Strapping device

Information

  • Patent Grant
  • 11999516
  • Patent Number
    11,999,516
  • Date Filed
    Tuesday, June 27, 2023
    a year ago
  • Date Issued
    Tuesday, June 4, 2024
    27 days ago
Abstract
A strapping device including a tensioner operable to apply a strap tension to a loop of wrapping strap, a friction welder operable to produce a friction weld connection at two areas of the loop of wrapping strap disposed one on top of the other, a motor operable in a first rotational direction to drive the tensioner and in a second opposite rotational direction to drive the friction welder, and a control device. The control device is configured to, in response to receiving a first designated input: (1) operate the motor in the first rotational direction to drive the tensioner until a predetermined strap tension is reached in the loop of wrapping strap; and (2) afterwards, automatically operate the motor in the second different rotational direction to drive the friction welder to produce the friction weld connection.
Description

Certain embodiments of the invention relate to a mobile strapping device for strapping packaged goods with a wrap-around strap, comprising a tensioner for applying a strap tension to a loop of a wrapping strap, as well as a friction welder for producing a friction weld at two areas of the loop of wrapping strap disposed one on top of the other, and a chargeable energy storage means for storing energy that can be released as drive energy at least for the friction welder for producing a friction weld.


Such mobile strapping devices are used for strapping packaged goods with a plastic strap. For this a loop of the plastic strap is placed around the packaged goods. Generally the plastic strap is obtained from a storage roll. After the loop has been completely placed around the packaged goods, the end area of the strap overlaps a section of the strap loop. The strapping device is then applied at this dual-layer area of the strap, the strap clamped into the strapping device, a strap tension applied to the strap loop by the strapping device and a seal produced on the loop between the two strap layers by the friction welding. Here a friction shoe moving in an oscillating manner is pressed onto the area of two ends of the strap loop. The pressure and the heat produced by the movement briefly locally melt the strap which generally contains a plastic. This produces a durable connection between the two strap layers which can only be broken with a large amount of force. The loop is then separated from the storage roll. The packaged goods are thus strapped.


Strapping devices of this type are intended for mobile use, whereby the devices are taken by a user to the location of use and are not reliant on the provision of external supply energy. The energy required for the envisaged use of such strapping device to strap a wrapping strap around any packaged goods and to produce the seal, is general provided in previously known strapping device by an electrical storage battery or by compressed air. Strapping devices of this type are often in continuous use in industry for packaging goods. Therefore as simple operation of the strapping devices as possible is aimed for. In this way on the one hand a high level of functional reliability, associated with high-quality strapping, and on the other hand as little effort as possible for the operator should be assured


Strapping devices have already become known in which production of the seal and production of the strap tension are largely automated. However, automation of the processes has the disadvantage that the strapping devices have a large number of components and generally also several motors. This results in heavy and voluminous strapping devices. Also, strapping devices provided with a large number of components tend to be top heavy in terms of their weight distribution. Automation also had disadvantages in terms of maintenance costs and the functional reliability of such strapping devices.


One aim of certain embodiments of the invention is therefore to create a mobile strapping device which in spite of the possibility of at least largely automated production of wrapped straps, exhibits a high level of functional reliability and good handling properties.


In accordance with certain embodiments of the invention this objective is achieved with a mobile strapping device by means of a planetary gear system for transferring and changing the rotational speed of a drive movement provided by an electrical drive of the friction welder. In accordance with certain embodiments of the invention the strapping device has at least one planetary gear system which is arranged in the drive train of the friction welder. It has been shown planetary gear in combination with an electrical drive motor provide particularly advantages in friction welders. For example, with planetary gears, in spite of high initial speeds and compact design, high torques can be produced.


This can also be advantageously used for the particularly functionally reliable, possibly automated transfer movement of the friction welder from a rest position into a welding position, in which the friction welder is in contact with the strap to be welded and produces a friction weld by way of an oscillating motion. This can be of particular advantage if, as is the case in certain embodiments of the invention, both the actual friction welding movement of a friction welding element as well as the transfer movement can be generated by the same drive. Such an embodiment with only one drive for these functions is, despite the high degree of automation, particularly compact, and, with its weight being advantageously distributed, nevertheless functionally reliable.


These advantages can be improved further by way of certain embodiments of the invention in which the same drive, designed to bring about the oscillating friction welding motion, also generators the tensioning movement of the strapping device. In order to be able to make the strapping device as compact as possible despite the high torque, a planetary gear system can also be arranged in the drive train of the strapping device.


In accordance with another embodiment of the present invention, which is also of independent relevance, the strapping device is provided with a brushless direct current motor. More particularly, this motor can be envisaged as the sole motor in the strapping device. Unlike in the case of brush-based direct current motors, such a motor can over a broad speed range produce a rotational movement with an essentially constant and comparatively high torque. Such a high torque is advantageous more particularly for motor-driven transfer movements of the friction welder from a rest position into a welding position and possibly back again. If high torques can be provided by the strapping device, it is possible to make the start of the transfer movement dependent on overcoming high forces. This increases the reliability, more particularly the functional reliability, as the fiction welder cannot be accidentally moved from its envisaged position by external influences.


By using a brushless direct current motor as the drive for the tensioner, further advantages can be achieved, as in this way it is possible to control the rotational speed of the tensioning procedure. For example, in contrast to hitherto possible torques, even a low speeds this allows a comparatively high tensioning device torque. Thus, with such mobile strapping device it is for the first time possible to place a strap around packaged goods at low speed but towards the end of the tensioning procedure. In previous tensioners, in order to achieve sufficient strap tensioning, the strap had to be moved at high speed at the start of the tensioning procedure, so that the required strap tension can be achieved towards the end of the tensioning procedure. In doing so the strap is whipped against the packaged goods which involves a high risk of damaging the packaged goods. Even sensitive packaged goods can thus be strapped all-round with considerably less danger of damage.


Furthermore, a speed-dependent/speed-controlled tensioning procedure also allows rapid initial tensioning, i.e. tensioning at high strap retraction speed, followed by second tensioning procedure with a reduced strap retraction speed compared with the first tensioning procedure. In such brushless motors, due to the possibility of setting the rotational speed of the motor shaft and the motor torque separately within certain ranges, the strap retraction speeds can be adjusted to the required/desired circumstances during both tensioning procedures. Particularly high strap tensions can be achieved with the described division into a first and at least a second tensioning procedure.


In accordance with another embodiment of the present invention, which may also be independently relevant, the strapping device is provided with means with which the rotation position of the motor shaft or the positions of components of the strapping device dependent on the motor shaft can be determined. The information about one or more rotational positions can preferably be used by a strapping device controller to control components of the strapping device, such as the friction welder and/or the tensioner. If a brushless direct current motor is used as the device, this can be done in a particularly simple way. For their commutation such motors must already determine information about momentary positions of the rotating component of the motor, which is generally designed as rotating anchor. For this, detectors/sensors, such as Hall sensors, are provided on the motor which determine the rotational positions of the rotating motor components and make them available to the motor control unit. This information can also advantageously be used to control the friction welder.


Thus, in one embodiment of the strapping device it can be envisaged that a number of rotations of the rotating components of the motor are determined in order, on reaching a given value or rotations, to carry out a switching operation. More particularly, this switching operation can involve switching off the friction welder to terminate the production of a friction weld connection. In a further advantageous embodiment of the invention it can be envisaged that at one or at several determined rotational positions the motor is not switched off, or is only switched off at one or more determined rotation positions.


It has proven to be advantageous if a device with a toggle lever system is provided to move the welding device from the rest position into the welding position and back. The levers of the toggle lever joint, which are connected to each other via one joint, can, by overcoming two dead point positions, be brought into both end positions at which they hold the welding device in the rest position or in the welding position. Advantageously the toggle lever device is held in both end positions by a force, preferably a force exerted by a mechanical spring. Only by overcoming this force should the toggle lever device be able to move from one end position into the other. The toggle lever device achieves the advantage that end positions of the welding device are only changed by overcoming comparatively high torques. As this applies especially to the welding position, the toggle lever system contributes to further increasing the functional reliability of the strapping device. Furthermore, the toggle lever system advantageously supplements the drive train of the strapping device, which in one form of embodiment of the invention also has a brushless motor and a planetary gear system in addition to the toggle lever system, for automated movement of the welding device into its welding position, as all the components are able to produce high torques or carry out movements when high torques are applied.


Certain embodiments of the invention relate to a mobile strapping device for strapping packaged goods with a wrap-around strap, comprising a tensioner for applying a strap tension to a loop of a wrapping strap, as well as a friction welder for producing a friction weld connection at two areas of the loop of wrapping strap disposed one on top of the other, and a chargeable energy storage means for storing energy, more particularly electrical, elastic or potential energy, that can be released as drive energy at least for the friction welder for producing a friction weld connection.


Such strapping devices have a tensioner, with which sufficiently great strap tension can be applied to a loop of strapping placed around the packaged goods. By means of preferably one clamping device of the strapping device the strap loop can then affixed to the packaged good for the following connection procedure. In strapping device of this type the connection procedure takes place by way of a friction welder. The pressure and the heat produced by the movement briefly locally melt the strap which generally contains a plastic. This produces a durable connection between the two strap layers which can only be broken with a large amount of force.


Strapping devices of this type are envisaged for mobile use, whereby the devices are taken by a user to the deployment site and should not be reliant on the use of externally supplied energy. In previously known strapping devices the energy required for the intended use of such strapping devices for strapping a wrapping strap around any type of packed goods and for producing the connection, is generally provided by an electrical storage battery or by compressed air. With this energy the strap tension applied to the strap by the tensioner and the connection on the strap are produced. Strapping devices of this type are also designed to connect only weldable plastic straps to each other.


In mobile devices a low weight is of particular importance in order to put as little physical strain on the user of the strapping device as possible when using the device. Also, for ergonomic reasons the weight of the strapping device should be distributed as evenly as possible, in order to avoid concentration of the weight in the head area of the strapping device. Such concentration results in unfavorable handling properties of the device. As ergonomic and user-friendly handling of the strapping device as possible are always striven for. More particularly the possibility of incorrect use or faulty operation should be minimal.


One aim of certain embodiments of the invention is therefore to improve the handling and operating properties of a strapping device.


In accordance with certain embodiments of the invention this objective is achieved in a mobile strapping device of this type by a means of a common drive for the tensioner for producing a tensioning movement as well as for the friction welder for producing an oscillating friction welding movement and for a transitioning device for bringing about a transfer movement of the friction welder from a rest position into a welding position.


In accordance with certain embodiments of the invention a mobile strapping device is provided with a motor-driven tensioner and friction welder. In order to be able to use such as strapping device at least approximately as a hand-held strapping device, it also has a motor-drive transitioning device for the friction welder. In terms of the weight, and in order to avoid a concentration of the weight in the head area of the device, in spite of the high degree of automation of the strapping device in accordance with certain embodiments of the invention, all these functional units of the strapping device are driven by just one common drive.


