from the boot, or breaking the tightening element or the anchor. This is advantageous for use in accordance with the embodiment of the present invention wherein entry and exit into the snowboard boot


28


is facilitated by detaching one end of the strap


20


from the snowboard boot


28


. For use in accordance with this embodiment of the present invention, one end of the strap


20


can be made detachable, while the other end can non-detachably secure the tightening element


24


to the anchor. Examples of detachable and non-detachable anchors are respectively shown in

FIGS. 4 and 6

. However, it should be appreciated that the aspect of the present invention directed to the use of one detachable connection and one non-detachable connection is not limited to use with the particular anchors


40


and


41


shown in

FIGS. 4 and 6

, as numerous other implementations for each of the detachable and non-detachable anchors are possible.




In another embodiment of the present invention, each of the anchors attached to the snowboard boot


28


is implemented so that it can detachably release the strap


20


. As a result, when the snowboard boot is used with a step-in binding, the strap can be attached thereto. Furthermore, in accordance with the invention recited in co-pending application Ser. No. 08/619,358, entitled Snowboard Boot and Binding Strap, the strap


20


can also be completely removed from the snowboard boot


28


so that the boot can alternatively be employed with a tray binding.




In another embodiment of the present invention (not shown), one end of the tightening element


24


is fixedly attached to the snowboard boot


28


, and only a single free end of the tightening element


24


is attached to the closure device


26


. The end of the tightening element


24


that is fixed to the snowboard boot


28


can be fixedly attached in any suitable manner, as the present invention is not limited to any particular attachment technique. For example, the tightening element can be looped back upon itself to create a noose-type loop that can be wrapped around a post or other element fixed to the snowboard boot


28


, an eyelet can be attached to the free end of the tightening element


24


which can be secured to a hook or screw on the snowboard boot or, a hook or other mating feature can be attached to the free end of the tightening element


24


and can be mateable with a corresponding mating feature fixed to the snowboard boot


28


. In the embodiment wherein one end of the tightening element


24


is fixed to the snowboard boot


28


, the remainder of the tightening element


24


can be routed through the strap body


22


in much the same manner as discussed above, to traverse a sufficient portion of the strap body


22


to tighten the strap down over the top of the snowboard boot


28


. The tightening element


24


can be attached at the other side of the boot using any of the anchoring schemes discussed above.




In a further alternative embodiment (not shown), separate tightening elements


24


can be employed to attach each side of the strap


20


to a corresponding side of the snowboard boot


28


. For example, two tightening elements


24


can be employed, each with a free end attached to the closure device


26


and a fixed end fixedly attached to one side of the snowboard boot in much the same manner as discussed above. Each tightening element


24


can be attached to the same closure device


26


, each tightening element


24


can alternatively be attached to a separate closure device


26


.




In a further alternative embodiment of the invention shown in

FIG. 7

, the strap


20


is fixedly secured at one end


50


directly to the boot, and the tightening element


24


is employed only to connect a second end


52


of the strap


20


to the snowboard boot. The end


50


of the strap


20


can be fixedly attached to the boot in any of numerous ways (e.g., by stitching, riveting, screwing, adhesive bonding, etc.), as the present invention is not limited to any attachment technique. In accordance with one embodiment of the present invention, an attachment technique is employed that enables the end


50


of the strap


22


to be removed from the snowboard boot in accordance with the teachings of co-pending application Ser. No. 08/619,358.




In the embodiment shown in

FIG. 7

, both ends of the tightening element


24


are secured to the closure device


26


, with the tightening element forming a loop end


36


that is attachable to an anchor (not shown) on the snowboard boot in any of the ways discussed above in connection with the earlier-described embodiments of the invention. Alternatively, only a single end of the tightening element


24


can be attached to the closure device


26


, with the other end being attached to the anchor on the boot as described above. The tightening element


24


can be of sufficient length so that the strap can be loosened sufficiently to enable the rider to get his or her foot into and out of the snowboard boot


28


, and/or the tightening element can be made detachable from the boot


28


to facilitate entry and exit from the boot as discussed above.




In the embodiments of the present invention shown in

FIGS. 1-7

, the closure device


26


is mounted to the strap body


22


. The present invention is not limited to any particular mounting location for the closure device


26


on the strap body


20


, as numerous locations can be employed. As discussed above, the closure device


26


can be disposed substantially in-line with the routing pattern for the tightening element


24


(as shown in FIG.


7


), or the openings (


26




a


-


26




b


in

FIG. 1

) of the closure device


26


can be disposed away from the primary path of the tightening element


24


as shown in

FIGS. 1-2

. In the embodiment of the invention shown in

FIG. 1

, the closure device is disposed away (above in

FIG. 1

) from the plane in which the tightening element


24


will primarily distribute pressure through the strap body


22


. As a result, when the strap is tightened down atop the boot, the closure device


26


will not bear down on the snowboard boot


28


, and therefore will not create an uncomfortable pressure point. Although advantageous, it should be appreciated that the present invention is not limited in this respect, and that the closure device can alternatively be disposed more in-line with the tightening plane of the strap


20


as shown in FIG.


7


.




The closure device


26


can be mounted to the strap body


22


in any of numerous of ways, as the present invention is not limited to any particular mounting technique. In one embodiment of the invention, the closure device


26


is preferably mounted to the strap body


22


in a manner that is detachable by the rider, so that if there is a malfunction of the closure device


26


or if the tightening element


24


breaks, the entire system including the tightening element


24


and closure device


26


can simply be removed and replaced by the rider. In one embodiment of the invention, a substantially rigid pressure distribution plate (not shown) can be mounted to the strap body


22


(e.g., by stitching, by using a screw and T-nut, adhesive bonding, etc.). The pressure distribution plate provides some rigidity to withstand the forces exerted on the tightening element


24


while riding, and can be provided with a mating feature that mates with a corresponding feature on the closure device


26


to allow the closure device to be detachably secured to the pressure distribution plate. Alternatively, the closure device


26


can be mounted to the strap body


26


in such a way that forces exerted thereon by the tightening element


24


cancel each other out (e.g., forces pulling toward the medial side of the boot balance those pulling toward the lateral side of the boot), such that the pressure distribution plate is unnecessary. In this embodiment, the attachment of the closure device


26


to the strap body


22


need not be as secure. For example, the closure device


26


can simply be stitched into the strap body


22


. Alternatively, the closure device


26


need not be attached at all.




The closure device


26


need not be mounted to the strap body


22


, but rather, can be mounted directly to the snowboard boot for each of the embodiments of the present invention discussed above. An illustrative example of an embodiment of the present invention wherein the closure device


26


is mounted directly to the snowboard boot


28


is shown in FIG.


