The present application is national phase of International Application Number PCT/CH2009/000003 filed Jan. 6, 2009, and claims priority from, Swiss Application Number 647/08 filed Apr. 23, 2008.
The invention relates to a mobile strapping device for strapping packaged goods with a wrap-around strap, comprising a tensioner for applying a strap tension to a loop of a wrapping strap, as well as a connector for producing a connection at two areas of the loop of wrapping strap disposed one on top of the other, and a chargeable energy storage means for storing energy that can be released as drive energy at least for the connector and/or tensioner.
Such mobile strapping devices are used for strapping packaged goods with a plastic strap. For this a loop of the plastic strap is placed around the packaged goods. Generally the plastic strap is obtained from a storage roll. After the loop has been completely placed around the packaged goods, the end area of the strap overlaps a section of the strap loop. The strapping device is then applied at this dual-layer area of the strap, the strap clamped into the strapping device, a strap tension applied to the strap loop by the strapping device and a seal produced on the loop between the two strap layers by the connector. For this various connecting technologies are possible, including friction welding. In the case of the latter, a friction shoe moving in an oscillating manner is pressed onto the area of two ends of the strap loop. The pressure and the heat produced by the movement briefly locally melt the strap which generally contains a plastic. This produces a durable connection between the two strap layers which can only be broken with a large amount of force. The loop is then separated from the storage roll. The packaged goods are thus strapped.
For their energy supply strapping devices of this type generally have a chargeable and possibly interchangeable storage battery with which direct current motors are supplied with electrical energy. In the portable mobile strapping devices the direct current motors envisaged for producing drive movements of the tensioner and/or welding device.
Strapping devices of this type are often in continuous use in industry for packaging goods. Therefore as simple operation of the strapping devices as possible is aimed for. In this way on the one hand a high level of functional reliability, associated with high-quality strapping, and on the other hand as little effort as possible for the operator should be assured. Previously known strapping device cannot fully satisfy these requirements.
The aim of the invention is therefore to create a mobile strapping device of the type set out in the introductory section, which in spite of the possibility of at least largely automated production of wrapped straps, exhibits a high level of functional reliability and good handling properties.
In accordance with the invention this objective is achieved with a mobile strapping device in accordance with the introductory section in that the energy storage means has a lithium-ion storage battery which provides energy to drive a connector designed in the form of a friction welder. It has been shown that particularly good functional reliability can be achieved with such storage batteries as these storage batteries provide sufficient energy to carry out a large number of strapping cycles with mobile strapping device, even if strap tensions are applied and at least largely automated strapping procedures with motorised drive movements are be carried out.
In order to weld PP or PET straps, welding shoe frequencies of approx. 250-350 Hz with a pressing pressure of 300-350 N are required. In order to achieve these values a drive-side rotational speed of an eccentric tappet driving the welding shoe of approx. 6000 rpm to 7000 rpm is necessary. Ideally with these initial values a welding procedure takes place over a duration of 1.5 seconds to 2 seconds. If the eccentric shaft speed falls below the value of 6000 rpm, the band seal quality deteriorates considerably.
Within the framework of the invention it has been shown that the prematurely deteriorating connection quality observed in conventional manual strapping device, even though the storage batteries are not even 60% discharged, does not occur in his manner with lithium ion storage batteries.
Lithium ion storage batteries can provide the voltage require for a high speed for considerably longer. In this way, compared with other storage batteries of similar size, lithium ion storage batteries provide the desired reliability for considerably longer i.e. in the case of a much higher of strapping procedure and friction weld. Only shortly before full consumption of the storage energy does the supply voltage provided by lithium ion storage batteries fall to values at which friction welding should not be carried out. As the time at which the user is requested to charge the storage battery shortly before full discharge by a corresponding signal on the strapping device corresponds with the time at which the storage battery no longer produces good quality friction weld, in contrast to conventional storage batteries the recharging signal can be seen by the user as an indication that as of then the required quality of subsequent strappings is no longer given.
As lithium ion storage batteries have a much higher energy density than conventional storage batteries, these advantages can even be achieved in relation to the dimensions of smaller storage batteries. The resulting reduced weight of the used storage batteries is a further significant advantage for use in mobile portable strapping devices.