Preferably this just one drive can be designed as an electric motor, the drive movement of which can be used to consecutively drive the tensioner and the friction welder. In an expedient embodiment of the invention means are provided with which a functional connection can be produced either between the just one drive and the tensioner, or between the drive and the friction welder, for example reversing the rotational direction of the motor shaft of the drive.


Preferably with this just one motor not only is the drive movement of the welding procedure itself produced, but also a movement of the friction welder from a rest position into a welding position. In the welding position a welding element of the friction welder is pressed onto the strap layers to be welded to each other and through an oscillating movement produces a friction weld on the strap layers. Here, the welding element is preferably inactive in the rest position and is only started up at the beginning of the movement from the rest position.


The drive of the portable strapping device can preferably be a single electric motor. It has been shown that the motor can advantageously be a brushless direct current motor. Such a motor can be operated in such a way that at different rotational speeds it produces an essentially constant torque.


By using a brushless direct current motor as the drive for the tensioner further advantages can be achieved, as in this way it is possible to control the tensioning procedure in dependence on the rotational speed. For example, in contrast to hitherto possible torques, even a low speeds this allows a comparatively high tensioning device torque. Thus, with such mobile strapping devices it is for the first time possible to place a strap around packaged goods at low speed but towards the end of the tensioning procedure. In previous tensioners, in order to achieve sufficient strap tensioning, the strap had to be moved at high speed at the start of the tensioning procedure, so that the required strap tension can be achieved towards the end of the tensioning procedure. In doing so the strap is whipped against the packaged goods which involves a high risk of damaging the packaged goods. Even sensitive packaged goods can thus be strapped with considerably less danger of damage.


Furthermore, a speed-dependent/speed-controlled tensioning procedure also allows rapid initial tensioning, i.e. tensioning at high strap retraction speed, followed by second tensioning procedure with a reduced strap retraction speed compared with the first tensioning procedure. In such brushless motors, due to the possibility of setting the rotational speed of the motor shaft and the motor torque separately within certain ranges, the strap retraction speeds can be adjusted to the required/desired circumstances during both tensioning procedures. Particularly high strap tensions can be achieved with the described division into a first and at least a second tensioning procedure.


Advantageously at least one planetary gear system is arranged in the force flow between the common drive for the friction welder and for the tensioning device. With regard to the weight of the strapping device and its weight distribution this makes it possible to produce the generally considerably different rotational speeds for the tensioner and the friction welder.


The degree of automation of the strapping device in accordance with certain embodiments of the invention can advantageously be improved with as small a number of required components as possible, in that the coordination between the transmission device and friction welder takes place by means of the same single drive. It can be envisaged that the drive motion of the motor is used both as the drive source for the automatic transmission device as well as to achieve the at least approximately synchronous start of the oscillating movement of the friction welder and the transfer movement of the transitioning device. For this a gearing device can be envisaged which transforms the motorized drive movement into different step-down or step-up gear ratios and releases these at two different points, preferably simultaneously, namely at one point for the friction welder and at another point for the transitioning device.


The common gear system device of the friction welder and its transitioning device can advantageously be arranged on a free wheel, which in a certain rotational direction of a drive shaft of the motor transmits the drive movement to the gear system device. Preferably this rotational direction is different from the rotational direction with which the tensioner is operated. It has proven to be beneficial if, seen in the direction of transmission of the drive movement, splitting of the drive movement on the one hand in the direction of the friction welding element of the friction welder, and on the other hand to transitioning device, only takes place after the free wheel. The gear system device can have a first gear section for the friction welder and a second gear section for the transitioning device, whereby both gear sections perform different step-down or step-ups of the drive movement.


It has proven to be particularly advantageous, if in the drive train of the transitioning device, as a component of the gear system device a gear is provided with which a step down ratio in a range of 100:1 to 30:1, preferably 40:1 to 80:1 and particularly preferably 50:1 to 70:1 can be achieved. Such a step-down ratio can be advantageously attained with a planetary gear, more particularly a multiple stage planetary gear. However other types of gear can also be provided, such as bevel gears.


An expedient form of one embodiment of the invention provided with a planetary gear system can be cam controlled, whereby a rotating cam is used for switching the device on and off. It can be envisaged that through mechanical operation the cam brings about a movement of the friction welder from a rest position into a welding position.


An embodiment of the strapping device can also be of independent relevance in which an operating means for the joint operation of the tensioner and the friction welder is provided, by means of which the tensioner and friction welder can be consecutively started up. Here it is preferable if in the strapping device optionally either the tensioner or the friction welder are activated by just one operation of the operating means in order to consecutively perform their functions, or tensioner and friction welder can be operated separately of each other. In joint activation, through a common activation manipulation, for example by pressing just one switch, the tensioner is initially started and after completion of the tensioning procedure, without further manual operation of the device, the welding procedure is automatically started and carried out. On the other hand, in the case of separate operation the user can determine the times at which the tensioner is operated and at which time intervals separate operation of the friction welder is started independently of the tensioner. For this, separate operation of an operating element is envisaged, which then also allows at least largely automated welding procedure to take place.


In a possible further development of the invention an adjustable and operating switch means for both of these modes can be envisaged, with which the operating means are provided with the joint activation function but also with the possibility of independent and separate operation the tensioner and friction welder.


Certain embodiments of the invention relate to a mobile strapping device for strapping packaged goods with a wrap-around strap, comprising a tensioner for applying a strap tension to a loop of a wrapping strap, as well as a connector for producing a connection at two areas of the loop of wrapping strap disposed one on top of the other, and a chargeable energy storage means for storing energy that can be released as drive energy at least for the connector and/or tensioner.


Such mobile strapping devices are used for strapping packaged goods with a plastic strap. For this a loop of the plastic strap is placed around the packaged goods. Generally the plastic strap is obtained from a storage roll. After the loop has been completely placed around the packaged goods, the end area of the strap overlaps a section of the strap loop. The strapping device is then applied at this dual-layer area of the strap, the strap clamped into the strapping device, a strap tension applied to the strap loop by the strapping device and a seal produced on the loop between the two strap layers by the connector. For this various connecting technologies are possible, including friction welding. In the case of the latter, a friction shoe moving in an oscillating manner is pressed onto the area of two ends of the strap loop. The pressure and the heat produced by the movement briefly locally melt the strap which generally contains a plastic. This produces a durable connection between the two strap layers which can only be broken with a large amount of force. The loop is then separated from the storage roll. The packaged goods are thus strapped.


For their energy supply strapping devices of this type generally have a chargeable and possibly interchangeable storage battery with which direct current motors are supplied with electrical energy. In the portable mobile strapping devices the direct current motors envisaged for producing drive movements of the tensioner and/or welding device.


Strapping devices of this type are often in continuous use in industry for packaging goods. Therefore as simple operation of the strapping devices as possible is aimed for. In this way on the one hand a high level of functional reliability, associated with high-quality strapping, and on the other hand as little effort as possible for the operator should be assured. Previously known strapping device cannot fully satisfy these requirements.


One aim of certain embodiments of the invention is therefore to create a mobile strapping device which in spite of the possibility of at least largely automated production of wrapped straps, exhibits a high level of functional reliability and good handling properties.


In accordance with certain embodiments of the invention this objective is achieved with a mobile strapping device in that the energy storage means has a lithium-ion storage battery which provides energy to drive a connector designed in the form of a friction welder. It has been shown that particularly good functional reliability can be achieved with such storage batteries as these storage batteries provide sufficient energy to carry out a large number of strapping cycles with mobile strapping device, even if strap tensions are applied and at least largely automated strapping procedures with motorized drive movements are be carried out.


In order to weld PP or PET straps, welding shoe frequencies of approximately 250-350 Hz with a pressing pressure of 300-350 N are required. In order to achieve these values a drive-side rotational speed of an eccentric tappet driving the welding shoe of approximately 6000 rpm to 7000 rpm is necessary. Ideally with these initial values a welding procedure takes place over a duration of 1.5 seconds to 2 seconds. If the eccentric shaft speed falls below the value of 6000 rpm, the band seal quality deteriorates considerably.


Within the framework of the invention it has been shown that the prematurely deteriorating connection quality observed in conventional manual strapping device, even though the storage batteries are not even 60% discharged, does not occur in his manner with lithium ion storage batteries.


Lithium ion storage batteries can provide the voltage require for a high speed for considerably longer. In this way, compared with other storage batteries of similar size, lithium ion storage batteries provide the desired reliability for considerably longer i.e. in the case of a much higher of strapping procedure and friction weld. Only shortly before full consumption of the storage energy does the supply voltage provided by lithium ion storage batteries fall to values at which friction welding should not be carried out. As the time at which the user is requested to charge the storage battery shortly before full discharge by a corresponding signal on the strapping device corresponds with the time at which the storage battery no longer produces good quality friction weld, in contrast to conventional storage batteries the recharging signal can be seen by the user as an indication that as of then the required quality of subsequent strappings is no longer given.


As lithium ion storage batteries have a much higher energy density than conventional storage batteries, these advantages can even be achieved in relation to the dimensions of smaller storage batteries. The resulting reduced weight of the used storage batteries is a further significant advantage for use in mobile portable strapping devices.


Particular advantages can be achieved with lithium ion storage batteries in conjunction with at least one brushless direct current motor as the drive for the tensioner and/or friction welder. This can be further increased by means of a planetary gear system, particularly if the planetary gear system together with the brushless direct current motor and the lithium ion storage batteries are arranged in the drive train for the tensioner and/or friction welder.


Furthermore, a speed-dependent/speed-controlled tensioning procedure also allows rapid initial tensioning, i.e. tensioning at high strap retraction speed, followed by second tensioning procedure with a reduced strap retraction speed compared with the first tensioning procedure. In such brushless motors, due to the possibility of setting the rotational speed of the motor shaft and the motor torque separately within certain ranges, the strap retraction speeds can be adjusted to the required/desired circumstances during both tensioning procedures. Particularly high strap tensions can be achieved with the described division into a first and at least a second tensioning procedure.


An embodiment of strapping device can also be of independent relevance in which the tensioner and the welding device are only provided with one common drive. This just one drive can preferably be designed as an electric motor, with the drive movement of which the tensioner and the friction welder can be consecutively driven. Preferably, with this just one motor, not only is the drive movement of the welding procedure itself produced, but also a movement of the friction welder from a rest position into a welding position in which a welding element of the friction weld is pressed onto the layers of strap to be welded and a friction weld is produce through an oscillating movement on the strap layers. Here, the welding element of the friction welder is in active in the rest position and is preferably only started up at the start of movement from the rest position.