8


. As shown therein, the tightening element


24


is attached at one end


24




b


to the closure device


26


, and extends over the strap body


22


to the other side of the boot, wherein it is secured via an anchor (not shown), and then returns back over the strap body


22


so that its other end


24




a


is at the same side of the boot as the closure device


26


. Rather than being attached directly to the boot, the end


24




a


of the tightening element can also be attached to the closure device


26


, in the manner discussed above. In the embodiment shown in

FIG. 8

, the end


24




a


of the tightening element is attached (either fixedly or detachably) directly to the snowboard boot


28


using any of the numerous techniques discussed above.




As with the embodiments discussed above, the anchor that attaches the tightening element


24


to the opposite of the snowboard boot


28


can be implemented in any of numerous ways, as the present invention is not limited to any particular implementation technique. Like with the embodiments discussed above, the connection between the tightening element


24


and the anchor on the opposite side of the boot can be made detachable, to facilitate entry and exit from the snowboard boot


28


, or the attachment can be made non-detachable, such that entry and exit from the snowboard boot


28


is accomplished by achieving sufficient slack in the tightening element


24


to loosen the strap


20


. Similarly, the tightening element


24


can be routed over the strap body


22


in any of numerous ways. For example, the strap body


20


can be provided with one or more guide channels similar to guide channels


30




a


-


30




c


discussed above in connection with the embodiment of FIG.


1


. Alternatively, the strap body can be provided with two or more attachment elements


61


that are mounted to the strap body


22


and attach the tightening element


24


thereto. The attachment elements


61


can be implemented in any of numerous ways, as the present invention is not limited to any particular implementation. For example, the attachment elements


61


can be provided with one or more through lumens (not shown) to receive the tightening element


24


in much the same manner as the lumens


42


provided in the anchor


40


illustrated in FIG.


4


. The attachment elements


61


can be attached to the strap body


22


in any of numerous ways (e.g., via riveting, screwing, stitching, adhesive bonding, etc.). As shown in the embodiment of

FIG. 8

, when two or more attachment elements


61


are employed, the tightening element


24


can simply overlie the strap body


22


rather than passing through a portion thereof as is the case when guide elements such as those shown in

FIG. 1

are employed. In one embodiment of the invention, when the tightening element


24


is adapted to overlie the strap body


22


, the surface of the strap body


22


that underlies the tightening element


24


can be formed from a low-friction material to facilitate sliding of the tightening element


24


over the strap body


22


.




As mentioned above, the present invention is not limited to the particular routing patterns of the tightening element


24


shown in

FIGS. 1-8

. In this respect, in each of the embodiments shown, the tightening element


24


is generally guided through the strap body


22


in a direction that is substantially parallel to a length axis


23


(

FIG. 1

) of the strap body


22


. However, the invention is not limited in this respect, as numerous other routing patterns are possible. For example, the tightening element


24


can be routed across (e.g., either through, atop, below or a combination thereof) the strap body


22


in a zigzag pattern wherein the tightening element travels toward a top surface


22


t (

FIG. 1

) of the strap body


22


over part of its length, and toward a bottom surface


22




b


(

FIG. 1

) of the strap body


22


along other portions of its length. When routed in ways that require a change in direction for a portion of the tightening element


24


passing across the strap body


22


, routing features such as the attachment elements


61


shown in

FIG. 8

can be employed to assist in guiding the change in direction, or guide channels such as


30




a


-


30




c


shown in

FIG. 1

can be provided that are shaped to provide the desired change in direction and formed from an incompressible material. It should be appreciated that in addition to zigzag patterns, numerous other routing patterns for the tightening element


24


are possible, as the present invention is not limited to any particular routing pattern.




It should be appreciated that each of the embodiments of the present invention relating to detachably or non-detachably securing the tightening element


24


to the snowboard boot has certain advantages. In this respect, for the embodiment of the invention wherein the tightening element


24


is detachably secured to the snowboard boot


28


, the strap can be completely removed from the snowboard boot, to make it compatible with a tray binding. In addition, since the tightening element


24


need not be long enough to enable the strap to be loosened enough to facilitate entry and exit from the boot, the closure device


26


can potentially be made smaller, as it need not house as great a length of the tightening element


24


. However, in one embodiment of the invention wherein at least one end of the strap is detachably secured to the boot, sufficient length of tightening element


24


is provided to enable some slack to be experienced therein, so that the rider can adjust the position of the strap body


22


over his or her foot by sliding the strap body


22


relative to the tightening element


24


.




In a further alternative embodiment, shown in

FIG. 5

, the strap


20


may also include a registering feature, which is used to register or locate the strap


20


on the boot in a desired medial, centered or lateral position. The registering feature can be implemented in any of numerous ways and the present invention is not limited to any particular implementation. In the embodiment shown in

FIG. 5

, the registering feature is formed as a non-stretchable strip


54


that is attached (e.g., stitched) at one end


54




a


to the strap body


22


and at the other end


54




b


to the boot upper. The non-stretchable strip limits the extent of movement of the strap


20


in the direction away from the end


54




b


attached to the boot. The strip


54


may be provided with any suitable adjustment means to adjust the length of the strip


54


. For example, the strip


54


may be provided with a buckle, such as a ladder-lock buckle, to adjust the length of the strip


54


. In this regard, the length of the strip


54


may be infinitely incrementally adjustable along at least a part of its length. Thus, a rider may adjust the length of the strip such that when the strip is fully extended, the strap


20


is registered in a desired position relative to the boot


28


. The rider may then tighten the strap


20


against the boot in order to secure the strap


20


in the desired position.




Although in the example described with reference to

FIG. 5

the strip


54


is stitched to the strap


20


at one end and to the boot at the other end, any suitable fastening means may be used in place of the stitching. For example, a snap fastener or a hook and loop fastener may be used at one end of the strip


54


. In this regard, the fastener selected may provide the adjustability in the length of the strip


54


such that a separate adjustment mechanism is not required.




In another embodiment (not shown), the registering feature may be provided by providing mating features directly on the strap


20


and the boot


28


. For example, a hook and loop fastener may be disposed between the strap


20


and the boot


28


such that the strap


20


may be registered in a desired position on the boot. Alternatively, cooperating halves of a plurality of snap fasteners may be used to register the strap


20


directly to the boot


28


. Once the strap is registered in the desired position, the closure device


26


can be actuated to tighten the tightening element


24


to firmly secure the strap


20


to the boot


28


in the desired position.




