A variety of articles incorporate carry straps that assist with carrying the article. For example, a backpack generally incorporates a pair of straps that are configured to extend over both shoulders of an individual. Whereas the backpack often incorporates two straps, a messenger-style bag generally includes a single strap that extends over only one shoulder of the individual. Similarly, a golf bag conventionally includes either one strap or two straps that assist the individual with carrying golf equipment. Although some carry straps extend over or contact a shoulder, other carry straps contact a hand or other portions of an individual. For example, a handbag or purse may incorporate strap that is intended to be grasped by the hand. Accordingly, different types of articles may incorporate a variety of shoulder strap configurations.
One consideration in the design of a carry strap relates to comfort. In order to enhance the comfort of a strap, compressible materials are often incorporated into the strap in areas that contact the individual, such as the shoulder. An advantage of compressible materials in a strap relates to decreased pressure concentrations on the shoulders of the individual, and particularly in areas of the shoulder that include the suprascapular nerve. When a strap extends over the shoulder, some areas of the shoulder experience greater loads than other areas of the shoulder, thereby forming pressure concentrations in the areas of greater loads. Compressible materials may be utilized, therefore, to distribute loads more evenly over a surface of the shoulder and decrease the pressure concentrations.
Examples of compressible materials suitable for strap applications include polymer foams and fluid-filled bladders. U.S. Pat. No. 6,915,932 to Wolfe discloses a strap having a foam element and a fluid-filled bladder. The foam element defines various indentations, and the bladder is positioned within the indentations such that a combination of the foam element and the bladder provides cushioning when carrying an article. U.S. Pat. No. 6,223,959 to Chen discloses a strap for a golf bag, the strap having an envelope that encloses an air pocket formed of an inflated thermoplastic material. Similarly, U.S. Pat. Nos. 5,566,871 and 5,361,957 to Weintraub both disclose cushioning devices intended for use in a shoulder strap that incorporate an air-filled member.
Various aspects of the invention involve a strap that includes a sheath and a fluid-filled bladder at least partially located within the sheath. The bladder has an elongate configuration that defines a first end, an opposite second end, and a central portion located between the first end and the second end. At least the central portion and the second end being unsecured to the sheath. In addition, the strap may include a pair of securing elements configured to join the strap to an article, and at least one of the securing elements may be joined to the second end of the bladder.
The bladder may be formed as a polymer tube that is sealed at each of the first end and the second end. In addition, the central portion of the bladder may have a plurality of bonds that secure opposite sides of the polymer tube to each other. Although the fluid within the bladder may be pressurized, the fluid may also be air at a pressure substantially equal to a pressure of ambient air surrounding the strap.
The advantages and features of novelty characterizing various aspects of the invention are pointed out with particularity in the appended claims. To gain an improved understanding of the advantages and features of novelty, however, reference may be made to the following descriptive matter and accompanying drawings that describe and illustrate various embodiments and concepts related to the aspects of the invention.
The foregoing Summary, as well as the following Detailed Description, will be better understood when read in conjunction with the accompanying drawings.
The following material and accompanying figures disclose a strap that may be secured to various articles and utilized to assist in carrying the articles. The strap is disclosed in combination with a computer bag, but concepts associated with the strap may also be utilized in combination with a wide range of other bag styles, including backpacks, briefcases, camera bags, duffel bags, golf bags, handbags, messenger bags, and purses, for example. In addition to bags, concepts associated with the strap may be utilized in combination with a variety of other articles, including photographic equipment (i.e., cameras), binoculars, and various types of athletic equipment. Various harness configurations may also incorporate concepts associated with the strap, including seatbelts, hang gliding harnesses, parachuting harnesses, and horse tack, for example. An individual skilled in the relevant art will appreciate, therefore, that the concepts disclosed herein apply to strap configurations that are suitable for use with a variety of articles and for a wide variety of purposes.
With reference to
Strap 12 is depicted individually in
Sheath 20 has an elongate configuration that defines a first end 21, a second end 22, and an edge 23 extends between ends 21 and 22. As depicted in
Suitable materials for sheath 20 include polymer foams, a variety of textiles, leather, synthetic leather, and polymer sheets, for example. Although bladder 30 provides cushioning to strap 12, polymer foams may be incorporated into sheath 20 in order to provide a further degree of cushioning. Spacer-knit mesh textiles, for example, may also be utilized to impart cushioning properties. Combinations of materials may also be utilized. For example, a textile may be bonded to a polymer foam element to form portions of sheath 20, or a majority of sheath 20 may be formed from a spacer-knit mesh textile, with synthetic leather utilized for high-wear areas or portions requiring additional strength. Transparent elements may also be utilized to make portions of bladder 30 visible. Accordingly, a variety of materials may be incorporated into strap 12 to form sheath 20.
