This invention is directed to a further advancement in the field of electrical connector assemblies having a snap fit retaining ring circumscribing the outlet end of a connector body for effecting a snap fit connection to an electrical box of the types described in U.S. Pat. No. 6,860,758, U.S. Pat. No. 6,935,891 and application Ser. No. 11/180,085 filed Jul. 13, 2005, which is a continuation in part application of application Ser. No. 11/028,373 filed Jan. 3, 2005, now U.S. Pat. No. 7,045,714, which are incorporated herein by reference.
More specifically, this application is directed to further improvements in strap type electrical connector assemblies having a frustro-conical snap fit retaining ring and an improved hinged strap for securing either a nonmetallic cable or an armored, metal cable thereto.
Electrical connectors are commonly used for attaching electrical conductors, cables, wires, electrical metal tubing (EMT) or the like to an electric box, e.g. a junction box, outlet box, switch box, fuse box, or other similar type of electric box or panel. Such known electrical connectors are either of a type that are secured to an electric box by a threaded lock nut or by means of a circular snap fit retaining ring of the type disclosed in U.S. Pat. Nos. 6,860,758; 6,444,907; 5,189,258; 5,266,050; 5,171,164; 2,744,769 and 1,483,218 for example. Reference is also made to U.S. Pat. No. 6,768,057 which is directed to a right angle type connector formed of a pair of sheet metal stampings fitted together and secured to an electrical box with a snap fit arrangement.
Also known are connectors formed as connector caps which are adapted to be fitted over the end of a conductor, cable or wires, such as disclosed in U.S. Pat. No. 4,880,387. Various other known efforts to facilitate the connection of an electrical conductor to an electric box are evidenced by U.S. Pat. Nos. 6,043,432; 6,080,933; 6,114,630; 6,133,529; 6,194,661; 6,335,488; 6,352,439; 6,355,884; 6,444,907; 6,555,750; 6,604,400; 6,670,553; 6,737,584; 6,682,355; 6,780,029 and 6,849,803.
Notwithstanding the extensive background relating to electrical connectors, continuing efforts are being made to improve, simplify and/or reduce the cost and/or complexity of the known connectors in an effort to advance the electrical connector art. This disclosure is directed to such efforts.
An object of this invention is to provide an electrical connector with a frustro-conically shaped external retaining ring having a leading edge and a trailing edge and integrally formed outwardly sprung locking tangs that can readily be connected by a snap fit to a knock-hole of an electric box, panel or enclosure wherein the trailing edge functions as the electrical ground between the electrical box and the connector assembly.
Another object of this invention is to provide for an electrical connector assembly that includes an electrical connector body having an outlet end with a frustro-conical outer surface for receiving therein a complementary frustro-conical retaining ring that is readily fitted to and retained on the outlet end portion of the connector body.
Another object is to provide a connector assembly comprising a connector body having an outlet end free of any locking ring retaining flange and an associated externally circumscribing snap fit retainer ring circumscribing the flangeless outlet end in a secured manner.
Another object is to provide a retaining ring, adapted to be fitted onto the outlet end of a connector body whereby the retainer ring is frustro-conical in shape with a first series of tangs for securing the connector body relative to an electrical box and a trailing edge or tang for affecting a positive electrical ground with an associated electrical box.
Another object is to provide an electrical connector assembly having a connector body with a frustro-conical outer retainer ring circumscribing the outer surface of the connector body outlet end and having a conductor retainer in the form of a saddle connected to the connector body with a cable retaining strap hingedly connected to one end of the saddle for securing either a nonmetallic or armor metal clad cable thereto.
Another object of this invention is to provide a strap type electrical connector having a cable retainer in the form of a saddle for supporting a conductor, wire, or cable thereon and a readily detachable strap hingedly connected to one end of the saddle in a manner that prohibits unintentional detachment of the strap from the saddle.
Another object is to provide a strap type electrical connector assembly that is relatively simple to fabricate, positive in operation, and economical to produce and sell.