Particular advantages can be achieved with lithium ion storage batteries in conjunction with at least one brushless direct current motor as the drive for the tensioner and/or friction welder. This can be further increased by means of a planetary gear system, particularly if the planetary gear system together with the brushless direct current motor and the lithium ion storage batteries are arranged in the drive train for the tensioner and/or friction welder.
Furthermore, a speed-dependent/speed-controlled tensioning procedure also allows rapid initial tensioning, i.e. tensioning at high strap retraction speed, followed by second tensioning procedure with a reduced strap retraction speed compared with the first tensioning procedure. In such brushless motors, due to the possibility of setting the rotational speed of the motor shaft and the motor torque separately within certain ranges, the strap retraction speeds can be adjusted to the required/desired circumstances during both tensioning procedures. Particularly high strap tensions can be achieved with the described division into a first and at least a second tensioning procedure.
An embodiment of strapping device can also be of independent relevance in which the tensioner and the welding device are only provided with one common drive.
This just one drive can preferably be designed as an electric motor, with the drive movement of which the tensioner and the friction welder can be consecutively driven. Preferably, with this just one motor, not only is the drive movement of the welding procedure itself produced, but also a movement of the friction welder from a rest position into a welding position in which a welding element of the friction weld is pressed onto the layers of strap to be welded and a friction weld is produce through an oscillating movement on the strap layers. Here, the welding element of the friction welder is in active in the rest position and is preferably only started up at the start of movement from the rest position.
In accordance with a further aspect of the present invention, which may also be of independent relevance, the strapping device is provided with means with which the rotational position of the motor shaft or the position of components of the strapping device dependent on the motor shaft can be determined. The information about one or more rotational positions can preferably be used by a control device of the strapping device to control components of the strapping device, such as the friction welder and/or the tensioner. If a brushless direct current motor is used as the drive, this can be done in a particularly simple manner. For their commutation, such motors must determine current positions of the rotating component of the motor, which is generally a rotating anchor. For this, detectors/sensor, such as Hall sensors, are provided, which determine rotational positions of the rotating motor components and make them available to the motor control device. This information can also be used to advantage for control the friction welder.
Thus, in a preferred embodiment of the strapping device it can be envisaged that a number of rotations of the rotating components of the motor are determined in order, on reaching a given value or rotations, to carry out a switching operation. More particularly, this switching operation can involve switching off the friction welder to terminate the production of a friction weld connection. In a further advantageous embodiment of the invention it can be envisaged that at one or at several determined rotational positions the motor is not switched off, or is only switched off at one or more determined rotation positions.
Finally it has proven to be advantageous if a device with a toggle lever system is provided to move the welding device from the rest position into the welding position and back. The levers of the toggle lever joint, which are connected to each other via one joint, can, by overcoming two dead point positions, be brought into both end positions at which they hold the welding device in the rest position or in the welding position. Advantageously the toggle lever device is held in both end positions by a force, preferably a force exerted by a mechanical spring. Only by overcoming this force should the toggle lever device be able to move from one end position into the other. The toggle lever device achieves the advantage that end positions of the welding device are only changed by overcoming comparatively high torques. As this applies especially to the welding position, the toggle lever system contributes to further increasing the functional reliability of the strapping device. Furthermore, the toggle lever system advantageously supplements the drive train of the strapping device, which in one form of embodiment of the invention also has a brushless motor and a planetary gear system in addition to the toggle lever system, for automated movement of the welding device into its welding position, as all the components are able to produce high torques or carry out movements when high torques are applied.
Further preferred embodiments of the invention are set out in the claims, the description and the drawing.
The invention will be described in more detail by way of the examples of embodiment which are shown purely schematically.
The exclusively manually operated strapping device 1 in accordance with the invention shown in
With the strapping device 1 a loop of plastic strap, made for example of polypropylene (PP) or polyester (PET), which is not shown in more detail in
Subsequently, at a point on the strap loop on which two layers of the wrapping strap are disposed one on top of the other, welding of the two layers can take place by means of the friction welder 8 of the strapping device. In this way the strap loop can be durably connected. For this the friction welder 10 is provided with a welding shoe 11, which through mechanical pressure on the wrapping strap and simultaneous oscillating movement at a predefined frequencies starts to melt the two layers of the wrapping strap. The plastified or melted areas flow into each other and after cooling of the strap a connection is formed between the two strap layers. If necessary the strap loop can be separated from a strap storage roll by means of a strapping device 1 cutter which is not shown.