In accordance with another embodiment of the present invention, which may also be of independent relevance, the strapping device is provided with means with which the rotational position of the motor shaft or the position of components of the strapping device dependent on the motor shaft can be determined. The information about one or more rotational positions can preferably be used by a control device of the strapping device to control components of the strapping device, such as the friction welder and/or the tensioner. If a brushless direct current motor is used as the drive, this can be done in a particularly simple manner. For their commutation, such motors must determine current positions of the rotating component of the motor, which is generally a rotating anchor. For this, detectors/sensor, such as Hall sensors, are provided, which determine rotational positions of the rotating motor components and make them available to the motor control device. This information can also be used to advantage for control the friction welder.


Thus, in one embodiment of the strapping device it can be envisaged that a number of rotations of the rotating components of the motor are determined in order, on reaching a given value or rotations, to carry out a switching operation. More particularly, this switching operation can involve switching off the friction welder to terminate the production of a friction weld connection. In a further advantageous embodiment of the invention it can be envisaged that at one or at several determined rotational positions the motor is not switched off, or is only switched off at one or more determined rotation positions.


It has proven to be advantageous if a device with a toggle lever system is provided to move the welding device from the rest position into the welding position and back. The levers of the toggle lever joint, which are connected to each other via one joint, can, by overcoming two dead point positions, be brought into both end positions at which they hold the welding device in the rest position or in the welding position. Advantageously the toggle lever device is held in both end positions by a force, preferably a force exerted by a mechanical spring. Only by overcoming this force should the toggle lever device be able to move from one end position into the other. The toggle lever device achieves the advantage that end positions of the welding device are only changed by overcoming comparatively high torques. As this applies especially to the welding position, the toggle lever system contributes to further increasing the functional reliability of the strapping device. Furthermore, the toggle lever system advantageously supplements the drive train of the strapping device, which in one form of embodiment of the invention also has a brushless motor and a planetary gear system in addition to the toggle lever system, for automated movement of the welding device into its welding position, as all the components are able to produce high torques or carry out movements when high torques are applied.


Certain embodiments of the invention relate to a strapping device, more particularly a mobile strapping device, for strapping packaged goods with a wrapping strap, comprising a tensioner for applying a strap tension to a loop of a wrapping strap, a rotationally drivable tensioning wheel as well as tensioning rocker that can be pivoted relative to the tensioning wheel and acts together with the tensioning wheel, whereby a tensioning plate is arranged on the tensioning rocker for applying a wrapping strap and a distance between the tensioning plate and the tensioning wheel can be changed in order to apply a tension force to the strap, and a connector, more particularly a welding device, such as a friction welder, for producing a connection at two areas of the loop of wrapping strap disposed one on top of the other.


In strapping devices of this type a rotationally drivable tensioning wheel works in conjunction with a toothed and generally concavely curved tensioning plate which is arranged on a pivotable rocker. In order to apply a tension force to a strap loop the rocker can be pivoted in the direction of the tensioning wheel and pressed against the tensioning wheel. As a rule a pivoting axis of the rocker does not correspond with the rotational axis of the tensioning wheel. This allows the rocker to be “opened” and “closed” with regard to the tensioning wheel, whereby the strap to be tensioned can be placed in the strapping device, held and tensioned by the tensioner and then removed again. In the area between the tensioning wheel and the tensioning plate the strap loop is in two layers. The lower layer is grasped by the tensioning plate of the rocked pivoted towards the tensioning wheel, and through its surface structure or other suitable means for producing friction, held on the tensioning plate by the pressure exerted by the tensioning plate on the lower strap layer. In this way it is possible to grasp and retract the upper layer with the rotationally driven tensioning wheel. In the strap loop this brings about or increases the strap tension and straps the loop tightly around the packaged goods.


Such strapping devices are mainly used in conjunction with plastic straps, loops of which are connected by means of a friction weld. The strapping device therefore has a friction welder with which the strap loops in the area of the two layers of strap one on top of the other can be heated in the strapping device by means of an oscillating friction welding element until the plastic strap melts locally, the materials of the two strap layers flow into each other and are firmly connected on cooling.


It has been shown that in such strapping devices the applied strap tension can vary considerably, particularly in the case of various strap thicknesses. One aim of certain embodiments of the invention is therefore to create a strapping device with which even with different strap thicknesses, as equally good tension properties as possible can be achieved.


This is achieved in the strapping device in that the tensioning plate is movably arranged on the tensioning rocker.


Within the framework of the invention it was seen that the fluctuating strap tension in the case of different strap widths is due to the fact that the position of the tensioning plate changes in relation to the tensioning wheel. In this way, depending on the strap thicknesses involved, different engaging and pressing conditions occur between the two strap layers on the one hand, and the tensioning plate and tensioning wheel on the other hand. The invention therefore envisages means of compensating for the displacement of the engaging points. This at least one means can involve a relative mobility of the tensioning plate with regard to the tensioning rocker, more particularly floating bearing of the tensioning plate on the tensioning rocker. Alternatively, or in addition thereto, a change in the position of the tensioning wheel in relation to the pivoting axis of the rocker can be envisaged.


The preferably envisaged relative mobility of the tensioning plate with regard to the tensioning rocker should, in particular, be present in a direction in which a position of the tensioning plate can be changed with regard to the circumference of the tensioning wheel. This direction corresponds at least approximately to the longitudinal direction along which a wrapping strap placed in the strapping device extends within the strapping device, or the direction along which the tensioning plate moved as a result of the rocker movement. Such an embodiment has the advantage that the pressing pressure, more particularly an essentially evenly distributed pressing pressure is made possible by the tensioning plate on the strap and/or the strap on the tensioning wheel, irrespective of the strap thickness, essentially over the entire length of the tensioning plate.


Alternatively, or in addition to the mobility of the tensioning plate, the engaging conditions can be further improved, even for different strap thicknesses, in that the tensioning plate is concavely curved in one radius, which advantageously approximately corresponds with or can be slightly larger than the outer radius of the tensioning wheel. During the tensioning procedure such a concave design of the tensioning surface contributes to providing a gap with an approximately constant gap height between the tensioning surface of the tensioning plate and the external surface of the tensioning wheel over preferably the entire length of the tensioning surface—in relation to the tensioning direction.


In contrast to the solution in accordance with certain embodiments of the invention, in the previous solution a distribution of the pressing pressure on a surface section of the wrapping strap was essentially only possible at a certain strap thickness, through which the rocker took up a position at which the curvature of the tensioning plate runs parallel to the circumference of the tensioning radius. The gap between the tensioning wheel and the tensioning plate therefore only had a constant gap height over the entire length of the tensioning plate at a certain strap thickness. The more the strap thickness differed from a strap thickness fitting this gap, the smaller surface of the upper and lower strap layer, on which the tensioning plate/tensioning wheel could act. With the embodiment in accordance with certain embodiments of the invention it is now possible to compensate for the different pivoting positions of the rocker in relation to the tensioning wheel due to the different strap thicknesses in such a way that despite the different positions of the tensioning rocker, the tensioning plate can always be essentially arranged so that over the entire length of the tensioning plate there is a gap with an essentially constant gap height over the entire, or at least with less gap height variation than in previous solution. Over the entire length of the tensioning plate this allows more even pressure application on the wrapping strap than hitherto.


The solution according to the invention exhibits advantages to a particular extent in the case of small packaged goods (edge length approximately 750 mm and less) as well as round packaged goods (diameter approximately 500-1000 mm) in connection with high tensile forces. In these conditions the then comparatively small strap loop had resulted in shock-like stressing of the lower strap layer, i.e. the strap end, through which the lower strap layer is pulled against the tensioning plate. Due to very different pressing conditions over the entire length of the tensioning plate, securing holding of the strap end in the strapping device could not guaranteed in previous solutions. The movable tensioning plate exhibits decisive advantages here, which are essentially seen in the fact that even at shock-like tensile stresses in connection with high tensile forces, the straps can be held by the toothed plate, which is optimally arranged because of its mobility.


In one embodiment of the invention, the relative mobility of the tensioning plate can be realized by arranging the tensioning plate on the rocker using bearing surfaces of the tensioning plate that are not parallel to each other. On the basis of this principle the tensioning plate can be provided with a convex contact surface which rests on an essentially level contact surface of the rocker. This allows pivoting of the tensioning plate, whereby self-alignment and clinging of the tensioning plate to the circumference of the tensioning wheel can take place. In one embodiment measures can be envisaged through which self-alignment of the tensioning plate in a direction perpendicular to the direction of the strap can be achieved. Such a measure can for example be a convex shaping of the bearing surface of the tensioning plate perpendicularly to the direction of the strap.


A further advantageous embodiment of the invention can also envisage the tensioning plate being provided with a guide, through which a movement in one or several predetermined directions takes place. The guide direction can in particular be a direction which is essentially parallel to the direction of the strap within the strapping device. In an expedient embodiment, the guide for the tensioning plate can also be produced by an elongated hold and a guide means, such as a screw, arranged therein.


Certain embodiments of the invention relate to a mobile strapping device for strapping packaged goods with a wrap-around strap, comprising a tensioner for applying a strap tension to a loop of a wrapping strap, as well as a connector for producing a connection at two areas of the loop of wrapping strap disposed one on top of the other, and a chargeable energy storage means for storing energy that can be released as drive energy at least for the connector and/or tensioner.


Such mobile strapping devices are used for strapping packaged goods with a plastic strap. For this a loop of the plastic strap is placed around the packaged goods. Generally the plastic strap is obtained from a storage roll. After the loop has been completely placed around the packaged goods, the end area of the strap overlaps a section of the strap loop. The strapping device is then applied at this dual-layer area of the strap, the strap clamped into the strapping device, a strap tension applied to the strap loop by the strapping device and a seal produced on the loop between the two strap layers by the connector. For this various connecting technologies are possible, including friction welding. In the case of the latter, a friction shoe moving in an oscillating manner is pressed onto the area of two ends of the strap loop. The pressure and the heat produced by the movement briefly locally melt the strap which generally contains a plastic. This produces a durable connection between the two strap layers which can only be broken with a large amount of force. The loop is then separated from the storage roll. The packaged goods are thus strapped.


Such mobile strapping devices are used for strapping packaged goods with a plastic strap. For this a loop of the plastic strap is placed around the packaged goods. Generally the plastic strap is obtained from a storage roll. After the loop has been completely placed around the packaged goods, the end area of the strap overlaps a section of the strap loop. The strapping device is then applied at this dual-layer area of the strap, the strap clamped into the strapping device, a strap tension applied to the strap loop by the strapping device and a seal produced on the loop between the two strap layers by the connector. For this various connecting technologies are possible, including friction welding. In the case of the latter, a friction shoe moving in an oscillating manner is pressed onto the area of two ends of the strap loop. The pressure and the heat produced by the movement briefly locally melt the strap which generally contains a plastic. This produces a durable connection between the two strap layers which can only be broken with a large amount of force. The loop is then separated from the storage roll. The packaged goods are thus strapped.