In the embodiment shown in

FIG. 8

, the closure device


26


is mounted to the outside of the snowboard boot. However, it should be appreciated that the embodiment of the present invention wherein the closure device


26


is mounted to the snowboard boot is not limited in this respect, as the closure device can be mounted to numerous other locations on the snowboard boot, such as on the inside of the boot, or the tongue or behind the heel. In the embodiment shown in

FIG. 8

, wherein the closure device


26


is mounted to the side of the snowboard boot, it should be appreciated that it is desirable to employ a closure device


26


that has a relatively low profile, so that it does not extend a significant distance from the side of the snowboard boot


28


. Such a closure device is shown in FIG.


9


. As the present invention is not limited to any particular type of closure mechanism, the details of the closure device


60


are not described herein. The closure device


60


includes a knob


62


that can flip from a down position to an extended position shown in

FIG. 9

to facilitate grabbing by the rider. When in the extended position of

FIG. 9

, rotation of the knob


62


can cause an incremental tightening of the tightening element


24


in much the same manner as with conventional rotary closure mechanisms. Advantageously, when not needed for actuation, the knob


62


can be flipped down to the non-use position in which it lies substantially flush with the side of the boot to reduce the profile of the closure device


60


. This type of closure mechanism is known in the art of bike shoes. The closure device


60


may also optionally include a release button


66


, which, when actuated, releases the tightening element


24


.




In each of

FIGS. 2-3

,


5


and


7


-


8


which shows a strap according to the present invention mounted to a snowboard boot, the snowboard boot is shown as a soft snowboard boot having a pair of laces


31


that close the front of the boot. Although the strap of the present invention provides a number of advantages when used in connection with such a boot as described above, it should be appreciated that the present invention is not limited in this respect and that the various embodiments of a strap in accordance with the present invention can be provided on other types of snowboard boots. For example, the various embodiments of the present invention can be used in connection with any soft snowboard boot, regardless of the closure system used to close the boot, as various other types of closure systems (e.g., buckles) can be employed rather than a pair of laces


31


. In addition, the various embodiments of a strap according to the present invention can also be used with a hard snowboard boot or a hybrid snowboard boot.




In the embodiments of the present invention discussed above, the strap


20


includes a strap body


22


that, among other functions, serves to distribute pressure exerted on the snowboard boot


28


via the tightening element


24


. In this respect, it should be appreciated that the strap


20


could be formed with the tightening element


24


directly overlying the surface of the boot


28


, and with the closure device


26


being mounted elsewhere. However, when the relatively thin tightening element


24


is tensioned, it could create uncomfortable pressure points on the boot


28


. Thus, one function served by the strap body


22


is to distribute the pressure created via the tightening element


24


across a greater surface area. This pressure distribution function is enhanced when the strap body


22


is provided with padding to increase the comfort of the strap


20


on the snowboard boot


28


.




In an alternate embodiment of the present invention shown in

FIGS. 13-15

, the snowboard boot


28


can itself be provided with a pressure distribution element to distribute pressure exerted thereon via the tightening element


24


. An example of such a pressure distribution element is the tongue stiffener


90


shown in

FIGS. 13-15

. An example of such a tongue stiffener is described in co-pending U.S. provisional application Ser. No. 60/111,309, which is incorporated herein by reference. As shown in

FIG. 13

, the tongue stiffener is mounted to the tongue


91


of the snowboard boot


28


. The purpose of the tongue stiffener


90


is to cooperate with the tongue


91


to increase resistance of the boot to forward bending. In the view shown in

FIG. 13

, portions of the boot upper, including the laces


31


, have been removed for the sake of clarity.




The tongue stiffener


90


can be formed from any rigid material (e.g., plastic). In addition to stiffening the tongue, a substantially rigid tongue stiffener


91


will also distribute pressure exerted thereon via the tightening element


24


. As a result, in one embodiment of the present invention, the strap can be modified to employ a substantially reduced strap body


92


, as the strap body


92


need not perform any pressure distribution function. As a result, a minimal strap body


92


can be employed which includes no padding, but merely provides a guide for routing the tightening element


24


from one side of the boot to the other. Alternatively, the strap body


92


can be even further minimized, such that it includes two discrete guide channels for guiding the upper and lower portions of the tightening element


24


that extend between the two sides of the snowboard boot


28


. Furthermore, it is also possible to eliminate the strap body


92


altogether, such that the tightening element


24


is exposed as it extends between the two sides of the snowboard boot


28


.




As shown in the embodiment of

FIG. 13

, when the strap body


92


is minimized, it may not be sufficiently supportive to mount the closure device thereto. Therefore, in accordance with the embodiments of the present invention wherein either a minimal or no strap body is provided, the closure device


26


can be mounted to the pressure distribution element (e.g., tongue stiffener


90


), the tongue


91


, or to some other portion of the boot as shown in FIG.


13


.




It should be appreciated that the pressure distribution element can be formed in any of numerous ways, and is not limited to having the configuration of the tongue stiffener


90


illustrated in FIG.


13


. In this respect, the pressure distribution element can be disposed only in the area crossed via the tightening element


24


, and need not extend significantly above or below that area in the manner that the tongue stiffener


90


does in FIG.


13


. In addition, the pressure distribution element can be formed of any suitable material capable of sufficiently distributing the pressure exerted thereon via the tightening element


24


. Furthermore, in the embodiment shown in

FIG. 13

, the tongue stiffener is shown mounted to the outer surface of the tongue


91


. It should be appreciated that rather than being mounted to the tongue, the pressure distribution element can be incorporated into the structure of the tongue


91


. Finally, while the pressure distribution element has been described herein as being useful with a nonpadded strap, it should be understood that the pressure distribution element can also be used in conjunction with a padded strap.




As with the embodiment discussed above in connection with

FIG. 7

, the embodiment of the present invention directed to the use of a pressure distribution element can also be employed with the tightening element


24


being only routed to one side of the snowboard boot. In this respect, in the embodiment shown in

FIG. 14

, a guide


94


is formed in a wing


96


of the tongue stiffener


90


and receives the tightening element


24


. Therefore, when the closure device


26


is actuated to draw in the tightening element


24


, the tongue stiffener


94


is tightened down atop the tongue


91


to secure the rider's foot in the boot


28


. It should be appreciated that the guide


94


can be disposed through the tongue stiffener


90


, or a separate routing element for the tightening element


24


can be mounted to the tongue stiffener


90


. It should further be appreciated that a separate closure device


26


and tightening element


24


can be attached to the opposite side of the tongue stiffener


90


to work in the same manner, or alternatively, the opposite side of the tongue stiffener


90


can be fixedly secured to the tongue


91


so that the tongue stiffener


90


is not displaced when the tightening element


24


is tensioned.




In a further embodiment of the invention shown in

FIG. 15

, the strap is formed without a strap body, and is routed through (rather than over as in

FIG. 13

) the pressure distribution element (e.g., the tongue stiffener


90


) from one side of the snowboard boot


28


to the other. In this respect, the tongue stiffener


90


includes a pair of guide channels


94


through which the tightening element


24


is routed. In the embodiment shown in

FIG. 15

, the closure device is mounted on one side of the boot


28


. Of course, as described above, the closure device


26


can alternatively be mounted directly to the tongue stiffener


90


or to the tongue


91


.