Bladder 30 is located within the void in sheath 20 and provides cushioning to strap 12. In addition, bladder 30 forms a tensile member that bears or otherwise supports the weight of container portion 11 and the contents of container portion 11. Bladder 30 is primarily formed from a polymer material that encloses a fluid, such as air, which may be pressurized or at substantially ambient pressure. Bladder 30 has a tubular configuration with a first end 31 and an opposite second end 32. First end 31 is positioned adjacent to first end 21 of sheath 20, and second end 32 is positioned adjacent to second end 22 of sheath 20. In order to seal the fluid within bladder 30, a pair of sealing bonds 33 are formed in ends 31 and 32. In addition, a plurality of interior bonds 34 are formed between opposite sides of bladder 30 to impart a relatively flat configuration to bladder 30. That is, interior bonds 34 decrease the overall thickness of bladder 30 to impart a shape that fits within the void in sheath 20.
Interior bonds 34 may exhibit a variety of configurations. As depicted, interior bonds 34 are elongate bonds oriented diagonal to a longitudinal axis of bladder 30. Whereas sealing bonds 33 extend entirely across the width of bladder 30, interior bonds 34 are spaced from edges of bladder 30 to permit the fluid to move throughout bladder 30. In some configurations, interior bonds 34 may be perpendicular to the edges of bladder 30, interior bonds 34 may be dots rather than lines, interior bonds 34 may extend entirely across the width of bladder 30, or interior bonds 34 may have other shapes. For example, interior bonds 34 could be circular bonds, non-linear bonds, or interior bonds may be absent. An advantage to forming interior bonds 34 to have an elongate configuration is that interior bonds 34 form flexion lines in bladder 30.
A variety of thermoplastic polymer materials may be utilized for bladder 30, including polyurethane, polyester, polyester polyurethane, and polyether polyurethane. Another suitable material for bladder 30 is a film formed from alternating layers of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer, as disclosed in U.S. Pat. Nos. 5,713,141 and 5,952,065 to Mitchell et al, hereby incorporated by reference. A variation upon this material wherein the center layer is formed of ethylene-vinyl alcohol copolymer; the two layers adjacent to the center layer are formed of thermoplastic polyurethane; and the outer layers are formed of a regrind material of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer may also be utilized. Bladder 30 may also be formed from a flexible microlayer membrane that includes alternating layers of a gas barrier material and an elastomeric material, as disclosed in U.S. Pat. Nos. 6,082,025 and 6,127,026 to Bonk et al., both hereby incorporated by reference. In addition, numerous thermoplastic urethanes may be utilized, such as PELLETHANE, a product of the Dow Chemical Company; ELASTOLLAN, a product of the BASF Corporation; and ESTANE, a product of the B.F. Goodrich Company, all of which are either ester or ether based. Still other thermoplastic urethanes based on polyesters, polyethers, polycaprolactone, and polycarbonate macrogels may be employed, and various nitrogen blocking materials may also be utilized. Additional suitable materials are disclosed in U.S. Pat. Nos. 4,183,156 and 4,219,945 to Rudy, hereby incorporated by reference. Further suitable materials include thermoplastic films containing a crystalline material, as disclosed in U.S. Pat. Nos. 4,936,029 and 5,042,176 to Rudy, hereby incorporated by reference, and polyurethane including a polyester polyol, as disclosed in U.S. Pat. Nos. 6,013,340; 6,203,868; and 6,321,465 to Bonk et al., also hereby incorporated by reference.
The fluid within bladder 30 may be any of the gasses disclosed in U.S. Pat. No. 4,340,626 to Rudy, hereby incorporated by reference, such as hexafluoroethane and sulfur hexafluoride, for example. The fluid may also include gasses such as pressurized octafluorapropane, nitrogen, or air. In addition to gasses, various gels or liquids may be sealed within bladder 30. Accordingly, a variety of fluids are suitable for bladder 30. With regard to pressure, a suitable fluid pressure is fifteen pounds per square inch, but may range from zero to thirty pounds per square inch. Accordingly, the fluid pressure within bladder 30 may be relatively high, or the fluid pressure may be at ambient pressure or at a pressure that is slightly elevated from ambient in some embodiments of the invention.
Extensions 40a and 40b are secured to opposite sides of bladder 30 and extend outward from sheath 20 to join with container portion 11. Suitable materials for extensions 40a and 40b include a variety of conventional materials, such as nylon webbing. With reference to
Bladder 30 is located within the void in sheath 20 and is substantially unsecured to sheath 20. Accordingly, bladder 30 is free to move within sheath 20 and may, if desired, be removed from sheath 20 without damaging the structure of sheath 20. With reference to
As noted above, bladder 30 is unsecured to sheath 20 and is free to move within sheath 20. Upon the application of the tensile force, bladder 30 may stretch in proportion to the tensile force. With reference to
Whereas bladder 30 and extensions 40a and 40b are placed in tension, sheath 20 is in a substantially non-tensioned state because bladder 30 is unsecured to sheath 20. Accordingly, the configuration of strap 12 depicted in
While strap 12 may incorporate a polymer foam material, strap 12 is depicted in the figures as having a non-foam material, such as a textile, for sheath 20. In this configuration, sheath 20 provides a covering for bladder 30 and assists with protecting bladder 30 from wear, and bladder 30 provides cushioning for strap 12. In some prior art strap configurations that incorporate fluid-filled bladders, the bladders were coupled with foam to enhance the cushioning properties of the straps. Although strap 12 may incorporate a polymer foam material, bladder. 30 may provide sufficient cushioning without an additional polymer foam material.