Strapping devices of this type are often in continuous use in industry for packaging goods. Therefore as simple operation of the strapping devices as possible is aimed for. In this way on the one hand a high level of functional reliability, associated with high-quality strapping, and on the other hand as little effort as possible for the operator should be assured. Previously known strapping device cannot fully satisfy these requirements.


One aim of certain embodiments of the invention is therefore to create a mobile strapping device which in spite of the possibility of at least largely automated production of wrapped straps, exhibits a high level of functional reliability and good handling properties.


In accordance with certain embodiments of the invention this objective is achieved with a mobile strapping device by means of a brushless direct current motor as the drive for the tensioner and/or connector. As will be explained in more detail below, brushless direct current motors have electrical and mechanical properties which result in particular advantages in conjunction with mobile strapping devices. In addition, such motors are largely wear and maintenance-free, which contributes to a high level of functional reliability of the strapping devices.


Furthermore, a speed-dependent/speed-controlled tensioning procedure also allows rapid initial tensioning, i.e. tensioning at high strap retraction speed, followed by a second tensioning procedure with a reduced strap retraction speed compared with the first tensioning procedure. In such brushless motors, due to the possibility of setting the rotational speed of the motor shaft and the motor torque separately within certain ranges, the strap retraction speeds can be adjusted to the required/desired circumstances during both tensioning procedures. Particularly high strap tensions can be achieved with the described division into a first and at least a second tensioning procedure.


A strapping device in accordance with certain embodiments of the invention can also have energy storage means in the form of a lithium ion storage battery, with which energy can be provided to drive a connector in the form of a friction welder. It has been shown that with such storage batteries particularly good functional reliability can also be achieved as these storage batteries provide sufficient energy to carry out a large number of strapping cycles with mobile strapping devices, even if high strap tensions are applied and at least largely automated strapping procedures with motorized drive movements take place.


It has also been shown that lithium ion storage batteries in combination with friction welders can be seen as the ideal addition compared with other electrical energy storage means. The friction welding process itself is dependent on the pressure of the two straps on each other as well as the frequency of the oscillating welding shoe/welding element. In order to weld PP or PET straps, welding shoe frequencies of approximately 250-350 Hz with a pressing pressure of 300-350 N are required. In order to achieve these values a drive-side rotational speed of an eccentric tappet driving the welding shoe of approximately 6000 rpm to 7000 rpm is necessary. Ideally with these initial values a welding procedure takes place over a duration of 1.5 seconds to 2 seconds. If the eccentric shaft speed falls below the value of 6000 rpm, the band seal quality deteriorates considerably.


Within the framework of the invention it has been shown that the prematurely deteriorating connection quality observed in conventional manual strapping device, even though the storage batteries are not even 60% discharged, does not occur in his manner with lithium ion storage batteries. Lithium ion storage batteries can provide the voltage require for a high speed for considerably longer. In this way, compared with other storage batteries of similar size, lithium ion storage batteries provide the desired reliability for considerably longer i.e. in the case of a much higher of strapping procedure and friction weld. Only shortly before full consumption of the storage energy does the supply voltage provided by lithium ion storage batteries fall to values at which friction welding should not be carried out. As the time at which the user is requested to charge the storage battery shortly before full discharge by a corresponding signal on the strapping device corresponds with the time at which the storage battery no longer produces good quality friction weld, in contrast to conventional storage batteries the recharging signal can be seen by the user as an indication that as of then the required quality of subsequent strappings is no longer given.


As lithium ion storage batteries have a much higher energy density than conventional storage batteries, these advantages can even be achieved in relation to the dimensions of smaller storage batteries. The resulting reduced weight of the used storage batteries is a further significant advantage for use in mobile portable strapping devices.


Particular advantages can be achieved with lithium ion storage batteries in conjunction with at least one brushless direct current motor as the drive for the tensioner and/or friction welder. This can be further increased by means of a planetary gear system, particularly if the planetary gear system together with the brushless direct current motor and the lithium ion storage batteries are arranged in the drive train for the tensioner and/or friction welder.


An embodiment of strapping device can also be of independent relevance in which the tensioner and the welding device are only provided with one common drive. This just one drive can preferably be designed as an electric motor, with the drive movement of which the tensioner and the friction welder can be consecutively driven. Preferably, with this just one motor, not only is the drive movement of the welding procedure itself produced, but also a movement of the friction welder from a rest position into a welding position in which a welding element of the friction weld is pressed onto the layers of strap to be welded and a friction weld is produce through an oscillating movement on the strap layers. Here, the welding element of the friction welder is in active in the rest position and is preferably only started up at the start of movement from the rest position.


In accordance with another embodiment of the present invention, which may also be of independent relevance, the strapping device is provided with means with which the rotational position of the motor shaft or the position of components of the strapping device dependent on the motor shaft can be determined. The information about one or more rotational positions can preferably be used by a control device of the strapping device to control components of the strapping device, such as the friction welder and/or the tensioner. If a brushless direct current motor is used as the drive, this can be done in a particularly simple manner. For their commutation, such motors must determine current positions of the rotating component of the motor, which is generally a rotating anchor. For this, detectors/sensor, such as Hall sensors, are provided, which determine rotational positions of the rotating motor components and make them available to the motor control device. This information can also be used to advantage for control the friction welder.


Thus, in one embodiment of the strapping device it can be envisaged that a number of rotations of the rotating components of the motor are determined in order, on reaching a given value or rotations, to carry out a switching operation. More particularly, this switching operation can involve switching off the friction welder to terminate the production of a friction weld connection. In a further advantageous embodiment of the invention it can be envisaged that at one or at several determined rotational positions the motor is not switched off, or is only switched off at one or more determined rotation positions.


It has proven to be advantageous if a device with a toggle lever system is provided to move the welding device from the rest position into the welding position and back. The levers of the toggle lever joint, which are connected to each other via one joint, can, by overcoming two dead point positions, be brought into both end positions at which they hold the welding device in the rest position or in the welding position. Advantageously the toggle lever device is held in both end positions by a force, preferably a force exerted by a mechanical spring. Only by overcoming this force should the toggle lever device be able to move from one end position into the other. The toggle lever device achieves the advantage that end positions of the welding device are only changed by overcoming comparatively high torques. As this applies especially to the welding position, the toggle lever system contributes to further increasing the functional reliability of the strapping device. Furthermore, the toggle lever system advantageously supplements the drive train of the strapping device, which in one form of embodiment of the invention also has a brushless motor and a planetary gear system in addition to the toggle lever system, for automated movement of the welding device into its welding position, as all the components are able to produce high torques or carry out movements when high torques are applied.


Further preferred embodiments of the invention are set out in the claims, the description and the drawing.





The invention will be described in more detail by way of the examples of embodiment which are shown purely schematically.



FIG. 1 is a perspective view of a strapping device in accordance with certain embodiments of the invention;



FIG. 2 shows the strapping device in FIG. 1 with the casing;



FIG. 3 shows a partial section view of the motor of the strapping device in FIG. 1, together with components arranged on the motor shaft;



FIG. 4 shows a very schematic view of the motor along with its electronic commutation switch;



FIG. 5 shows a perspective partial view of the drive train of the strapping device in FIG. 1;



FIG. 6 shows the drive train in FIG. 5 from another direction of view;



FIG. 7 shows a side view of the drive train in FIG. 5 with the welding device in the rest position;



FIG. 8 shows a side view of the drive train in FIG. 6 with the welding device in a position between two end positions;



FIG. 9 shows a side view of the drive train in FIG. 5 with the welding device in a welding position;



FIG. 10 shows a side view of the tensioner of the strapping device without the casing, in which a tensioning rocker is in a rest position;



FIG. 11 shows a side view of the tensioner of the strapping device without the casing in which a tensioning rocker is in a tensioning position;



FIG. 12 a side view of the tensioning rocker of the strapping device in FIG. 10 shown in a partial section;



FIG. 13 shows a front view of the tensioning rocker in FIG. 12;



FIG. 14 shows a detail from FIG. 12 along line C-C;





The exclusively manually operated strapping device 1 in accordance with the invention shown in FIGS. 1 and 2 has a casing 2, surrounding the mechanical system of the strapping device, on which a grip 3 for handling the device is arranged. The strapping device also has a base plate 4, the underside of which is intended for placing on an object to be packed. All the functional units of the strapping device 1 are attached on the base place 4 and on the carrier of the strapping device which is connected to the base plate and is not shown in further detail.


With the strapping device 1 a loop of plastic strap, made for example of polypropylene (PP) or polyester (PET), which is not shown in more detail in FIG. 1 and which has previously been placed around the object to be packed, can be tensioned with a tensioner 6 of the strapping device. For this the tensioner has a tensioning wheel 7 with which the strap can be held for a tensioning procedure. The tensioning wheel 7 operates in conjunction with a rocker 8, which by means of a rocker lever 9 can be pivoted from an end position at a distance from the tensioning wheel into a second end position about a rocker pivoting axis 8a, in which the rocker 8 is pressed against the tensioning wheel 7. The strap located between the tensioning wheel 7 and the rocker 8 is also pressed against the tensioning wheel 7. By rotating the tensioning wheel 7 it is then possible to provide the strap loop with a strap tension that is high enough for the purpose of packing. The tensioning procedure, and the rocker 8 advantageously designed for this, is described in more detail below.


Subsequently, at a point on the strap loop on which two layers of the wrapping strap are disposed one on top of the other, welding of the two layers can take place by means of the friction welder 8 of the strapping device. In this way the strap loop can be durably connected. For this the friction welder 10 is provided with a welding shoe 11, which through mechanical pressure on the wrapping strap and simultaneous oscillating movement at a predefined frequencies starts to melt the two layers of the wrapping strap. The plastified or melted areas flow into each other and after cooling of the strap a connection is formed between the two strap layers. If necessary the strap loop can be separated from a strap storage roll by means of a strapping device 1 cutter which is not shown.


Operation of the tensioner 6, assignment of the friction welder 10 by means of a transitioning device 19 (FIG. 6) of the friction welder as well as the operation of the friction welder itself and operation of the cutter all take place using only one common electric motor 14, which provides a drive movement for each of these components. For its power supply, an interchangeable storage battery 15, which can be removed for charging, is arranged on the strapping device. The supply of other external auxiliary energies, such as compressed air or additional electricity, is not envisaged in accordance with FIGS. 1 and 2.