In another illustrative embodiment of the present invention shown in

FIGS. 10-11

, the strap


20


is employed with a binding interface


70


to mount a snowboard boot


71


thereto. The binding interface


70


includes a pair of mating features


73


(only one of which is shown in

FIGS. 10-11

) for mating with a step-in binding


72


to releasably secure the binding interface


70


thereto. In the particular embodiment shown in

FIGS. 10-11

, the step-in binding


72


and the binding interface


70


are implemented as described in co-pending application Ser. No. 09/062,143, entitled Snowboard Binding, which is hereby incorporated herein by reference.


24


As disclosed in that related application, the step-in binding


72


includes a pair of movable engagement members


79


(only one of which is shown in

FIG. 10

) for mating with the mating feature


73


on the binding interface, and further includes a mating feature


77


adapted to mate with a corresponding mating feature


75


at the toe end of the snowboard boot. The snowboard boot


71


includes a recess


81


for receiving the binding interface


70


. The toe end of the snowboard boot


71


is directly engaged to the binding


72


via the mating feature


75


, while the heel end of the snowboard boot is engaged to the binding via the engagement between the snowboard boot


71


and the interface


70


. In this respect, the binding interface


70


is engaged by the step-in binding


72


, whereas the heel of the snowboard boot


71


is held in engagement with the binding interface


70


via the strap


20


.




The strap


20


according to the embodiment of the invention shown in

FIGS. 10-11

performs a similar function to that described in the embodiments of

FIGS. 2-9

, wherein the strap is attached directly to the snowboard boot. In this respect, the strap


20


holds the heel of the rider down in the snowboard boot


71


. However, the strap


20


in the embodiment of

FIGS. 10-11

also performs the function of attaching the heel of the snowboard boot to the binding interface


70


, and through the interface


70


, to the step-in binding


72


. It should be appreciated that the aspect of the present invention directed to the use of a strap for a snowboard binding interface is not limited to the particular interface and step-in binding system disclosed in

FIGS. 10-11

, as it can be employed with any snowboard binding interface, including one that has a different configuration and mates with a different type of snowboard binding.




It should be appreciated that all of the discussions above concerning the various embodiments and configurations of the strap


20


are equally applicable to the embodiment of the present invention wherein the strap is employed on a snowboard binding interface.




For example, the snowboard binding interface


70


can be provided with a pair of anchors


74


for securing the strap


20


to the interface. The anchors


74


can be adapted to engage the tightening element


24


on both sides of the binding interface, or the strap body


22


can be fixed to one side of the binding interface as discussed above in connection with the embodiment of FIG.


7


. Each of the anchors


74


can be adapted to fixedly secure the strap


20


to the binding interface, such that the rider can step into the binding interface by actuating the closure device


26


to release sufficient slack in the tightening element


24


to allow the boot to be stepped into the binding interface


70


. Alternatively, the tightening element


24


can be fixedly attached at one end to the binding interface


70


, and can be detachably secured at the other, so that the rider can simply detach one end of the strap


20


from the binding interface


70


to get into or out of engagement with the binding interface


70


in a manner similar to that described above. Furthermore, multiple straps


20


can be employed to mount the snowboard boot


71


to the binding interface


70


, and each of the straps can employ any of the numerous configurations discussed above.




As shown in

FIGS. 10-11

, the binding interface


70


can be provided with a plurality of holes or other mounting positions


76


so that the attachment location of the anchors


74


can be adjusted to suit the rider's preference.




In another illustrative embodiment, the ankle strap


20


according to the present invention can be employed to attach the snowboard boot directly to a binding such as a tray binding


80


attached in a snowboard


82


, as shown in FIG.


12


. As shown in

FIG. 12

, the tray binding


80


includes a highback


83


, as well as multiple straps


20


that are used to attach the snowboard boot


28


to the binding


80


. Although not shown, an additional strap may be used to secure the shin area of the boot to the upper portion of the highback. It should be appreciated that the present invention is not limited to use with a binding that includes a highback


83


, nor one that includes any particular number of straps. In addition, it is contemplated that a snowboard binding can be provided with a strap according to the teachings of the present invention, along with one or more conventional straps. For example, a tray binding can be employed with the heel strap being implemented in accordance with the teachings of the present invention, while the toe strap is a conventional ratchet-type strap.




It should be appreciated that all of the aspects of the present invention discussed above in connection with a strap on a snowboard boot can also be employed in the embodiment of the invention wherein the strap is attached to a snowboard binding. In the embodiment shown in

FIG. 12

, the snowboard binding


80


includes a base


81


having a plurality of anchors


74


attached thereto for securing the tightening elements


24


of the straps


20


. As shown in

FIG. 12

, the base can include multiple holes


76


for receiving the anchors


74


in multiple mounting positions.




Having thus described certain embodiments of the present invention, various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modification, and improvements are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description is by way of example only, and not intended to be limited. The invention is limited only as defined in the following claims and the equivalents thereof.