The foregoing objects and other features and advantages are attained by an electrical connector assembly that includes a connector body having an outlet end adapted to be secured to a knock-out hole of an electric box or panel, and an inlet end. A generally U-shaped saddle is connected to the inlet end of the connector body for supporting thereon an electric cable, or wire conductor. A radially outwardly extending flange circumscribes the outlet end of the connector body to function as a stop to limit the insertion of the outlet end portion of the connector body through the knockout hole of an electric box or panel. The outlet end portion of the connector body is provided with an outer surface that converges or tapers inwardly toward the outlet opening thereof. Formed on the surface of the outlet end portion are one or more retaining lugs, which may be circumferentially spaced about the outlet end portion. A frustro-conically shaped, snap-fit retainer is fitted onto the outlet end portion of the connector body.
The frustro-conical retainer is initially formed from a blank of sheet material, e.g. spring steel or the like, having a cruciform shape that includes a face portion or simply a central opening wherein the radiating arms of the cruciform blank are disposed about the face portion or central opening to define a frustro-conical ring or cup shape. The retainer ring or cup so formed is provided with blanked out or die cut tangs to define outwardly bent locking tangs. The trailing edge of the frustro-conical ring provides for electrical grounding in the assembly of the electrical connector to an electric box or panel.
The frustro-conical ring so formed also has a slot adapted to receive the retaining lug when the retaining ring is fitted onto the outlet end of the connector body so that the free or trailing edges of the ring define a grounding edge or tang that engages the inner periphery of the knockout hole of an electric box or panel for effecting positive electrical continuity and grounding.
To form the retaining ring, the cruciform arms are arranged to be folded relative to the central opening or face forming portion that circumscribes the central opening, to define a unitary frustro-conically shaped cup-like member or ring to compliment or be fitted onto the outlet end portion of the connector body. The retaining ring thus formed is fitted over or onto the outlet end portion of the connector body whereby the retaining slot formed in the ring is adapted to receive the complementary retaining lug formed on the surface of the outlet end portion for retaining or securing the ring on the outlet end portion of the connector body.
With the construction described, the connector assembly can be readily inserted through the knockout hole of an electric box wherein the locking tangs will initially be flexed inwardly to pass through the knock-out hole of an electric box, and then spring outwardly to lock the connector assembly to the electric box or electric support panel with the trailing or grounding edge or tang of the retaining ring being inherently biased so as to be urged against the internal periphery of the knockout hole due to the frustro-conical configuration of the retaining ring to effect a positive electric ground as a result of the inherent resiliency of the respective grounding edge or tangs and the material from which they are formed.
This invention further contemplates providing the inlet end of the connector with a saddle having opposed ends for supporting a wire or cable thereon. Hingedly connected to one end of the saddle is a retaining strap arranged to overlie the wire or cable seated or supported in the saddle. The retaining strap is hingedly connected at the end of the saddle so as to render the strap readily detachable from the saddle in a manner that will prohibit any unintentional detachment of the strap therefrom. The other end of the strap is provided with an opening for receiving a fastener for securing the strap to the other end of the saddle to securely clamp the cable or conductor therebetween.
Referring to the drawings, there is shown in
As shown in
The connector assembly 10 also includes a snap fit retaining ring 18. In accordance with this invention, the retaining ring 18 is integrally formed from a blank 19 of spring steel material. As best seen in
As illustrated in
In forming the retaining ring 18 from blank 19, the respective arms A,A and B,B are subjected to a series of progressive bending dies which will gradually bend the respective arms about a foldline f, which defines the face or front portion 20, whereby arms A,A and B,B form a cup having circumscribing frustro-conical or outwardly flaring sides to define a frustro conical ring 18 which complements the conical surface S of the leading or outlet end portion 11B, as seen in
It will be understood that, if desired, the opening 20A may be enlarged to the diameter of the foldline f, in which case the arms A,A and B,B may be gradually bent about the periphery of the enlarged opening, thereby eliminating the face portion 20.
With the retainer ring 18 properly secured to the outlet end 11B of the connector body 11, the connector assembly 10 can be readily secured to an electric box 10 by simply aligning the assembly 10 with a knockout hole 14, as best seen in
It will be understood that the wire conductor 25 may be secured to the connector assembly 10 either before or after the assembly 10 has been secured to the electric box 15. In the illustrated embodiment, the conductor wire 25 is simply inserted into the inlet end portion 11A and secured in position by a suitable securing means. In the illustrated embodiment of
From the foregoing, it will be apparent that the disclosed connector assembly is quite novel and simple in construction. The snap fit retaining ring 18 can be simply formed from a cruciform shaped blank 19 of spring metal whereby the opposed radially extending arms A,A and B,B can be readily formed into a cup having a generally frustro-conically shaped sidewalls complementing the slope of the outlet end portion 11A, and whereby the outer retainer ring 18 can be readily secured to the connector body simply by the inter-engagement of slots 21 with its complementary lugs 17.