Operation of the tensioner 6, assignment of the friction welder 10 by means of a transitioning device (
The portable mobile strapping device 1 has an operating element 16, in the form of a press switch, which is intended for starting up the motor. Via a switch 17, three operating modes can be set for the operating element 16. In the first mode by operating the operating element 16, without further action being required by the operator, the tensioner 6 and the friction welder 10 are started up consecutively and automatically. To set the second mode the switch 17 is switched over to a second switching mode. In the second possible operating mode, by operating the operating element 15, only the tensioner 6 is started up. To separately start the friction welder 10 a second operating element 18 must be activated by the operator. In alternative forms of embodiment it can also be envisaged that in this mode the first operating element 16 has to be operated twice in order to activate the friction welder. The third mode is a type of semi-automatic operation in which the tensioning button 16 must be pressed until the tension force/tensile force which can preset in stages is achieved in the strap. In this mode it is possible to interrupt the tensioning process by releasing the tensioning button 16, for example in order to position edge protectors on the goods to be strapped under the wrapping strap. By pressing the tensioning button the tensioning procedure can then be continued. This third mode can be combined with a separately operated as well as an automatic subsequent friction welding procedure.
On a motor shaft 27, shown in
The brushless direct current motor 14, shown purely schematically in
The power supply is provided by the lithium-ion storage battery 15. Such storage batteries are based on several independent lithium ion cells in each of which essentially separate chemical processes take place to generate a potential difference between the two poles of each cell. In the example of embodiment the lithium ion storage battery is manufactured by Robert Bosch GmbH, D-70745 Leinfelden-Echterdingen. The battery in the example of embodiment has eight cells and has a capacity of 2.6 ampere-hours. Graphite is used as the active material/negative electrode of the lithium ion storage battery. The positive electrode often has lithium metal oxides, more particularly in the form of layered structures. Anhydrous salts, such as lithium hexafluorophosphate or polymers are usually used as the electrolyte. The voltage emitted by a conventional lithium ion storage battery is usually 3.6 volts. The energy density of such storage batteries is around 100 Wh/kh-120 Wh/kg.
On the motor side drive shaft, the gearing system device 13 has a free wheel 36, on which a sun gear 35 of a first planetary gear stage is arranged. The free wheel 36 only transfers the rotational movement to the sun gear 35 in one of the two possible rotational directions of the drive. The sun gear 35 meshes with three planetary gears 37 which in a known manner engage with a fixed gear 38. Each of the planetary gears 37 is arranged on a shaft 39 assigned to it, each of which is connected in one piece with an output gear 40. The rotation of the planetary gears 37 around the motor shaft 27 produces a rotational movement of the output gear 40 around the motor shaft 27 and determines a rotational speed of this rotational movement of the output gear 40. In addition to the sun gear 35 the output gear 40 is also on the free wheel 36 and is therefore also arranged on the motor shaft. This free wheel 36 ensures that both the sun gear 35 and the output gear 40 only also rotate in one rotational direction of the rotational movement of the motor shaft 27. The free wheel 29 can for example be of type INA HFL0615 as supplied by the company Schaeffler KG, D-91074 Herzogenaurach,
On the motor-side output shaft 27 the gear system device 13 also has a toothed sun gear 28 belonging to a second planetary gear stage, through the recess of which the shaft 27 passes, though the shaft 27 is not connected to the sun gear 28. The sun gear is attached to a disk 34, which in turn is connected to the planetary gears. The rotational movement of the planetary gears 37 about the motor-side output shaft 27 is thus transferred to the disk 34, which in turn transfers its rotational movement at the same speed to the sun gear 28. With several planetary gears, namely three, the sun gear 28 meshes with cog gears 31 arranged on a shaft 30 running parallel to the motor shaft 27. The shafts 30 of the three cog gears 31 are fixed, i.e. they do not rotate about the motor shaft 27. In turn the cog gears 21 engage with an internal-tooth sprocket, which on its outer side has a cam 32 and is hereinafter referred to as the cam wheel 33. The sun gear 28, the three cog gears 31 as well as the cam wheel 33 are components of the second planetary gear stage. In the planetary gear system the input-side rotational movement of the shaft 27 and the rotational movement of the cam wheel are at a ratio of 60:1, i.e. a 60-fold reduction takes place through the second-stage planetary gear system.