Claims
  • 1. An apparatus, comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding, the interface having opposed anchors; and a strap, supported by the interface, to hold the interface to the snowboard boot, the strap comprising: a tightening element attached to the interface, the tightening element having opposed end portions engageable with the anchors; a strap body supported by the tightening element; and a closure device supported by the interface, the closure device comprising a housing and a spool rotatably mounted relative to the housing, the tightening element being wrapped around the spool, wherein the tightening element is movable relative to the strap body as the closure device tightens the tightening element to secure the interface to the boot.
  • 2. The apparatus of claim 1, wherein the closure device is mounted to the strap body.
  • 3. The apparatus of claim 1, wherein the closure device is mounted directly to the interface.
  • 4. The apparatus of claim 1, wherein the interface comprises at least one anchor, and wherein the tightening element is attached to the at least one anchor.
  • 5. The apparatus of claim 4, wherein the at least one anchor is adapted to non-releasably attach the tightening element to the interface.
  • 6. The apparatus of claim 4, wherein the at least one anchor is adapted to releasably attach the tightening element to the interface.
  • 7. The apparatus of claim 4, wherein the anchor comprises a lumen for receiving a portion of the tightening element threaded therethrough.
  • 8. The apparatus of claim 4, wherein the anchor comprises a pulley for receiving the tightening element.
  • 9. The apparatus of claim 4, wherein the anchor comprises means for attaching the tightening element to the interface.
  • 10. The apparatus of claim 1, wherein the strap is attached at at least two locations on opposite sides of the interface and is adapted to hold down a heel of the boot to the interface.
  • 11. The apparatus of claim 1, wherein the strap body has a longitudinal axis, and wherein the tightening element is routed over the strap body so that a portion of the tightening element extends substantially parallel to the longitudinal axis.
  • 12. The apparatus of claim 1, wherein the strap body comprises at least a portion thereof formed of a substantially rigid material.
  • 13. The apparatus of claim 1, wherein a first portion of the strap body is mounted to the interface via the tightening element, and wherein a second portion of the strap body is directly attached to the interface.
  • 14. The apparatus of claim 1, wherein the strap body is adapted to distribute pressure exerted thereon by the tightening element across the strap body.
  • 15. The apparatus of claim 1, wherein the strap body comprises at least one lumen that receives the tightening element.
  • 16. The apparatus of claim 15, wherein the at least one lumen extends substantially parallel to a longitudinal axis of the strap body.
  • 17. The apparatus of claim 1, wherein the tightening element is non-releasably and movably attached to the interface at a first location and is releasably and movably attached to the interface at a second location.
  • 18. The apparatus of claim 1, wherein the tightening element comprises a first end fixedly attached to the interface, so that the first end of the tightening element does not move relative to the interface as the strap is tightened.
  • 19. The apparatus of claim 1, wherein the tightening element has sufficient length such that upon unwinding the tightening element from the spool, there is sufficient slack in the strap to enable the boot to engage and disengage with the interface.
  • 20. The apparatus of claim 1, wherein the closure device comprises a ratchet and pawl, coupled to the spool, for holding the tightening element in a plurality of incremental locked positions.
  • 21. The apparatus of claim 1, wherein the tightening element is formed of a low-friction material.
  • 22. The apparatus of claim 1, wherein the tightening element is routed across the strap body to create a hold down area wherein the strap body is held down by the tightening element on to the snowboard boot, the closure device being mounted to the strap body outside of the hold down area, so that the closure device does not bear on the snowboard boot when the strap is tightened.
  • 23. The apparatus of claim 1, wherein the closure device is detachably mounted to the strap body.
  • 24. The apparatus of claim 1, wherein the interface comprises a step-in mating feature adapted to be releasably engaged by the snowboard binding.
  • 25. The apparatus of claim 1, wherein the binding comprises an engagement member to engage with the interface and is separate from the tightening element.
  • 26. The apparatus of claim 1, wherein the closure device comprises a body and wherein the spool is rotatably mounted to the closure device body.
  • 27. The apparatus of claim 1, wherein the closure device comprises a body and an actuator that is rotatably mounted to the closure device body, the actuator being operatively associated with the spool to wind the tightening element about the spool to tighten the strap.
  • 28. The apparatus of claim 1, wherein the closure device comprises means for wrapping the tightening element about the spool to tighten the strap in a plurality of incremental locked positions.
  • 29. The apparatus of claim 1, wherein the tightening element comprises a smooth outer surface over its entire length.
  • 30. The apparatus of claim 1, wherein the strap body is padded.
  • 31. The apparatus of claim 1, wherein the strap body comprises a guide that receives at least a portion of the tightening element.
  • 32. An apparatus comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding; and a strap, supported by the interface, to hold the interface to the snowboard boot, the strap comprising: a tightening element attached to the interface; and a closure device, supported by the interface, comprising a spool about which the tightening element is wrapped to tighten the strap to secure the interface to the boot, wherein the interface comprises at least one anchor, wherein the tightening element is attached to the at least one anchor, wherein the at least one anchor comprises at least first and second anchors, and wherein the tightening element is movably mounted to each of the first and second anchors, so that a portion of the tightening element in engagement with each of the first and second anchors changes as the tightening element is wrapped around the spool to tighten the strap.
  • 33. The apparatus of claim 32, wherein the strap further comprises a strap body supported by the tightening element and wherein the first and second anchors are disposed on opposite sides of the interface so that when the tightening element is wrapped around to the spool to tighten the strap, the strap body cinches down over a surface of the snowboard boot.
  • 34. The apparatus of claim 32, wherein the closure device is adapted to simultaneously draw at least two separate ends of the tightening element on to the spool when the strap is tightened.
  • 35. The apparatus of claim 32, wherein the closure device is mounted directly to the interface.
  • 36. The apparatus of claim 32, wherein the strap comprises a strap body supported by the tightening element, and wherein the closure device is mounted to the strap body.
  • 37. The apparatus of claim 32, wherein the strap body is padded.
  • 38. The apparatus of claim 32, wherein the strap comprises a strap body supported by the tightening element, and wherein the strap body comprises a guide that receives at least a portion of the tightening element.