In the assembled position, the outer retainer ring 18 is positively secured to the connector body in a manner to prohibit any unintentional separation. Also the tangs 22 and 23, which are formed integral with ring 18, are shaped and formed so that the locking tangs 22 secure the assembly 10 to an electric box 15 while the grounding tangs 23 ensure a positive electrical ground of the assembly 10 with the associated electric box 15.
In the embodiment illustrated in
Referring to
Blanked, lanced, cut or stamped out of the plane of blank 40 are one or more tangs 45. In the form of the invention as shown in
As shown in
Referring to
The connector body of
The outer circumference of the inner retainer sleeve or ring 39 is proportioned so that it can be press fitted or frictionally fitted into the inlet end 31B of the connector body 31 by a force sufficient to firmly secure the inner retainer ring or sleeve 39 within the inlet end so as to prohibit any separation of the retainer ring or sleeve 39 from the inlet end of the connector body. The complementary flattened surfaces 46 of the internal sleeve 39 and 47 of the inlet end of the connector body insures proper orientation of the internal sleeve 39 within the inlet end of the connector body.
The outlet end 61A and the external frustro-conical ring 76 circumscribing the outlet end 61A are similar in structure hereinbefore described with respect to
With the connector body of
From the foregoing, it will be noted that the connector assemblies disclosed in
It is frequently necessary to upgrade, repair, or add new electric conductors or circuits to existing electric boxes concealed within the wall of an existing structure. In such instances, the installer is generally unable to access a snap-fit connector so as to apply the necessary pulling or pushing force necessary to insert and lock a snap-fit connector assembly, e.g. 100, in a knockout opening of the electric box 102. Heretofore, in such situations, the installer generally utilized a connector having a threaded outlet end which could be readily passed through a knockout hole of an electric box, which could then be secured by threading thereon a lock nut from within the box opening, which is both difficult and time consuming.
The connector assembly 100, as illustrated, includes a connector body 104 having a leading end or outlet end 105 and a trailing or inlet end 106. The connector body may be formed as a metal casting of a suitable material, e.g. a zinc alloy, having a bore 107 extending therethrough. Circumscribing the connector body 104 between the outlet end 105 and the inlet end 106 is a radially outwardly extending stop flange 108. As hereinbefore described, the outer surface S of the outlet end 105 tapers or converges inwardly toward the central axis of the connector body 104 and the outlet opening 109.
Complementing the slope or taper of the outer surface S of the outlet end 105 is a frustro-conical snap-fit retainer ring 110 which is similar in structure hereinbefore described with respect to
While the embodiment of the connector assembly 200 of
As best seen in
Circumferentially spaced about the outlet end 502 of the connector body 501 are one or more radially outwardly projecting retaining lugs 508. In the illustrated embodiment, two such retaining lugs 508 are provided 180° apart.
Secured to the outlet end 502 of the connector body and circumscribing the outlet end 502 is a frustro-conical snap fit retainer or retainer ring 509, similar to the frustro-conical retainer ring hereinbefore described with respect to
Connected to the connector body 501 adjacent the inlet opening and forming an integral part of the connector body 501 is a cable support saddle 515 which extends about a circumferential portion of the inlet opening 504, e.g. between approximately 120° to 180° about the inlet opening 504. As shown, the cable support saddle 515 is a curvilinear extension of the inlet opening 504 terminating in laterally outwardly extending ears or lobes 515A and 515B. As best seen in
Hingedly connected to ear or lobe 515A is a clamping strap 518. As best seen in
In accordance with this invention, the foot portion 520 of the hinge structure 519 is provided with a width “W” which is slightly greater than the width “w” of the hinge slot 516. The arrangement is such that the clamping strap 518 must be skewed or angled relative to the hinge slot 516 for inserting the foot portion 520 through the hinge slot 516 for connecting the clamping strap 518 to the ear or lobe 515A. When so connected, the clamping strap 518 is free to pivot relative to the saddle 515 between a cable clamping and unclamping position without causing the clamping strap 518 to become detached from the saddle 515. To effect detachment of the clamping strap 518 from the ear or lobe 515A, one must intentionally skew or angle the clamping strap 518 relative to the hinge slot 516 to effect the removal of the clamping strap 518 from the saddle.