The portable mobile strapping device 1 has an operating element 16, in the form of a press switch, which is intended for starting up the motor. Via a switch 17, three operating modes can be set for the operating element 16. In the first mode by operating the operating element 16, without further action being required by the operator, the tensioner 6 and the friction welder 10 are started up consecutively and automatically. To set the second mode the switch 17 is switched over to a second switching mode. In the second possible operating mode, by operating the operating element 16, only the tensioner 6 is started up. To separately start the friction welder 10 a second operating element 18 must be activated by the operator. In alternative forms of embodiment it can also be envisaged that in this mode the first operating element 16 has to be operated twice in order to activate the friction welder. The third mode is a type of semi-automatic operation in which the tensioning button 16 must be pressed until the tension force/tensile force which can preset in stages is achieved in the strap. In this mode it is possible to interrupt the tensioning process by releasing the tensioning button 16, for example in order to position edge protectors on the goods to be strapped under the wrapping strap. By pressing the tensioning button the tensioning procedure can then be continued. This third mode can be combined with a separately operated as well as an automatic subsequent friction welding procedure.


On a motor shaft 27, shown in FIG. 3, of the brushless, grooved rotor direct current motor 14 a gearing system device 13 is arranged. In the example of embodiment shown here a type EC140 motor manufactured by Maxon Motor AG, Brünigstrasse 20, 6072 Sachseln is used. The brushless direct current motor 14 can be operated in both rotational directions, whereby one direction is used as the drive movement of the tensioner 6 and the other direction as the drive movement of the welding device 10.


The brushless direct current motor 14, shown purely schematically in FIG. 4, is designed with a grooved rotor 20 with three Hall sensors HS1, HS2, HS3. In its rotor 20, this EC motor (electronically commutated motor) has a permanent magnet and is provided with an electronic control 22 intended for electronic commutation in the stator 24. Via the Hall sensors, HS1, HS2, HS3, which in the example of embodiment also assume the function of position sensors, the electronic control 22 determines the current position of the rotor 20 and controls the electrical magnetic field in the windings of the stator 24. The phases (phase 1, phase 2, phase 3) can thus be controlled depending in the position of the rotor 20, in order to bring about a rotational movement of the rotor in a particular rotational direction with a predeterminable variable rotational speed and torque. In this present case a “1st quadrant motor drive intensifier” is used, which provides the motor with the voltage as well as peak and continuous current and regulates these. The current flow for coil windings of the stator 24, which are not shown in more detail, is controlled via a bridge circuit 25 (MOSFET transistors), i.e. commutated. A temperature sensor, which is not shown in more detail, is also provided on the motor. In this way the rotational direction, rotational speed, current limitation and temperature can be monitored and controlled. The commutator is designed as a separate print component and is accommodated in the strapping device separately from the motor.


The power supply is provided by the lithium-ion storage battery 15. Such storage batteries are based on several independent lithium ion cells in each of which essentially separate chemical processes take place to generate a potential difference between the two poles of each cell. In the example of embodiment the lithium ion storage battery is manufactured by Robert Bosch GmbH, D-70745 Leinfelden-Echterdingen. The battery in the example of embodiment has eight cells and has a capacity of 2.6 ampere-hours. Graphite is used as the active material/negative electrode of the lithium ion storage battery. The positive electrode often has lithium metal oxides, more particularly in the form of layered structures. Anhydrous salts, such as lithium hexafluorophosphate or polymers are usually used as the electrolyte. The voltage emitted by a conventional lithium ion storage battery is usually 3.6 volts. The energy density of such storage batteries is around 100 Wh/kh to 120 Wh/kg.


On the motor side drive shaft, the gearing system device 13 has a free wheel 36, on which a sun gear 35 of a first planetary gear stage is arranged. The free wheel 36 only transfers the rotational movement to the sun gear 35 in one of the two possible rotational directions of the drive. The sun gear 35 meshes with three planetary gears 37 which in a known manner engage with a fixed gear 38. Each of the planetary gears 37 is arranged on a shaft 39 assigned to it, each of which is connected in one piece with an output gear 40. The rotation of the planetary gears 37 around the motor shaft 27 produces a rotational movement of the output gear 40 around the motor shaft 27 and determines a rotational speed of this rotational movement of the output gear 40. In addition to the sun gear 35 the output gear 40 is also on the free wheel 36 and is therefore also arranged on the motor shaft. This free wheel 36 ensures that both the sun gear 35 and the output gear 40 only also rotate in one rotational direction of the rotational movement of the motor shaft 27. The free wheel 29 can for example be of type INA HFLO615 as supplied by the company Schaeffler KG, D-91074 Herzogenaurach,


On the motor-side output shaft 27 the gear system device 13 also has a toothed sun gear 28 belonging to a second planetary gear stage, through the recess of which the shaft 27 passes, though the shaft 27 is not connected to the sun gear 28. The sun gear is attached to a disk 34, which in turn is connected to the planetary gears. The rotational movement of the planetary gears 37 about the motor-side output shaft 27 is thus transferred to the disk 34, which in turn transfers its rotational movement at the same speed to the sun gear 28. With several planetary gears, namely three, the sun gear 28 meshes with cog gears 31 arranged on a shaft 30 running parallel to the motor shaft 27. The shafts 30 of the three cog gears 31 are fixed, i.e. they do not rotate about the motor shaft 27. In turn the cog gears 21 engage with an internal-tooth sprocket, which on its outer side has a cam 32 and is hereinafter referred to as the cam wheel 33. The sun gear 28, the three cog gears 31 as well as the cam wheel 33 are components of the second planetary gear stage. In the planetary gear system the input-side rotational movement of the shaft 27 and the rotational movement of the cam wheel are at a ratio of 60:1, i.e. a 60-fold reduction takes place through the second-stage planetary gear system.


At the end of the motor shaft 27, on a second free wheel 42 a bevel gear 43 is arranged, which engages in a second bevel gear, which is not shown in more detail. This free wheel 42 also only transmits the rotational movement in one rotational direction of the motor shaft 27. The rotational direction in which the free wheel 36 of the sun gear 35 and the free wheel 42 transmit the rotational movement of the motor shaft 27 is opposite. This means that in one rotational direction only free wheel 36 turns, and in the other rotational direction only free wheel 42.


The second bevel gear is arranged on one of a, not shown, tensioning shaft, which at its other end carries a further planetary gear system 46 (FIG. 2). The drive movement of the electric motor in a particular rotational direction is thus transmitted by the two bevel gears to the tensioning shaft. Via a sun gear 47 as well as three planetary gears 48 the tensioning wheel 49, in the form of an internally toothed sprocket, of the tensioner 6 is rotated. During rotation the tensioning wheel 7, provided with a surface structure on its outer surface, moves the wrapping strap through friction, as a result of which the strap loop is provided with the envisaged tension.


In the area of its outer circumference the output gear 40 is designed as a cog gear on which is a toothed belt 50 of an envelope drive (FIGS. 5 and 6). The toothed belt 50 also goes round pinion 51, smaller in diameter than the output gear 40, the shaft of which drive an eccentric drive 52 for producing an oscillating to and fro movement of the welding shoe 53. Instead of toothed belt drive any other form of envelope drive could be provided, such as a V-belt or chain drive. The eccentric drive 52 has an eccentric shaft 54 on which an eccentric tappet 55 is arranged on which in turn a welding shoe arm 56 with a circular recess is mounted. The eccentric rotational movement of the eccentric tappet 55 about the rotational axis 57 of the eccentric shaft 54 results in a translator oscillating to and fro movement of the welding shoe 53. Both the eccentric drive 52 as well as the welding shoe 53 it can be designed in any other previously known manner.


The welding device is also provided with a toggle lever device 60, by means of which the welding device can be moved from a rest position (FIG. 7) into a welding position (FIG. 9). The toggle lever device 60 is attached to the welding shoe arm 56 and provided with a longer toggle lever 61 pivotably articulated on the welding shoe arm 56. The toggle lever device 60 is also provided with a pivoting element 63, pivotably articulated about a pivoting axis 62, which in the toggle level device 60 acts as the shorter toggle lever. The pivoting axis 62 of the pivoting element 63 runs parallel to the axes of the motor shaft 27 and the eccentric shaft 54.


The pivoting movement is initiated by the cam 32 on the cam wheel 33 which during rotational movement in the anticlockwise direction—in relation to the depictions in FIGS. 7 to 9—of the cam wheel 33 ends up under the pivoting element 63 (FIG. 8). A ramp-like ascending surface 32a of the cam 32 comes into contact with a contact element 64 set into the pivoting element 63. The pivoting element 63 is thus rotated clockwise about its pivoting axis 62. In the area of a concave recess of the pivoting element 63 a two-part longitudinally-adjustable toggle lever rod of the toggle lever 61 is pivotably arranged about a pivoting axis 69 in accordance with the ‘piston cylinder’ principle. The latter is also rotatably articulated on an articulation point 65, designed as a further pivoting axis 65, of the welding shoe arm 56 in the vicinity of the welding shoe 53 and at a distance from the rotational axis 57 of the welding shoe arm 56. Between both ends of the longitudinally adjustable toggle lever rod a pressure spring 67 is arranged thereon, by means of which the toggle lever 61 is pressed against both the welding shoe arm 56 as well as against the pivoting element 63. In terms of its pivoting movements the pivoting element 63 is thus functionally connected to the toggle lever 61 and the welding shoe arm 56.


As can be seen in the depictions in FIGS. 7, in the rest position there is an (imaginary) connecting line 68 for both articulation points of the toggle lever 61 running through the toggle lever 61 between the pivoting axis 62 of the pivoting element 63 and the cam wheel 33, i.e. on one side of the pivoting axis 62. By operating the cam wheel 33 the pivoting element 63 is rotated clockwise—in relation to the depictions in FIGS. 7 to 9. In this way the toggle lever 61 of the pivoting 63 is also operated. In FIG. 8 an intermediate position of the toggle lever 61 is shown in which the connecting line 68 of the articulation points 65, 69 intersects the pivoting axis 62 of the pivoting element 63. In the end position of the movement (welding position) shown in FIG. 9 the toggle lever 61 with its connecting line 68 is then on the other side of the pivoting axis 62 of the pivoting element 63 in relation to the cam wheel 33 and the rest position. During this movement the welding arm shoe 56 is transferred by the toggle lever 61 from its rest position into the welding position by rotation about the rotational axis 57. In the latter position the pressure spring 67 presses the pivoting element 63 against a stop, not shown in further detail, and the welding shoe 53 onto the two strap layers to be welded together. The toggle lever 61, and therefore also the welding shoe arm 56, is thus in a stable welding position.