  • 39. An apparatus comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding, the interface having opposed anchors; and a strap, supported by the interface, to hold the interface to the snowboard boot, the strap comprising: a tightening element attached to the interface, the tightening element having opposed end portions engageable with the anchors; and a closure device supported by the interface, the closure device comprising a housing and a spool rotatably mounted relative to the housing, the tightening element being wrapped around the spool to tighten the tightening element to secure the interface to the boot, wherein the strap further comprises a strap body supported by the tightening element, the apparatus further comprising a sheath, supported by the strap body, that encases at least a portion of the tightening element.
  • 40. The apparatus of claim 39, wherein the sheath is formed of a low-friction material.
  • 41. The apparatus of claim 40, wherein the tightening element is formed of a low-friction material.
  • 42. The apparatus of claim 39, wherein the sheath is formed of an incompressible material.
  • 43. The apparatus of claim 39, wherein the sheath comprises multiple separate sections, wherein the closure device has at least one opening through which the tightening element passes to exit the closure device, and wherein the at least one opening is in-line with a longitudinal axis of one of the sections of the sheath.
  • 44. The apparatus of claim 39, wherein the strap body comprises a lumen that at least partially encloses the sheath.
  • 45. The apparatus of claim 37, wherein the closure device is mounted directly to the interface.
  • 46. The apparatus of claim 39, wherein the closure device is mounted to the strap body.
  • 47. The apparatus of claim 39, wherein the strap body is padded.
  • 48. An apparatus comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding, the interface having opposed anchors; and a strap, supported by the interface, to hold the interface to the snowboard boot, the strap comprising: a tightening element attached to the interface, the tightening element having opposed end portions engageable with the anchors; and a closure device supported by the interface, the closure device comprising a housing and a spool rotabably mounted relative to the housing, the tightening element being wrapped around the spool to tighten the tightening element to secure the interface to the boot, wherein the closure device is adapted to simultaneously draw at least two separate ends of the tightening element onto the spool when the strap is tightened.
  • 49. The apparatus of claim 48, wherein the closure device is mounted directly to the interface.
  • 50. The apparatus of claim 48, wherein the strap comprises a strap body supported by the tightening element, and wherein the closure device is mounted to the strap body.
  • 51. The apparatus of claim 48, wherein the strap further comprises a strap body supported by the tightening element, and wherein the strap body is padded.
  • 52. The apparatus of claim 48, wherein the strap further comprises a strap body supported by the tightening element, and wherein the strap body comprising a guide that receives at least a portion of the tightening element.
  • 53. The apparatus of claim 48, wherein the strap further comprises a strap body supported by the tightening element, and wherein the tightening element is movable relative to the strap body as the closure device tightens the strap to secure the interface to the boot.
  • 54. An apparatus comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding; and a strap, supported by the interface, to hold the interface to the snowboard boot, the strap comprising: a tightening element attached to the interface; and a closure device, supported by the interface, comprising a body and an actuator that is rotatably mounted to the body and is coupled to the tightening element so that rotation of the actuator causes the tightening element to be drawn into the closure device body to tighten the strap, wherein the interface comprises at least one anchor, and wherein the tightening element is attached to the at least one anchor, wherein the at least one anchor comprises at least first and second anchors, and wherein the tightening element is routed to and redirected by each of the first and second anchors, so that a portion of the tightening element in engagement with each of the first and second anchors changes as the tightening element is drawn into the closure device body to tighten the strap, wherein the strap further comprises a strap body supported by the tightening element and wherein the first and second anchors are disposed on opposite sides of the interface so that when the tightening element is wrapped around the spool to tighten the strap, the strap body cinches down over a surface of the snowboard boot.
  • 55. The apparatus of claim 54, wherein the closure device is mounted directly to the interface.
  • 56. The apparatus of claim 54, wherein the closure device is mounted to the strap body.
  • 57. The apparatus of claim 54, wherein the strap body is padded.
  • 58. The apparatus of claim 54, wherein the strap body comprises a guide that receives at least a portion of the tightening element.
  • 59. An apparatus comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding, the interface having opposed anchors; and a strap, supported by the base, to hold the interface to the snowboard boot, the strap comprising: a tightening element attached to the interface, the tightening element having opposed end portions engageable with the anchors, wherein the tightening element is a cable that is round in cross-section; and a closure device supported by the interface, the closure device comprising a housing and a spool rotabably mounted relative to the housing, the tightening element being wrapped around the spool to tighten the tightening element to secure the interface to the boot.
  • 60. The apparatus of claim 59, further comprising a closure device that is coupled to the tightening element, wherein the closure device is mounted directly to the interface.
  • 61. The apparatus of claim 59, further comprising a closure device that is coupled to the tightening element, wherein the strap further comprises a strap body supported by the tightening element, and wherein the closure device is mounted to the strap body.
  • 62. The apparatus of claim 59, wherein the strap further comprises a strap body supported by the tightening element, and wherein the strap body is padded.
  • 63. The apparatus of claim 59, wherein the strap further comprises a strap body supported by the tightening element, and wherein the strap body comprises a guide that receives at least a portion of the tightening element.
  • 64. The apparatus of claim 59, wherein the strap further comprises a strap body supported by the tightening element, and wherein the tightening element is movable relative to the strap body as the tightening element is tightened to secure the interface to the boot.
  • 65. An apparatus comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding, the interface having opposed anchors; and a strap, supported by the base, to hold the snowboard boot in the binding, the strap comprising: a tightening element attached to the interface, the tightening element having opposed end portions engageable with the anchors, wherein the strap further comprises a strap body supported by the tightening element, the apparatus further comprising a sheath, supported by the strap body, that encases at least a portion of the tightening element; and a closure device supported by the interface, the closure device comprising a housing and a spool rotabably mounted relative to the housing, the tightening element being wrapped around the spool to tighten the tightening element to secure the interface to the boot.
  • 66. The apparatus of claim 65, further comprising a closure device that is coupled to the tightening element, the closure device is mounted directly to the interface.
  • 67. The apparatus of claim 65, further comprising a closure device that is coupled to the tightening element, and wherein the closure device is mounted to the strap body.