The other end of the clamping strap 518 is provided with a strap hole 521 for receiving a fastener, e.g. a screw 522 for securing the clamping strap 518 to the ear or lobe 515B so that the cable is firmly clamped and secured between the saddle 515 and the clamping strap 518.
To insure a positive gripping of the cable between the saddle 515 and the clamping strap 518, an intermediate portion of the clamping strap is provided with a depression 523 that will “bite” or exert a positive frictional force on the cable, when secured in the clamping position (
As shown, the connector body 501 and connected saddle 515 is preferably formed as a metal casting, e.g. zinc or other suitable metallic alloy. The strap electric connector as illustrated in
By slightly modifying the shape of the clamping strap, the described strap type electric connector may be readily adapted for connecting an armored, or metal clad cable, to an electric box or panel.
From the foregoing description, it will be noted that the armored cable strap 618 can be readily interchanged for the non-metallic cable strap 518 depending upon the type of cable to be secured by the described connector body.
From the foregoing, it will be apparent that the principle components described herein, viz. the external frustro-conical retainer rings, the connector bodies and the differently described wire conductor retainers, are rendered readily interchangeable with respect to any of the complementary corresponding components of the various embodiments described herein.
It is to be further noted that the frustro-conical retainer ring, as described herein with respect to the various embodiments disclosed, achieves the further advantage of ensuring positive electrical grounding of the described connector assemblies to an electrical box or panel despite the varying allowable diameter tolerances a knockout hole may have, as permitted by allowable codes or electrical standards, due to the inherent resiliency and shape that a frustro-conical configuration allows, as described herein.
While the present invention has been described with respect to several embodiments, it will be understood that various modifications may be made without departing from the spirit or scope of the invention.
This application is a continuation in part application of application Ser. No. 11/501,131 filed Aug. 8, 2006 now U.S. Pat. No. 7,488,905 for Electrical Connector With Outer Retainer Ring and Internal Unidirectional Conductor Retainer, which is a continuation in part application of application Ser. No. 11/403,099 filed Apr. 12, 2006 for Snap Fit Electrical Connector Assembly With Frustro Conical Retainer Ring And Internal Unidirectional Snap Fit Wire Conductor Retainer, now U.S. Pat. No. 7,151,223, which is a continuation in part application of application Ser. No. 11/400,606 filed Apr. 7, 2006 for Electrical Connector With Frustro Conical Snap Fit Retainer Ring Constructed To Enhance The Insertion Of The Connector Through A Knockout Hole Of An Electric Box, now U.S. Pat. No. 7,154,042, which is a continuation in part application of application Ser. No. 11/364,435 filed Feb. 28, 2006 for Snap-Fit Electrical Connector Assembly For Facilitating The Connection of the Electric Connector Assembly To An Electric Box, now U.S. Pat. No. 7,205,489, which is a continuation in part of application Ser. No. 11/258,990 filed Oct. 26, 2005, now U.S. Pat. No. 7,057,100, which is a continuation in part of application Ser. No. 11/151,374 filed Jun. 13, 2005 for Snap Fit Electrical Connector Assembly With Conical