One manufacturing method for bladder 30 is depicted in
Another manufacturing method for bladder 30 is depicted in
In each of the manufacturing methods for bladder 30 discussed above, tubular member 15 is initially formed from a polymer material by, for example, extrusion. A variety of other manufacturing techniques may also be utilized for bladder 30, including twin-sheet bonding, various thermoforming processes; and blowmolding. In twin-sheet bonding, two sheets of polymer material are bonded together to form a tubular structure. Thermoforming also involves bonding two sheets of polymer material together, but also includes heating and forming the sheets. In addition, blowmolding involves expanding a parison in a mold having the shape of bladder 30. Accordingly, a variety of manufacturing techniques may be utilized for bladder 30.
Another configuration for strap 12 is depicted in
Although first end 31 of bladder 30 is secured to sheath 20 in the configuration of
Whereas bladder 30 and extensions 40a and 40b are placed in tension, sheath 20 is in a substantially non-tensioned state except in the area between first end 31 and extension 40a. Sheath 20 may, therefore, be constructed to resist the tensile force in areas adjacent to first end 21. The materials selected for a remainder of sheath 20 may be primarily selected to impart cushioning and wear-resistance, for example, with less emphasis being placed on tensile strength.
Yet another configuration for strap 12 is depicted in
Transparent member 17 may be a textile material or a polymer film, for example. In some configurations where transparent member 17 is a polymer film, transparent member 17 may be bonded to bladder 30 and have elastic or otherwise stretchable properties. As bladder 30 is placed in tension and stretches, transparent member 17 may stretch in a corresponding manner so as to not inhibit the stretch in bladder 30. Although transparent member 17 is depicted as extending along only a portion of the length of bladder 30, transparent member 17 may extend along the entire length of bladder 30 in some configurations of strap 12.
Based upon the above discussion, strap 12 has a configuration wherein bladder 30 is at least partially located within sheath 20. Bladder 30 has an elongate configuration, and at least the central portion and second end 32 are unsecured to sheath 20. That is, first end 31 may be secured or unsecured to sheath 20 in various configurations of strap 12. In addition to providing cushioning, therefore, bladder 30 forms a tensile member that bears or otherwise supports the weight of container portion 11 and the contents of container portion 11.
The invention is disclosed above and in the accompanying drawings with reference to a variety of embodiments. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to aspects of the invention, not to limit the scope of aspects of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the embodiments described above without departing from the scope of the invention, as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
900610 | Stow | Oct 1908 | A |
2676737 | Zirbel | Apr 1954 | A |
3883053 | Pritchard et al. | May 1975 | A |
4327909 | Neufeld | May 1982 | A |
4550869 | Johnson | Nov 1985 | A |
4597386 | Goldstein | Jul 1986 | A |
4682587 | Curlee | Jul 1987 | A |
4682588 | Curlee | Jul 1987 | A |
4699401 | Saenz | Oct 1987 | A |
4756306 | Curlee | Jul 1988 | A |
4815639 | Lehman | Mar 1989 | A |
D337197 | Krutsch et al. | Jul 1993 | S |
5322349 | Gianino | Jun 1994 | A |
5595332 | Freedman | Jan 1997 | A |
5632429 | Cantwell | May 1997 | A |
5845833 | Murphy | Dec 1998 | A |
D410132 | Hottenroth | May 1999 | S |
5957356 | Potempa | Sep 1999 | A |
D423782 | Ammerman et al. | May 2000 | S |
6105991 | Dodge et al. | Aug 2000 | A |
6168060 | Mayers | Jan 2001 | B1 |
6220492 | Huang | Apr 2001 | B1 |
6223959 | Chen | May 2001 | B1 |
6279795 | Pierzina | Aug 2001 | B1 |
D448170 | Ammerman et al. | Sep 2001 | S |
6471105 | Ammerman et al. | Oct 2002 | B1 |
6644522 | Preiss | Nov 2003 | B2 |
6863202 | Ammerman | Mar 2005 | B2 |
6915932 | Wolfe | Jul 2005 | B1 |
7448522 | Collier et al. | Nov 2008 | B2 |
20030163071 | Cominsky | Aug 2003 | A1 |
20040060951 | Kelly | Apr 2004 | A1 |
20040144816 | Ku | Jul 2004 | A1 |
20040144820 | Herold | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
675838 | May 1939 | DE |
2813770 | Mar 2002 | FR |
219874 | Aug 1924 | GB |
2003061776 | Jul 2003 | WO |
Entry |
---|
International Preliminary Report on Patentability for International Application No. PCT/US2007/011201, mailed Nov. 27, 2008, 9 pages. |
International Search Report for International Application No. PCT/US2007/011201, mailed Nov. 20, 2007, 4 pages. |
Notice of Reasons for Rejection for Japanese patent application No. 2009-509833 mailed Jun. 8, 2011. |
Office Communication for EP Application No. 07776919.8, issued Feb. 13, 2012. |
Number | Date | Country | |
---|---|---|---|
20070262106 A1 | Nov 2007 | US |