The anticlockwise drive movement of the electric motor shown in FIGS. 6 and 9 is transmitted by the toothed belt 50 to the welding shoe 53, brought into the welding position by the toggle lever device 60, which is pressed onto both strap layer and moved to and fro in an oscillating movement. The welding time for producing a friction weld connection is determined by way of the adjustable number of revolutions of the cam wheel 33 being counted as of the time at which the cam 32 operates the contact element 64. For this the number of revolutions of the shaft 27 of the brushless direct current motor 14 is counted in order to determine the position of the cam wheel 33 as of which the motor 14 should switch off and thereby end the welding procedure. It should be avoided that on switching off the motor 14 the cam 32 comes to a rest under the contact element 64. Therefore, for switching off the motor 14 only relative positions of the cam 32 with regard to the pivoting element 63 are envisaged, a which the cam 32 is not under the pivoting element. This ensures that the welding shoe arm 56 can pivot back from the welding position into the rest position (FIG. 7). More particularly, this avoids a position of the cam 32 at which the cam 32 would position the toggle lever 61 at a dead point, i.e. a position in which the connecting line 68 of the two articulation points intersects the pivoting axis 62 of the pivoting element 63—as shown in FIG. 8. As such a position is avoided, by means of operating the rocker lever the rocker (FIG. 2) can be released from the tensioning wheel 7 and the toggle lever 61 pivoted in the direction of the cam wheel 33 into the position shown in FIG. 7. After the strap loop has been taken out of the strapping device, the latter is ready for a further strapping procedure.


The described consecutive procedures “tensioning” and “welding” can be jointly initiated in one switching status of the operating element 16. For this the operating element 16 is operated once, whereby the electric motor 14 first turns on the first rotational direction and thereby (only) the tensioner 6 is driven. The strap tension to be applied to the strap can be set on the strapping device, preferably be means of a push button in nine stages, which correspond to nine different strap tensions. Alternatively continuous adjustment of the strap tension can be envisaged. As the motor current is dependent on the torque of the tensioning wheel 7, and this in turn on the current strap tension, the strap tension to be applied can be set via push buttons in nine stages in the form of a motor current limit value on the control electronics of the strapping device.


After reaching a settable and thus predeterminable limit value for the motor current/strap tension, the motor 14 is switched off by its control device 22. Immediately afterwards the control device 22 operates the motor in the opposite rotational direction. As a result, in the manner described above, the welding shoe 52 is lowered onto the two layers of strap displaced one on top of the other and the oscillating movement of the welding shoe is carried out to produce the friction weld connection.


By operating switch 17 the operating element 16 can only activate the tensioner. If this is set, by operating the operating element only the tensioner is brought into operation and on reaching the preset strap tension is switched off again. To start the friction welding procedure the second operating element 18 must be operated. However, apart from separate activation, the function of the friction welding device is identical the other mode of the first operating element.


As has already been explained, the rocker 8 can through operating the rocker lever 9 shown in FIGS. 2, 10, 11 carry out pivoting movements about the rocker axis 8a. For this, the rocker is moved by a rotating cam disc which is behind the tensioning wheel 7 and cannot therefore be seen in FIG. 2. Via the rocker lever 9 the cam disc can carry out a rotational movement of approximately 30° and move the rocker 8 and/or the tensioning plate 12 relative to the tensioning wheel 7 which allow the strap to be inserted into the strapping device/between the tensioning wheel 7 and tensioning plate 12.


In this way, the toothed tensioning plate arranged on the free end of the rocker can be pivoted from a rest position shown in FIG. 10 into a tensioning position shown in FIG. 11 and back again. In the rest position the tensioning plate 12 is at sufficiently great distance from the tensioning wheel 7 that a wrapping strap can be placed in two layers between the tensioning wheel and the tensioning plate as required for producing connection on a strap loop. In the tensioning position the tensioning plate 12 is pressed in a known way, for example by means of a spring force acting on the rocker, against the tensioning wheel 7, whereby, contrary to what is shown in FIG. 11, in a strapping procedure the two-layer strap is located between the tensioning plate and the tensioning wheel and thus there should be no contact between the two latter elements. The toothed surface 12a (tensioning surface) facing the tensioning wheel 7 is concavely curved whereby the curvature radius corresponds with the radius of the tensioning wheel 7 or is slightly larger.


As can be seen in particular in FIGS. 10 and 11 as well as the detailed drawings of FIG. 12-14, the toothed tensioning plate 12 is arranged in a grooved recess 71 of the rocker. The length—in relation to the direction of the strap—of the recess 71 is greater than the length of the tensioning plate 12. In addition, the tensioning plate 12 is provide with a convex contact surface 12b with which it is arranged on a flat contact surface 71 in the recess 71 of the rocker 8. As shown in particular in FIGS. 11 and 12 the convex curvature runs in a direction parallel to the strap direction 70, while the contact surface 12b is designed flat and perpendicular to this direction (FIG. 13). As a result of this design the tensioning plate 12 is able to carry out pivoting movements in the strap direction 70 relative to the rocker 8 and to the tensioning wheel 7. The tensioning plate 12 is also attached to the rocker 8 by means of a screw 72 passing through the rocker from below. This screw is in an elongated hole 74 of the rocker, the longitudinal extent of which runs parallel to the course of the strap 70 in the strapping device. As a result in addition to be pivotable, the tensioning plate 12 is also arranged on the rocker 8 in a longitudinally adjustable manner.


In a tensioner the tensioning rocker 8 is initially moved from the rest position (FIG. 10) into the tensioning position (FIG. 11). In the tensioning position the sprung rocker 8 presses the tensioning plate in the direction of the tensioning wheel and thereby clamps the two strap layers between the tensioning wheel 7 and the tensioning plate 12. Due to different strap thicknesses this can result in differing spacings between the tensioning plate 12 and circumferential surface 7a of the tensioning wheel 7. This not only results in different pivoting positions of the rocker 8, but also different positions of the tensioning plate 12 in relation to the circumferential direction of the tensioning wheel 7. In order to still achieve uniform pressing conditions, during the pressing procedure the tensioning plate 12 adjusts itself to the strap through a longitudinal movement in the recess 71 as well as a pivoting movement via the contact surface 12b on contact surface 72 so that the tensioning plate 12 exerts as even a pressures as possible over its entire length on the wrapping strap. If the tensioning wheel 7 is then switched on the toothing of tensioning plate 12 holds the lower strap layer fast, while the tensioning wheel 7 grasps the upper strap layer with its toothed circumferential surface 7a. The rotational movement of the tensioning wheel 7 as well the lower coefficient of friction between the two strap layers then results in the tensioning wheel pulling back the upper band layer, thereby increasing the tension in the strap loop up to the required tensile force value.












LIST OF REFERENCES


















 1.
Strapping device
37.
Planetary gear


 2.
Casing
38.
Socket


 3.
Grip
39.
Shaft


 4.
Base plate
40.
Output gear


 6.
Tensioner
42.
Free wheel


 7.
Tensioning wheel
43.
Bevel gear


 7a.
Circumferential surface
46.
Planetary gear system


 8.
Rocker
47.
Sun gear


 8.
Rocker pivoting axis
48.
Planetary gear


 9.
Rocker lever
49.
Tensioning wheel


10.
Friction welder
50.
Toothed belt


11.
Welding shoe
51.
Pinion


12.
Tensioning plate
52.
Eccentric drive


12a.
Tensioning surface
53.
Welding shoe


12b.
Contact surface
54.
Eccentric shaft


13.
Gear system device
55.
Eccentric tappet


14.
Electric direct current motor
56.
Welding shoe arm


15.
Storage battery
57.
Rotational axis eccentric





shaft


16.
Operating element
60.
Toggle lever device


17.
Switch
61.
Longer toggle lever


18.
Operating element
62.
Pivoting axis


19.
Transitioning device
63.
Pivoting element


20.
Rotor
64.
Contact element


24.
Stator
65.
Pivoting axis


25.
Bridging circuit
66.
Pivoting axis


27.
Motor side output shaft
67.
Pressure spring


28.
Sun gear
68.
Connecting line


30.
Shaft
69.
Pivoting axis


31.
Cog wheel
70.
Strap direction


32.
Cam
71.
Recess


32a.
Surface
72.
Contact surface


33.
Cam wheel
73.
Screw


35.
Sun gear
74.
Elongated hole


36.
Free wheel
HS2
Hall sensor


HS1
Hall sensor
HS3
Hall sensor








Claims
  • 1. A strapping device comprising: a tensioner operable to tension a strap;a strap connector operable to connect two areas of the strap to one another, the strap connector movable from a rest position downward to a connecting position and from the connecting position upward to the rest position;a transfer device operably connected to the strap connector to move the strap connector from the rest position downward to the connecting position;a motor comprising a motor shaft, the motor operably connectable to the tensioner, the strap connector, and the transfer device at least in part via the motor shaft; anda control device configured to control the motor to rotate the motor shaft in a first direction to cause the transfer device to move the strap connector from the rest position downward to the connecting position and to cause the strap connector to operate and in a second direction opposite the first direction to cause the tensioner to rotate, wherein the transfer device comprises a first arm pivotable between a first position and a second position and a second arm pivotable between a third position and a fourth position.
  • 2. The strapping device of claim 1, wherein the first arm is operably connected to the second arm to pivot the second arm from the third position to the fourth position.
  • 3. The strapping device of claim 2, wherein the second arm is pinned to the first arm.
  • 4. The strapping device of claim 2, wherein the second arm is operably connected to the strap connector so movement of the second arm from the third position to the fourth position causes the strap connector to move from the rest position downward to the connecting position.
  • 5. The strapping device of claim 4, wherein the second arm is pinned to the strap connector.
  • 6. The strapping device of claim 4, further comprising a spring positioned to: when the first arm is in the first position, exert a biasing force on the first arm to retain the first arm in the first position; andwhen the first arm is in the second position, exert a biasing force on the first arm to retain the first arm in the second position.
  • 7. The strapping device of claim 4, wherein the strap connector comprises a movable welding shoe, a welding shoe arm housing the welding shoe, and an eccentric drive operably connected to the welding shoe, wherein the second arm is operably connected to the welding shoe arm, wherein the motor is operably connected to the eccentric drive to rotate the eccentric drive to cause the welding shoe to oscillate.
  • 8. The strapping device of claim 4, wherein the first arm is operably connected to the second arm so movement of the first arm from the first position to the second position causes the second arm to move from the third position to the fourth position.
  • 9. The strapping device of claim 8, further comprising a cam wheel having a cam thereon, wherein the motor shaft is operably connectable to the cam wheel and wherein the cam wheel is positioned relative to the first arm of the transfer device so rotation of the motor shaft in the first direction causes the cam wheel to rotate so the cam contacts the first arm and causes the first arm to rotate from the first position to the second position, thereby causing the second arm to move from the third position to the fourth position and the connecting device to move from the rest position downward to the connecting position.
  • 10. The strapping device of claim 9, wherein the first and second arms of the transfer device pivot in opposite directions when pivoting from the first and third to the second and fourth positions, respectively.
  • 11. The strapping device of claim 8, further comprising an output gear and an endless belt, wherein the strap connector comprises a movable welding shoe, a welding shoe arm housing the welding shoe, and an eccentric drive operably connected to the welding shoe, wherein the endless belt operably connects the output gear to the eccentric drive to rotate the eccentric drive to cause the welding shoe to oscillate, wherein motor is operably connectable to the output gear to rotate the output gear.
  • 12. The strapping device of claim 9, wherein the control device is further configured to determine the position of the cam and to terminate a welding cycle by stopping the motor shaft from rotating in the first direction when the cam is disengaged from the first arm.
  • 13. The strapping device of claim 12, further comprising a rocker lever operably connected to the transfer device so operation of the rocker lever causes the transfer device to move the strap connector from the connecting position upward to the rest position.
  • 14. The strapping device of claim 13, wherein the rocker lever is operably connected to the second arm of the transfer device.
  • 15. The strapping device of claim 1, further comprising a first freewheel between the motor shaft and the strap connector and the transfer device, wherein the first freewheel operably connects the motor shaft to the strap connector and the transfer device when the motor shaft rotates in the first direction and does not operably connect the motor shaft to the strap connector and the transfer device when the motor shaft rotates in a second direction.
  • 16. The strapping device of claim 15, wherein the motor is operably connectable to the tensioner at least in part via the motor shaft.
  • 17. The strapping device of claim 16, further comprising a second freewheel between the motor shaft and the tensioner, wherein the second freewheel operably connects the motor shaft to the tensioner when the motor shaft rotates in the second direction and does not operably connect the motor shaft to the tensioner when the motor shaft rotates in the first direction.
  • 18. The strapping device of claim 1, further comprising a rechargeable battery and planetary gearing, wherein the battery powers the motor and the control device, wherein the motor shaft is operably connected to the strap connector and the transfer device at least in part via the planetary gearing.
  • 19. The strapping device of claim 1, further comprising a base plate supporting the tensioner, the strap connector, the transfer device, and the motor.
Priority Claims (5)
Number Date Country Kind
645/08 Apr 2008 CH national
646/08 Apr 2008 CH national
647/08 Apr 2008 CH national
648/08 Apr 2008 CH national
649/08 Apr 2008 CH national
PRIORITY CLAIM