  • 68. The apparatus of claim 65, wherein the strap body is padded.
  • 69. An apparatus, comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding, the interface comprising opposed strap anchors; and a strap to hold the interface to the snowboard boot, the strap comprising: a tightening cable comprising opposed looped ends, each looped end being attached to a respective anchor, the looped end being formed as a result of the tightening cable being routed to and redirected by a portion of the anchor so that the tightening cable can be drawn in one direction about the portion of the anchor to tighten the tightening element; and a closure device supported by the interface, the closure device comprising a housing and a spool rotabably mounted relative to the housing, the tightening element being wrapped around the spool to tighten the tightening element to secure the interface to the boot.
  • 70. The apparatus of claim 69, wherein the at least one anchor comprises first and second anchors disposed on opposite sides of the interface, and wherein the tightening cable comprises first and second loop ends respectively routed to and redirected by portions of the first and second anchors.
  • 71. The apparatus of claim 69, further comprising a closure device that is coupled to the tightening cable and is adapted to draw the tightening cable about the portion of the at least one anchor to tighten the strap.
  • 72. The apparatus of claim 71, wherein the strap further comprises a strap body, supported by the tightening element, adapted to overlie the snowboard boot, the closure device being mounted to the strap body.
  • 73. The apparatus of claim 71, wherein the closure device is adapted to draw the tightening cable into the closure device to tighten the strap.
  • 74. The apparatus of claim 73, wherein the closure device is adapted to simultaneously draw at least two separate ends of the tightening cable into the closure device to tighten the strap.
  • 75. The apparatus of claim 69, wherein the at least one anchor is adapted to non-releasably attach the tightening cable to the interface.
  • 76. The apparatus of claim 69, wherein the interface comprises a step-in mating feature adapted to be releasably engaged by the snowboard binding.
  • 77. The apparatus of claim 69, wherein the binding includes an engagement member to engage with the interface and is separate from the tightening cable.
  • 78. The apparatus of claim 69, wherein the strap further comprises a strap body supported by the tightening cable, and wherein the strap body is padded.
  • 79. The apparatus of claim 69, wherein the strap further comprises a strap body, supported by the tightening element, and wherein the strap body comprises a guide that receives at least a portion of the tightening element.
  • 80. The apparatus of claim 69, wherein the apparatus further comprises a closure device that is mounted directly to the interface.
  • 81. An apparatus comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding, the interface including opposed strap anchors; and a strap to hold the interface to the snowboard boot, the strap comprising: a tightening cable comprising opposed looped ends, each looped end being attached to a respective anchor, the tightening cable being routed to and redirected by a portion of the so that the tightening cable can be drawn in one direction about the portion of the at least one anchor to tighten the strap, wherein the tightening cable is round in cross-section; and a closure device supported by the interface, the closure device comprising a housing and a spool rotabably mounted relative to the housing, the tightening element being wrapped around the spool to tighten the tightening element to secure the interface to the boot.
  • 82. The apparatus of claim 81, further comprising a closure device that is coupled to the tightening cable and is adapted to draw the tightening cable about the portion of the at least one anchor to tighten the strap.
  • 83. The apparatus of claim 82, wherein the strap further comprises a strap body supported by the tightening cable, wherein the closure device is mounted to the strap body.
  • 84. The apparatus of claim 82, wherein the strap further comprises a strap body supported by the tightening cable, and wherein the strap body is padded.
  • 85. The apparatus of claim 82, wherein the closure device is mounted directly to the interface.
  • 86. An apparatus comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding, the interface comprising including opposed strap anchors, and a strap to hold the snowboard boot to the interface, the strap comprising: a tightening cable comprising opposed looped ends, each looped end being attached to a respective anchor, the tightening cable being routed to and redirected by a portion of the at least one anchor so that the tightening cable can be drawn in one direction about the portion of the at least one anchor to tighten the strap, wherein the strap further comprises a strap body, supported by the tightening cable, adapted to overlie the snowboard boot, the strap body comprising at least one lumen that receives the tightening cable; and a closure device supported by the interface, the closure device comprising a housing and a spool rotabably mounted relative to the housing, the tightening element being wrapped around the spool to tighten the tightening element to secure the interface to the boot.
  • 87. The apparatus of claim 86, further comprising a closure device that is coupled to the tightening cable and is adapted to draw the tightening cable about the portion of the at least one anchor to tighten the strap.
  • 88. The apparatus of claim 87, wherein the closure device is mounted to the strap body.
  • 89. The apparatus of claim 87, wherein the strap body is padded.
  • 90. The apparatus of claim 87, wherein the apparatus further comprises a closure device that is mounted directly to the interface.
  • 91. An apparatus comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding, the interface comprising opposed anchors; and a strap to hold the interface to the snowboard boot, the strap comprising: a tightening cable comprising opposed looped ends, each looped end being attached to a respective anchor, the tightening cable being routed to and redirected by a portion of the at least one anchor so that the tightening cable can be drawn in one direction about the portion of the at least one anchor to tighten the strap, wherein the strap further comprises a strap body, supported by the tightening cable, adapted to overlie the snowboard boot, the strap further comprising a sheath, supported by the strap body, that encases at least a portion of the tightening cable; and a closure device supported by the interface, the closure device comprising a housing and a spool rotabably mounted relative to the housing, the tightening element being wrapped around the spool to tighten the tightening element to secure the interface to the boot.
  • 92. The apparatus of claim 91, further comprising a closure device that is coupled to the tightening cable and is adapted to draw the tightening cable about the portion of the at least one anchor to tighten the strap.
  • 93. The apparatus of claim 92, wherein the closure device is mounted to the strap body.
  • 94. The apparatus of claim 92, wherein the strap body is padded.
  • 95. The apparatus of claim 92, wherein the apparatus further comprises a closure device that is mounted directly to the interface.