Outer Snap Fit Retainer And One Or More Internal Snap Fit Wire Retainers, now U.S. Pat. No. 7,075,007, which is a continuation in part of application Ser. No. 11/100,250 filed Apr. 6, 2005 for Snap In Electrical Connector Assembly With Unidirectional Wire Conductor Retainer Ring, now U.S. Pat. No. 7,064,272, which is a continuation in part application of application Ser. No. 10/939,619 filed Sep. 13, 2004 for Electrical Connector With Frustro Conical Snap Fit Retaining Ring, now U.S. Pat. No. 6,916,988 B1, each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1483218 | Fahnestock | Feb 1924 | A |
1725883 | Recker | Aug 1929 | A |
1830250 | Tiefenbacher | Nov 1931 | A |
2156003 | Tinnerman | Apr 1939 | A |
2160353 | Conners | May 1939 | A |
2445663 | Peters | Jul 1948 | A |
2744769 | Roeder et al. | May 1956 | A |
2823932 | Schigut | Feb 1958 | A |
3183297 | Curtiss | May 1965 | A |
3436105 | Miklya | Apr 1969 | A |
3544705 | Winston | Dec 1970 | A |
3631738 | Harper | Jan 1972 | A |
3788582 | Swanquist | Jan 1974 | A |
3814467 | Van Buren, Jr. | Jun 1974 | A |
3858151 | Paskert | Dec 1974 | A |
3993333 | Biswas | Nov 1976 | A |
4012578 | Moran et al. | Mar 1977 | A |
4021604 | Dola et al. | May 1977 | A |
4032178 | Neuroth | Jun 1977 | A |
4248459 | Pate et al. | Feb 1981 | A |
4361302 | Lass | Nov 1982 | A |
4468535 | Law | Aug 1984 | A |
4619332 | Sheehan | Oct 1986 | A |
4621166 | Neuroth | Nov 1986 | A |
4626620 | Plyler | Dec 1986 | A |
4657212 | Gilmore et al. | Apr 1987 | A |
4711472 | Schnell | Dec 1987 | A |
4773280 | Baumgarten | Sep 1988 | A |
4880387 | Stikeleather et al. | Nov 1989 | A |
4981310 | Belisaire | Jan 1991 | A |
4990721 | Sheehan | Feb 1991 | A |
5132493 | Sheehan | Jul 1992 | A |
5171164 | O'Neil et al. | Dec 1992 | A |
5189258 | Pratesi | Feb 1993 | A |
5266050 | O'Neil et al. | Nov 1993 | A |
5342994 | Pratesi | Aug 1994 | A |
5373106 | O'Neil et al. | Dec 1994 | A |
5422437 | Schnell | Jun 1995 | A |
6034326 | Jorgensen | Mar 2000 | A |
6043432 | Gretz | Mar 2000 | A |
6080933 | Gretz | Jun 2000 | A |
6114630 | Gretz | Sep 2000 | A |
6133529 | Gretz | Oct 2000 | A |
6194661 | Gretz | Feb 2001 | B1 |
6335488 | Gretz | Jan 2002 | B1 |
6352439 | Stark et al. | Mar 2002 | B1 |
6355884 | Gretz | Mar 2002 | B1 |
6380483 | Blake | Apr 2002 | B1 |
6444907 | Kiely | Sep 2002 | B1 |
6476322 | Dunne et al. | Nov 2002 | B1 |
6521831 | Gretz | Feb 2003 | B1 |
D473783 | Kiely | Apr 2003 | S |
6555750 | Kiely | Apr 2003 | B2 |
6604400 | Gretz | Aug 2003 | B1 |
D479984 | Kiely | Sep 2003 | S |
6670553 | Gretz | Dec 2003 | B1 |
6682355 | Gretz | Jan 2004 | B1 |
6737584 | Kiely | May 2004 | B2 |
6768057 | Blake | Jul 2004 | B2 |
6780029 | Gretz | Aug 2004 | B1 |
6849803 | Gretz | Feb 2005 | B1 |
6860758 | Kiely | Mar 2005 | B1 |
6872886 | Kiely | Mar 2005 | B2 |
6916988 | Auray et al. | Jul 2005 | B1 |
6957968 | Gretz | Oct 2005 | B1 |
7060900 | Gretz | Jun 2006 | B1 |
7723623 | Kiely et al. | May 2010 | B2 |
Number | Date | Country | |
---|---|---|---|
20080053680 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11501131 | Aug 2006 | US |
Child | 11903410 | US | |
Parent | 11403099 | Apr 2006 | US |
Child | 11501131 | US | |
Parent | 11400606 | Apr 2006 | US |
Child | 11403099 | US | |
Parent | 11364435 | Feb 2006 | US |
Child | 11400606 | US | |
Parent | 11258990 | Oct 2005 | US |
Child | 11364435 | US | |
Parent | 11151374 | Jun 2005 | US |
Child | 11258990 | US | |
Parent | 11100250 | Apr 2005 | US |
Child | 11151374 | US | |
Parent | 10939619 | Sep 2004 | US |
Child | 11100250 | US |