At the end of the motor shaft 27, on a second free wheel 42 a bevel gear 43 is arranged, which engages in a second bevel gear, which is not shown in more detail. This free wheel 42 also only transmits the rotational movement in one rotational direction of the motor shaft 27. The rotational direction in which the free wheel 36 of the sun gear 35 and the free wheel 42 transmit the rotational movement of the motor shaft 27 is opposite. This means that in one rotational direction only free wheel 36 turns, and in the other rotational direction only free wheel 42.
The second bevel gear is arranged on one of a, not shown, tensioning shaft, which at its other end carries a further planetary gear system 46 (
In the area of its outer circumference the output gear 40 is designed as a cog gear on which is a toothed belt of an envelope drive (
The welding device is also provided with a toggle lever device 60, by means of which the welding device can be moved from a rest position (
The pivoting movement is initiated by the cam 32 on the cam wheel 33 which during rotational movement in the anticlockwise direction—in relation to the depictions in
As can be seen in the depictions in
The anticlockwise drive movement of the electric motor shown in
The described consecutive procedures “tensioning” and “welding” can be jointly initiated in one switching status of the operating element 15. For this the operating element 16 is operated once, whereby the electric motor 14 first turns on the first rotational direction and thereby (only) the tensioner 6 is driven. The strap tension to be applied to the strap can be set on the strapping device, preferably be means of a push button in nine stages, which correspond to nine different strap tensions. Alternatively continuous adjustment of the strap tension can be envisaged. As the motor current is dependent on the torque of the tensioning wheel 7, and this in turn on the current strap tension, the strap tension to be applied can be set via push buttons in nine stages in the form of a motor current limit value on the control electronics of the strapping device.
After reaching a settable and thus predeterminable limit value for the motor current/strap tension, the motor 14 is switched off by its control device 22. Immediately afterwards the control device 22 operates the motor in the opposite rotational direction. As a result, in the manner described above, the welding shoe is lowered onto the two layers of strap displaced one on top of the other and the oscillating movement of the welding shoe is carried out to produce the friction weld connection.
By operating switch 17 the operating element 16 can only activate the tensioner. If this is set, by operating the operating element only the tensioner is brought into operation and on reaching the preset strap tension is switched off again. To start the friction welding procedure the second operating element 18 must be operated. However, apart from separate activation, the function of the friction welding device is identical the other mode of the first operating element.
As has already been explained, the rocker 8 can through operating the rocker lever 9 shown in
In this way, the toothed tensioning plate arranged on the free end of the rocker can be pivoted from a rest position shown in
As can be seen in particular in
In a tensioner the tensioning rocker 8 is initially moved from the rest position (
Number | Date | Country | Kind |
---|---|---|---|
647/08 | Apr 2008 | CH | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH2009/000003 | 1/6/2009 | WO | 00 | 11/23/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/129635 | 10/29/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3367374 | Meier et al. | Feb 1968 | A |
3654033 | Angarola et al. | Apr 1972 | A |
4011807 | Kobiella | Mar 1977 | A |