This application is a continuation of, and claims priority to and the benefit of U.S. patent application Ser. No. 18/058,011, filed on Nov. 22, 2022, which is a continuation of, and claims priority to and the benefit of U.S. patent application Ser. No. 16/677,266, filed on Nov. 7, 2019, which issued as U.S. Pat. No. 11,530,059 on Dec. 20, 2022, which is a continuation of, and claims priority to and the benefit of U.S. patent application Ser. No. 14/918,167, filed on Oct. 20, 2015, which issued as U.S. Pat. No. 10,518,914 on Dec. 31, 2019, which is: a continuation of, and claims priority to and the benefit of, U.S. patent application Ser. No. 12/989,112, filed on Nov. 23, 2010, which issued as U.S. Pat. No. 9,174,752 on Nov. 3, 2015, which is a national stage entry of PCT/CH2009/000001, filed on Jan. 6, 2009, which claims priority to and the benefit of Swiss Patent Application No. 645/08, filed on Apr. 23, 2008, the entire contents of each of which are incorporated herein by reference;a continuation of, and claims priority to and the benefit of, U.S. patent application Ser. No. 12/989,142, filed on Nov. 23, 2010, which issued as U.S. Pat. No. 9,284,080 on Mar. 15, 2016, which is a national stage entry of PCT/CH2009/000002, filed on Jan. 6, 2009, which claims priority to and the benefit of Swiss Patent Application No. 646/08, filed on Apr. 23, 2008, the entire contents of each of which are incorporated herein by reference;a continuation of, and claims priority to and the benefit of, U.S. patent application Ser. No. 12/989,181, filed on Nov. 23, 2010, which issued as U.S. Pat. No. 9,315,283 on Apr. 19, 2016, which is a national stage entry of PCT/CH2009/000003, filed on Jan. 6, 2009, which claims priority to and the benefit of Swiss Patent Application No. 647/08, filed on Apr. 23, 2008, the entire contents of each of which are incorporated herein by reference;a continuation of, and claims priority to and the benefit of, U.S. patent application Ser. No. 12/989,281, filed on Nov. 23, 2010, which issued as U.S. Pat. No. 9,193,486 on Nov. 24, 2015, which is a national stage entry of PCT/CH2009/000004, filed on Jan. 6, 2009, which claims priority to and the benefit of Swiss Patent Application No. 648/08, filed on Apr. 23, 2008, the entire contents of each of which are incorporated herein by reference; anda continuation of, and claims priority to and the benefit of, U.S. patent application Ser. No. 12/989,355, filed on Nov. 23, 2010, which issued as U.S. Pat. No. 9,254,932 on Feb. 9, 2016, which is a national stage entry of PCT/CH2009/000005, filed on Jan. 6, 2009, which claims priority to and the benefit of Swiss Patent Application No. 649/08, filed on Apr. 23, 2008, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (183)
Number Name Date Kind
2134186 Herbert Oct 1938 A
2936156 Coupland May 1960 A
3013589 Holford Dec 1961 A
3028885 Leslie et al. Apr 1962 A
3081655 Mitsuji et al. Mar 1963 A
RE26114 Leslie Nov 1966 E
3367374 Meier et al. Feb 1968 A
3442733 Vilcins May 1969 A
3526187 Gilliard Sep 1970 A
3586572 Ericsson Jun 1971 A
3654033 Angarola et al. Apr 1972 A
3674972 Stahnke Jul 1972 A
3755045 Takami Aug 1973 A
4011807 Kobiella Mar 1977 A
4015643 Cheung Apr 1977 A
4037073 Becker Jul 1977 A
4050372 Kobiella Sep 1977 A
4079667 Lems et al. Mar 1978 A
4080082 Angarola Mar 1978 A
4161910 Leslie et al. Jul 1979 A
4240865 Kyts Dec 1980 A
4282907 Massion et al. Aug 1981 A
4305774 Wedeking et al. Dec 1981 A
4313779 Nix Feb 1982 A
4450032 Wehr May 1984 A
4488926 Rauch et al. Dec 1984 A
4495972 Walker Jan 1985 A
4516488 Bartzick et al. May 1985 A
4534817 O'Sullivan Aug 1985 A
4535730 Allen Aug 1985 A
4572064 Burton Feb 1986 A
4624179 Yves et al. Nov 1986 A
4691498 Stamm Sep 1987 A
4707390 Cheung Nov 1987 A
4776905 Cheung et al. Oct 1988 A
4820363 Fischer Apr 1989 A
4912912 Tagomori Apr 1990 A
4934261 Niedrig Jun 1990 A
4952271 Cheung et al. Aug 1990 A
5083412 Sakaki et al. Jan 1992 A
5133532 Figiel et al. Jul 1992 A
5140126 Ishibashi Aug 1992 A
5141591 Boek et al. Aug 1992 A
5146847 Lyon et al. Sep 1992 A
5155982 Boek et al. Oct 1992 A
5159218 Murry et al. Oct 1992 A
5165532 Pipich et al. Nov 1992 A
5226461 Macartney et al. Jul 1993 A
5299407 Schuttler et al. Apr 1994 A
5333438 Gurak et al. Aug 1994 A
5350472 Koblella Sep 1994 A
5379576 Koyama Jan 1995 A
5380393 Drabarek et al. Jan 1995 A
5509594 Maggioni Apr 1996 A
5516022 Annis May 1996 A
5518043 Cheung et al. May 1996 A
5560187 Nagashima et al. Oct 1996 A
5653059 Wecke et al. Aug 1997 A
5653095 Stamm Aug 1997 A
5689943 Wehr Nov 1997 A
5690023 Stamm et al. Nov 1997 A
5743310 Moran Apr 1998 A
5791238 Garbotz Aug 1998 A
5798596 Lordo Aug 1998 A
5809873 Chak et al. Sep 1998 A
5853524 Nix Dec 1998 A
5880424 Katoh Mar 1999 A
5944064 Saito et al. Aug 1999 A
5947166 Doyle et al. Sep 1999 A
5954899 Figiel et al. Sep 1999 A
6003578 Chang Dec 1999 A
6032440 Luedtke Mar 2000 A
6041698 Chin-chang et al. Mar 2000 A
6109325 Chang Aug 2000 A
6131634 Chang Oct 2000 A
6145286 Huber Nov 2000 A
6173557 Kuei Jan 2001 B1
6260337 Cheung Jul 2001 B1
6305277 Witczak et al. Oct 2001 B1
6308745 Angarola et al. Oct 2001 B1
6308760 Finzo et al. Oct 2001 B1
6328087 Finzo et al. Dec 2001 B1
6332306 Finzo et al. Dec 2001 B1
6334563 Schwede Jan 2002 B1
6338184 Angarola et al. Jan 2002 B1
6338375 Harada Jan 2002 B1
6345648 Cheung Feb 2002 B1
6401764 Bell Jun 2002 B1
6405766 Benjey Jun 2002 B1
6405917 Mann Jun 2002 B1
6463848 Haberstroh et al. Oct 2002 B1
6478065 Haberstroh et al. Nov 2002 B1
6516715 Reiche Feb 2003 B1
6532722 Gerhart et al. Mar 2003 B2
6533013 Nix Mar 2003 B1
6543341 Lopez Apr 2003 B2
6568158 Shibazaki et al. May 2003 B2
6571531 Kasel Jun 2003 B2
6575086 Pearson et al. Jun 2003 B2
6578337 Scholl et al. Jun 2003 B2
6584891 Smith et al. Jul 2003 B1
6584892 Flaum et al. Jul 2003 B2
6606766 Ko Aug 2003 B2
6607158 Fischer Aug 2003 B1
6629398 Pearson et al. Oct 2003 B2
6644713 Del et al. Nov 2003 B2
6668516 Sakaki et al. Dec 2003 B2
6698460 Marsche Mar 2004 B2
6708606 Bell et al. Mar 2004 B1
6715375 Nestler Apr 2004 B2
6729357 Marsche May 2004 B2
6732638 Rometty et al. May 2004 B1
6745677 Pearson et al. Jun 2004 B2
6817159 Sakaki et al. Nov 2004 B2
6820402 Haberstroh et al. Nov 2004 B1
6848239 Shibazaki et al. Feb 2005 B2
6848241 Lopez Feb 2005 B2
6857252 Haberstroh et al. Feb 2005 B2
6871584 Pearson Mar 2005 B2
6904841 Bobren et al. Jun 2005 B2
6907717 Nix Jun 2005 B2
6911799 Jensen Jun 2005 B2
6918235 Nix Jul 2005 B2
6923113 Bobren et al. Aug 2005 B2
6935227 Lopez et al. Aug 2005 B2
6945164 Kobiella et al. Sep 2005 B2
6951170 Lininger et al. Oct 2005 B2
6955119 Bobren et al. Oct 2005 B2
6962109 Bobren et al. Nov 2005 B2
6981353 Haberstroh et al. Jan 2006 B2
7007597 Thas et al. Mar 2006 B1
7011000 Kushida et al. Mar 2006 B2
7073431 Chen Jul 2006 B1
7121193 Balling et al. Oct 2006 B2
7128099 Finzo Oct 2006 B2
7234394 Bell et al. Jun 2007 B1
7237478 Gosis et al. Jul 2007 B1
7249862 Shirane Jul 2007 B2
7270055 Haberstroh et al. Sep 2007 B1
7312609 Schmollngruber et al. Dec 2007 B2
7377213 Haberstroh et al. May 2008 B1
7383765 Kirar et al. Jun 2008 B2
7395754 Bobren et al. Jul 2008 B1
7428865 Kasel et al. Sep 2008 B1
7428867 Bell Sep 2008 B1
7454877 Morrison Nov 2008 B2