  • 96. An apparatus, comprising:a snowboard boot binding interface for interfacing a snowboard boot to a snowboard binding, the interface having opposed anchors; a strap, supported by the interface, to hold the interface to the snowboard boot, the strap comprising: a tightening element attached to the interface, the tightening element having opposed end portions engageable with the anchors; a strap body supported by the tightening element, wherein the strap body is padded; and a closure device supported by the interface, the closure device comprising a housing and a spool rotabably mounted relative to the housing, the tightening element being wrapped around the spool to tighten the tightening element to secure the interface to the boot.
  • 97. The apparatus of claim 96, wherein the closure device is mounted to the strap body.
  • 98. The apparatus of claim 96, wherein the closure device is mounted directly to the interface.
  • 99. The apparatus of claim 96, wherein the interface comprises at least one anchor, and wherein the tightening element is attached to the at least one anchor.
  • 100. The apparatus of claim 99, wherein the at least one anchor is adapted to nonreleasably attach the tightening element to the interface.
  • 101. The apparatus of claim 99, wherein the at least one anchor is adapted to releasably attach the tightening element to the interface.
  • 102. The apparatus of claim 99, wherein the at least one anchor comprises at least first and second anchors, and wherein the tightening element is movably mounted to each of the first and second anchors, so that a portion of the tightening element in engagement with each of the first and second anchors changes as the tightening element is wrapped around the spool to tighten the strap.
  • 103. The apparatus of claim 102, wherein the first and second anchors are disposed on opposite sides of the interface so that when the tightening element is wrapped around to the spool to tighten the strap, the strap body cinches down over a surface of the snowboard boot.
  • 104. The apparatus of claim 96, wherein the tightening element is a cable that is round in cross-section.
  • 105. The apparatus of claim 96, wherein a first portion of the strap body is mounted to the apparatus via the tightening element, and wherein a second portion of the strap body is mounted directly to the interface.
  • 106. The apparatus of claim 96, further comprising a sheath, supported by the strap body, that encases at least a portion of the tightening element.
  • 107. The apparatus of claim 96, wherein the closure device is adapted to simultaneously draw at least two separate ends of the tightening element onto the spool when the strap is tightened.
  • 108. The apparatus of claim 96, wherein the tightening element comprises a first end fixedly attached to the interface, so that the first end of the tightening element does not move relative to the interface as the strap is tightened.
  • 109. The apparatus of claim 96, wherein the binding further comprises a highback mounted thereto.
  • 110. The apparatus of claim 96, wherein the closure device comprises a body, and wherein the spool is rotatably mounted to the closure device body.
  • 111. The apparatus of claim 96, wherein the closure device comprises a body, and an actuator that is rotatably mounted to the closure device body, the actuator being operatively associated with the spool to wind the tightening element about the spool to tighten the strap.
US Referenced Citations (134)
Number Name Date Kind
61487 Vollschwitz Jan 1867 A
746563 McMahon Dec 1903 A
908704 Sprinkle Jan 1909 A
1060422 Bowdish Apr 1913 A
1393188 Whiteman Oct 1921 A
1408563 Conger Mar 1922 A
1416203 Hobson May 1922 A
1469661 Migita Oct 1923 A
1481903 Hart Jan 1924 A
1489126 Jansizian Apr 1924 A
1494653 Walters May 1924 A
1530713 Clark Mar 1925 A
2109751 Matthias et al. Mar 1938 A
2345057 Marinetti Mar 1944 A
2893090 Pagoda Jul 1959 A
2994935 Buchholz Aug 1961 A
3112545 Williams Dec 1963 A
3163900 Martin Jan 1965 A
3538627 Labat-Camy Nov 1970 A
3703775 Gatti Nov 1972 A
3738027 Schoch Jun 1973 A
3793749 Gertsch et al. Feb 1974 A
3808644 Schoch May 1974 A
4130949 Seidel Dec 1978 A
4261081 Lott Apr 1981 A
4360979 Spademan Nov 1982 A
4433456 Baggio Feb 1984 A
4551932 Schoch Nov 1985 A
4557061 Graillat et al. Dec 1985 A
4565017 Ottieri Jan 1986 A
4571855 Blanc Feb 1986 A
4574500 Aldinio et al. Mar 1986 A
4593483 Paris Jun 1986 A
4616524 Bidoia Oct 1986 A
4620378 Sartor Nov 1986 A
4620379 Sator Nov 1986 A
4633599 Morell et al. Jan 1987 A
4653204 Morell et al. Mar 1987 A
4654985 Chalmers Apr 1987 A
4660300 Morell et al. Apr 1987 A
4660303 Courvoisier et al. Apr 1987 A
4669201 Pozzobon Jun 1987 A
4669202 Ottieri Jun 1987 A
4670949 Autry Jun 1987 A
4680878 Pozzobon et al. Jul 1987 A
4719670 Kurt Jan 1988 A
4719709 Vaccari Jan 1988 A
4719710 Pozzobon Jan 1988 A
4735004 Dodge Apr 1988 A
4741115 Pozzobon May 1988 A
4741550 Dennis May 1988 A
4748726 Schoch Jun 1988 A
4754560 Nerrinck Jul 1988 A
4756099 Walkhoff Jul 1988 A
4757621 Iwama Jul 1988 A
4759137 Lederer Jul 1988 A
4760653 Baggio Aug 1988 A
4761859 Calabrigo Aug 1988 A
4780969 White, Jr. Nov 1988 A
4787124 Pozzobon et al. Nov 1988 A
4796829 Pozzobon et al. Jan 1989 A
4799297 Baggio et al. Jan 1989 A
4817303 Selbiger Apr 1989 A
4841649 Baggio Jun 1989 A
4870723 Pozzobon et al. Oct 1989 A
4870761 Tracy Oct 1989 A
4884760 Baggio et al. Dec 1989 A
4916836 Baggio et al. Apr 1990 A
4937951 Loecker Jul 1990 A
4937952 Olivieri Jul 1990 A
4937953 Walkhoff Jul 1990 A
4961544 Bidoia Oct 1990 A
4999889 LeCouturer Mar 1991 A
5001817 De Bortoli et al. Mar 1991 A
5012598 Baggio et al. May 1991 A
5016327 Klausner May 1991 A
5026087 Wulf et al. Jun 1991 A
5042177 Schoch Aug 1991 A
5044654 Meyer Sep 1991 A
5048204 Tacchetto et al. Sep 1991 A
5062224 Tacchetto Nov 1991 A
5062225 Gorzo Nov 1991 A
5065480 De Bortoli Nov 1991 A
5065481 Walkhoff Nov 1991 A
5117567 Berger Jun 1992 A
5150537 Tacchetto et al. Sep 1992 A
5152038 Schoch Oct 1992 A
5157813 Carroll Oct 1992 A
5158559 Pozzobon et al. Oct 1992 A
5167083 Walkhoff Dec 1992 A
5177567 Klersy et al. Jan 1993 A
5177882 Berger Jan 1993 A
5181331 Berger Jan 1993 A
5184378 Batra Feb 1993 A
5249377 Walkhoff Oct 1993 A
5259094 Zepeda Nov 1993 A
5319868 Hallenbeck Jun 1994 A
5325613 Sussmann Jul 1994 A
5327662 Hallenbeck Jul 1994 A
5333398 Seo Aug 1994 A
5341583 Hallenbeck Aug 1994 A
5345697 Quellais Sep 1994 A
5351420 Pozzobon et al. Oct 1994 A
5355596 Sussmann Oct 1994 A
5412883 Wulf et al. May 1995 A
5416987 Bemis et al. May 1995 A
5425161 Schoch Jun 1995 A
5463822 Miller Nov 1995 A
5502902 Sussmann Apr 1996 A
5511325 Hieblinger Apr 1996 A
5566474 Leick et al. Oct 1996 A
5600874 Jungkind Feb 1997 A
5606778 Jungkind Mar 1997 A
5638588 Jungkind Jun 1997 A
5647104 James Jul 1997 A
5651198 Sussmann Jul 1997 A
5669116 Jungkind Sep 1997 A
5687460 Foffano et al. Nov 1997 A
5722680 Dodge Mar 1998 A
5737854 Sussmann Apr 1998 A
5758895 Bumgarner Jun 1998 A
5791021 James Aug 1998 A
5791068 Bernier et al. Aug 1998 A
5810381 Keller et al. Sep 1998 A
5839210 Bernier et al. Nov 1998 A
5927744 Knapschafer Jul 1999 A
5934599 Hammerslag Aug 1999 A
5966841 Barret Oct 1999 A
6009638 Maravetz et al. Jan 2000 A
6056300 Carpenter et al. May 2000 A
6056312 Hogstedt May 2000 A
6076285 Caeran et al. Jun 2000 A
6099018 Maravetz et al. Aug 2000 A
6289558 Hammerslag Sep 2001 B1
Foreign Referenced Citations (33)
Number Date Country
43B151456 May 1972 AP
677313 May 1991 CH
89796 Nov 1970 DD
89796 Apr 1896 DE
2341658 Mar 1974 DE
2900077 Jul 1980 DE
3626837 Feb 1988 DE
3644036 Aug 1988 DE
3813470 Nov 1989 DE
3900777 Jul 1990 DE
3932023 Apr 1991 DE
0056935 Aug 1982 EP
0056953 Aug 1982 EP
0099504 Feb 1984 EP
0132744 Feb 1985 EP
0201051 Nov 1986 EP
0204945 Dec 1986 EP
0255869 Feb 1988 EP
0264712 Apr 1988 EP
0368798 May 1990 EP
0393380 Oct 1990 EP
0412 290 Feb 1991 EP
0433639 Jun 1991 EP
0474708 Mar 1992 EP
0559648 Sep 1993 EP
0 787 512 Aug 1997 EP
0 812 552 Dec 1997 EP
0 836 869 Apr 1998 EP
0 839 557 May 1998 EP
0 852 958 Jul 1998 EP
1374110 Jan 1965 FR
2108429 May 1972 FR
2569087 Feb 1986 FR
Non-Patent Literature Citations (2)
Entry
International Search Report dated Dec. 18, 2000 from International Application No. PCT/US00/40184.
Derwent World Patent Index Family Search for Foreign Patent Documents.