4015643 | Cheung | Apr 1977 | A |
4313779 | Nix | Feb 1982 | A |
4450032 | Wehr | May 1984 | A |
4572064 | Burton et al. | Feb 1986 | A |
4707390 | Cheung | Nov 1987 | A |
4776905 | Cheung et al. | Oct 1988 | A |
5133532 | Figiel et al. | Jul 1992 | A |
5146847 | Lyon et al. | Sep 1992 | A |
5155982 | Boek et al. | Oct 1992 | A |
5159218 | Murry et al. | Oct 1992 | A |
5516022 | Annis, Jr. | May 1996 | A |
5689943 | Wehr | Nov 1997 | A |
5690023 | Stamm et al. | Nov 1997 | A |
5798596 | Lordo | Aug 1998 | A |
5809873 | Chak et al. | Sep 1998 | A |
6003578 | Chang | Dec 1999 | A |
6109325 | Chang | Aug 2000 | A |
6308760 | Finzo et al. | Oct 2001 | B1 |
6332306 | Finzo et al. | Dec 2001 | B1 |
6405766 | Benjey | Jun 2002 | B1 |
6516715 | Reiche | Feb 2003 | B1 |
6578337 | Scholl et al. | Jun 2003 | B2 |
6606766 | Ko | Aug 2003 | B2 |
6644713 | Del Pozo Abejon et al. | Nov 2003 | B2 |
6715375 | Nestler | Apr 2004 | B2 |
6732638 | Rometty et al. | May 2004 | B1 |
6817159 | Sakaki et al. | Nov 2004 | B2 |
6918235 | Nix | Jul 2005 | B2 |
7011000 | Kushida et al. | Mar 2006 | B2 |
7249862 | Shirane | Jul 2007 | B2 |
7312609 | Schmollngruber et al. | Dec 2007 | B2 |
7456608 | Kageler et al. | Nov 2008 | B2 |
8198839 | Katou et al. | Jun 2012 | B2 |
8378600 | Katou et al. | Feb 2013 | B2 |
20020100146 | Ko | Aug 2002 | A1 |
20020129717 | Helland et al. | Sep 2002 | A1 |
20030145900 | Jensen et al. | Aug 2003 | A1 |
20050279198 | Kushida et al. | Dec 2005 | A1 |
20060108180 | Grach et al. | May 2006 | A1 |
20060192527 | Kageler et al. | Aug 2006 | A1 |
20090013656 | Nasiatka et al. | Jan 2009 | A1 |
20120160364 | Katou et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
1253099 | May 2000 | CN |
1558842 | Dec 2004 | CN |
1859999 | Nov 2006 | CN |
201411061 | Feb 2010 | CN |
19751861 | Jan 1999 | DE |
10026200 | Nov 2001 | DE |
20321137 | Jan 2006 | DE |
202011050797 | Nov 2011 | DE |
0480627 | Apr 1992 | EP |
0744343 | Nov 1996 | EP |
0949146 | Oct 1999 | EP |
0997377 | May 2000 | EP |
0999133 | May 2000 | EP |
1316506 | Jun 2003 | EP |
1413519 | Apr 2004 | EP |
S5290398 | Jul 1977 | JP |
S541238 | Jan 1979 | JP |
S5638220 | Apr 1981 | JP |
6322320 | Jan 1988 | JP |
H05198241 | Aug 1993 | JP |
H07300108 | Oct 1996 | JP |
08324506 | Dec 1996 | JP |
09283103 | Oct 1997 | JP |
3044132 | May 2000 | JP |
2000128115 | May 2000 | JP |
20000128113 | May 2000 | JP |
3227693 | Nov 2001 | JP |
3242081 | Dec 2001 | JP |
2002235830 | Aug 2002 | JP |
2003170906 | Jun 2003 | JP |
2003231291 | Aug 2003 | JP |
2003231291 | Aug 2003 | JP |
2003348899 | Dec 2003 | JP |
2004108593 | Apr 2004 | JP |
3548622 | Jul 2004 | JP |
2004241150 | Aug 2004 | JP |
2004323111 | Nov 2004 | JP |
2007276042 | Oct 2007 | JP |
4406016 | Jan 2010 | JP |
840002211 | Dec 1984 | KR |
20000029337 | May 2000 | KR |
1772784 | Oct 1992 | RU |
2118277 | Aug 1998 | RU |
2161773 | Jan 2001 | RU |
2004115639 | Jan 2006 | RU |
2355281 | May 2009 | RU |
1134117 | Jan 1985 | SU |
2006048738 | May 2006 | WO |
WO 2007116914 | Oct 2007 | WO |
WO 2009129633 | Oct 2009 | WO |
WO 2009129636 | Oct 2009 | WO |
Entry |
---|
Lithium ion technology: shaping power tool. By Bender, In Air conditioning, heating, and refrigeration news. vol. 228, Issue, 14, p. 18. Jul. 31, 2006). |
Brushless DC Motor Drives, by Ali Emadi, In Energy-Efficient Electrical Motors, 3rd Ed., revised and expaned, Aug. 2004, p. 270-272.CRC Press & Marcel Dekker. |
ISR for PCT/CH2009/000003 mailed Jun. 22, 2009. |
A Russian Decision to Grant, dated Aug. 31, 2012, issued in SU Application No. 2010147639. |
Japanese Office Action issued in corresponding Application No. JP-2011-505337, dated Mar. 27, 2013. |
Korean Office Action dated May 18, 2015 for Korean Application No. 10-2010-7023730 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20110056391 A1 | Mar 2011 | US |