7456608 Kageler et al. Nov 2008 B2
7497068 Nasiatka et al. Mar 2009 B2
7549198 Gosis et al. Jun 2009 B2
7681496 Takidis et al. Mar 2010 B2
7798060 Pearson et al. Sep 2010 B2
8198839 Katou et al. Jun 2012 B2
8287672 Neeser et al. Oct 2012 B2
8378600 Katou et al. Feb 2013 B2
8516780 Derks Aug 2013 B2
9174752 Neeser et al. Nov 2015 B2
9193486 Neeser et al. Nov 2015 B2
9254932 Neeser et al. Feb 2016 B2
9284080 Neeser et al. Mar 2016 B2
9315283 Neeser et al. Apr 2016 B2
20020100146 Ko Aug 2002 A1
20020129717 Helland et al. Sep 2002 A1
20020134811 Napier et al. Sep 2002 A1
20030010225 Pearson et al. Jan 2003 A1
20030028289 Daniel et al. Feb 2003 A1
20030131570 Scholl et al. Jul 2003 A1
20030145900 Jensen et al. Aug 2003 A1
20030230058 Nix Dec 2003 A1
20040060259 Shibazaki et al. Apr 2004 A1
20040206251 Nix Oct 2004 A1
20040255552 Haberstroh et al. Dec 2004 A1
20050279198 Kushida et al. Dec 2005 A1
20060108180 Grach et al. May 2006 A1
20060192527 Kageler et al. Aug 2006 A1
20090013656 Nasiatka et al. Jan 2009 A1
20090114308 Nelson et al. May 2009 A1
20100107573 Neeser et al. May 2010 A1
20110056392 Neeser et al. Mar 2011 A1
20110100233 Neeser et al. May 2011 A1
20110253480 Goodman et al. Oct 2011 A1
20120017780 Haberstroh et al. Jan 2012 A1
20120160364 Katou et al. Jun 2012 A1
20120210682 Gardner et al. Aug 2012 A1
Foreign Referenced Citations (120)
Number Date Country
2432353 Dec 2003 CA
705745 May 2013 CH
2209804 Oct 1995 CN
2228453 Jun 1996 CN
1151129 Jun 1997 CN
2266566 Nov 1997 CN
1203878 Jan 1999 CN
1253099 May 2000 CN
1302244 Jul 2001 CN
2527302 Dec 2002 CN
2542568 Apr 2003 CN
1418163 May 2003 CN
1495098 May 2004 CN
1558842 Dec 2004 CN
1660675 Aug 2005 CN
2743232 Nov 2005 CN
1274893 Sep 2006 CN
1859999 Nov 2006 CN
101092187 Dec 2007 CN
101134308 Mar 2008 CN
201030952 Mar 2008 CN
101164416 Apr 2008 CN
101287578 Oct 2008 CN
100439207 Dec 2008 CN
100460284 Feb 2009 CN
101486329 Jul 2009 CN
101585244 Nov 2009 CN
201411058 Feb 2010 CN
201411061 Feb 2010 CN
101678903 Mar 2010 CN
201465919 May 2010 CN
101782361 Jul 2010 CN
101870367 Oct 2010 CN
102026873 Apr 2011 CN
102026874 Apr 2011 CN
102026875 Apr 2011 CN
202100012 Jan 2012 CN
3916355 Dec 1989 DE
4014305 Nov 1991 DE
4204420 Aug 1993 DE
19751861 Jan 1999 DE
10026200 Nov 2001 DE
20321137 Jan 2006 DE
102004012733 Aug 2006 DE
102005049130 Apr 2007 DE
102006007990 Aug 2007 DE
102009047443 Jun 2011 DE
202011050797 Nov 2011 DE
0095643 Dec 1983 EP
0480627 Apr 1992 EP
0603868 Jun 1994 EP
0659525 Jun 1995 EP
0744343 Nov 1996 EP
0838400 Apr 1998 EP
0949146 Oct 1999 EP
0997377 May 2000 EP
0999133 May 2000 EP
1177978 Feb 2002 EP
1316506 Jun 2003 EP
1413519 Apr 2004 EP
1824738 Aug 2007 EP
1837279 Sep 2007 EP
2271553 Jan 2011 EP
489050 Jul 1938 GB
1136845 Dec 1968 GB
1136846 Dec 1968 GB
1136847 Dec 1968 GB
1161827 Aug 1969 GB
2041869 Sep 1980 GB
2481724 Jan 2012 GB
S5290398 Jul 1977 JP
S541238 Jan 1979 JP
S5638220 Apr 1981 JP
6322320 Jan 1988 JP
01213109 Aug 1989 JP
H05198241 Aug 1993 JP
H0711508 Feb 1995 JP
H07300108 Nov 1995 JP
H08258808 Oct 1996 JP
H08324506 Dec 1996 JP
H09283103 Oct 1997 JP
H10161832 Jun 1998 JP
3054566 Dec 1998 JP
3044132 May 2000 JP
2000128113 May 2000 JP
2000128115 May 2000 JP
3227693 Sep 2001 JP
3242081 Oct 2001 JP
2002235830 Aug 2002 JP
2003170906 Jun 2003 JP
2003231291 Aug 2003 JP
2003348899 Dec 2003 JP
3548622 Apr 2004 JP
2004108593 Apr 2004 JP
2004241150 Aug 2004 JP
2004323111 Nov 2004 JP
2007276042 Oct 2007 JP
4095817 Mar 2008 JP
4366208 Aug 2009 JP
4405220 Nov 2009 JP
4406016 Nov 2009 JP
4627598 Nov 2010 JP
4814577 Sep 2011 JP
840002211 Dec 1984 KR
20000029337 May 2000 KR
200286283 Aug 2002 KR
1772784 Oct 1992 RU
2118277 Aug 1998 RU
2161773 Jan 2001 RU
2004115639 Jan 2006 RU
2355281 May 2009 RU
2355821 May 2009 RU
1134117 Jan 1985 SU
9627526 Sep 1996 WO
0189929 Nov 2001 WO
2004039676 May 2004 WO
2006048738 May 2006 WO
2007116914 Oct 2007 WO
2009129633 Oct 2009 WO
2009129636 Oct 2009 WO
Non-Patent Literature Citations (26)
Entry
“Description of the Operating Sequence of the Cyklop CB 130 Tool”, The Cyklop CB 130 Tool was publicly available before the priority date of the present application.
“International Search Report and Written Opinion”, PCT/CH2009/000004 (15 pages), dated Apr. 6, 2009.
“International Search Report and Written Opinion”, PCT/CH2009/000001 (18 pages), dated Jun. 22, 2009.
“International Search Report and Written Opinion”, PCT/CH2009/000002 (18 pages), dated Jun. 22, 2009.
“International Search Report and Written Opinion”, PCT/CH2009/000003 (16 pages), dated Jun. 22, 2009.
“International Search Report and Written Opinion”, PCT/CH2009/000005 (14 pages), dated Jun. 22, 2009.
“Japanese Office Action”, Application No. JP-2011-505337 (3 pages), dated Mar. 27, 2013.
“Japanese Office Action”, Application No. JP-2011-505339 (4 pages), dated Mar. 27, 2013.
“Korean Office Action”, Application No. 10-2010-7023734 (6 pages), dated Apr. 6, 2015.
“Korean Office Action”, Application No. 10-2010-7023709 (7 pages), dated May 18, 2015.
“Korean Office Action”, Application No. 10-2010-7023729 (8 pages), dated May 18, 2015.
“Korean Office Action”, Application No. 10-2010-7023730 (6 pages), dated May 18, 2015.
“Korean Office Action”, Application No. 10-2010-7023737 (7 pages), dated May 18, 2015.
“Russian Decision to Grant”, Application No. 2010147639 (13 pages), dated Aug. 31, 2012.
“Russian Decision to Grant”, Application No. 201047640 (10 pages), dated Sep. 6, 2012.
Bender, “Lithium Ion Technology: Shaping Power Tool”, Air Conditioning, Heating, and Refrigeration News, vol. 228, Issue 14, p. 18 (3 pages), Jul. 31, 2006.
Emandi, Ali, “Brushless DC Motor Drives”, Energy-Efficient Electrical Motors, 3rd ed., Para. 270-272, CRC Press & Marcel Dekker (3 pages).
Intellectual Property India, “Examination Report”, Indian Application No. 6713/CHENP/2010 (7 pages), dated Jan. 15, 2018.
Orgapack GMBH, “OR-T 100, Battery-Hand Tool for Plastic Strapping”, Operating and Safety Instructions (53 pages), Nov. 1, 2004.
Orgapack GMBH, “OR-T 200, Battery-Hand Tool for Plastic Strapping”, Operating and Safety Instructions (53 pages), Feb. 1, 2004.
Orgapack GMBH, “OR-T 300, Battery-Hand Tool for Plastic Strapping”, Operating and Safety Instructions (53 pages), Mar. 1, 2005.
Orgapack GMBH, “OR-T 50, Hand Tool for Plastic Strapping”, Operating and Safety Instructions (53 pages), May 1, 2006.
Orgapack GMBH, “OR-T 83, Hand Tool for Plastic Strapping”, Operating Instructions (58 pages), Aug. 1, 2000.
Orgapack GMBH, “OR-T 85, Hand Tool for Plastic Strapping”, Operating Instructions (58 pages), Jun. 1, 2000.
Orgapack GMBH, “OR-T 86, Hand Tool for Plastic Strapping”, Operating Instructions (58 pages), Aug. 1, 1999.
Orgapack GMBH, “OR-T 87, Hand Tool for Plastic Strapping”, Operating and Safety Instructions (63 pages), May 1, 2002.
Related Publications (1)
Number Date Country
20230339636 A1 Oct 2023 US
Continuations (8)
Number Date Country
Parent 18058011 Nov 2022 US
Child 18342304 US
Parent 16677266 Nov 2019 US
Child 18058011 US
Parent 14918167 Oct 2015 US
Child 16677266 US
Parent 12989112 US
Child 16677266 US
Parent 12989142 US
Child 14918167 US
Parent 12989181 US
Child 14918167 US
Parent 12989281 US
Child 14918167 US
Parent 12989355 US
Child 14918167 US