Engine system 10 is representative of a turbocharged diesel engine comprising a turbocharger 20 that has turbine 20T in exhaust system 16 operating a compressor 20C in intake system 14. A charge air cooler 22 is downstream of compressor 20C.
EGR system 18 comprises an EGR cooler 26 through which exhaust gas passes before reaching an EGR valve 26 that is controlled by a duty-cycle signal applied to an electric actuator of the valve to set the extent to which the EGR valve is open.
The inventive strategy is embodied in one or more processors of an engine control system as algorithms for processing data. Through control of EGR valve 26 in coordination with control of boost, sudden transients have less adverse effect on tailpipe emissions.
The strategy includes modeling EGR valve 26 such that for certain prevailing conditions, such as exhaust gas temperature and pressure differential across the valve, that bear on mass flow rate through the valve, a correlation between mass flow rate through the valve and the extent to which the valve is open is defined.
A first plot DP1 defines a relationship between mass flow rate and valve opening at a certain differential pressure DP1. A second plot DP2 defines a relationship between mass flow rate and valve opening at another differential pressure DP2. A third plot DP3 defines a relationship between mass flow rate and valve opening at still another differential pressure DP3.
Thus data storage in the processors of the control system may be populated with data defining data values for XEGR each correlated with a respective pair of data values for differential pressure and mass flow rate.
Knowing how EGR valve 26 has been modeled, attention is directed to
A general turbocharger control strategy is designated by the reference numeral 32. Vanes of turbine 20T are positioned by a duty cycle signal VGT_DTY applied to an actuator that sets vane position. Strategy 32 seeks to position the vanes so that compressor 20C develops boost corresponding to a desired boost set-point represented by a parameter MAP_SP(N,TQ). The control system uses engine speed N and indicated engine torque TQ to select an appropriate data value for MAP_SP(N,TQ) from a map for processing by strategy 32. Strategy 32 contains a closed-loop controller that compares a data value for actual boost, parameter MAP, with the desired set-point to develop an error signal that is processed to create a value for VGT_DTY that will secure correspondence of actual boost to the desired set-point.
The EGR control strategy is designated by the reference numeral 34. A desired set-point for EGR is represented by a parameter EGR_SP which like the boost set-point depends on engine speed N and indicated engine torque TQ, with the control system selecting an appropriate data value for EGR_SP from a map for processing by strategy 34. A portion of the processing designated by the reference numeral 36 processes not only EGR_SP but also data representing engine fueling, parameter Mfuel, and the mass flow rate of fresh air entering intake system 14, parameter MAF. A data value for MAF is calculated in any suitably appropriate way, such as by converting a MAF sensor output into a corresponding data value.
The result of processing 36 is used as one input to an algebraic summing function 38 that provides output data XEGR to an EGR PID controller 40 that in turn provides an input to another algebraic summing function 42. It is the output of summing function 42 that sets the duty cycle signal EGR_DTY applied to the actuator of EGR valve 26.
Strategy 34 comprises a suitably appropriate algorithm 44 that develops a data value for actual mass flow rate through engine 12, represented by a parameter Meng. The data value for Meng is an input to an algebraic summing function 46. Actual mass flow is a function of several variables shown here as boost (MAP), air temperature (MAT), volumetric efficiency (Vol eff), and engine displacement (Displ). It is data values for those parameters that are processed by algorithm 44 to develop the data value for Meng.
Strategy 34 further comprises a suitably appropriate algorithm 47 that develops a data value for mass flow rate through engine 12 that is based on the same variables processed by algorithm 44 except for MAP. Instead of using MAP, algorithm 47 uses desired boost set-point MAP_SP(N,TQ). The result provided by algorithm 47 is represented by a parameter Meng*. The data value for Meng* is an input to an algebraic summing function 48.
Summing function 48 calculates the difference between Meng and Meng*. The difference is represented by a parameter ΔMENG that is one of several inputs for a boost coupling algorithm 50. This algorithm performs calculations that yield a data value for a parameter ΔXEGR that is subtracted by summing function 42 from the data value for XEGR provided by EGR PID controller 40.
Summing function 46 calculates the mass flow rate through EGR valve 26, represented by a parameter MEGR, by subtracting from the data value for Meng the data values for MAF and Mfuel. The data value for MEGR is another input to algorithm 50. It is also subtracted by summing function 38 from the data value calculated by processing 36.
Additional inputs for algorithm 50 are parameters ΔP the pressure across the EGR valve and ρ density (Willy, I think I know what these two symbols represent but I'm not sure and don't want to guess as to how their data values are developed, so please clarify and explain briefly.)
During steady-state and near steady-state operation of the engine, there is little or no disparity between the data values for ΔMENG and MEGR. As a result, boost coupling strategy 50 provides little or no adjustment of EGR via ΔXEGR because the data value for ΔXEGR is small or zero. The EGR mass flow rate error input to EGR PID controller 42 provides closed-loop control of EGR that continually forces the EGR rate toward the set-point EGR_SP.
During non-steady-state operation that is significantly more non-steady-state that merely near steady-state (sudden accelerations and decelerations for example), the disparity between the data values for ΔMENG and MEGR becomes significant. As a result, boost coupling strategy 50 provides adjustment of EGR via ΔXEGR because the data value for ΔXEGR has now become significant. EGR PID controller 42 still provides a closed-loop component to control of EGR by virtue of ΔXEGR, but the additional component provided by ΔXEGR is quickly reflected in EGR_DTY because it is not delayed by the slower response that is inherent in the compromised design of the PID controller.
The strategy is graphically portrayed by
In a motor vehicle powered by engine system 10, a sudden depression of the acceleration pedal by the driver will cause EGR valve 26, if open, to be promptly operated in the direction of closing quickly reducing the mass flow rate of exhaust gas through the EGR valve. The immediate effect is a corresponding reduction in exhaust gas being introduced into the engine cylinders. Because engine fueling is being quickly increased to accelerate the engine, the quickly reduced amount of EGR facilitates the ensuing in-cylinder combustion processes and turbocharger operation toward more quickly nulling out the boost discrepancy as the engine accelerates.
A sudden deceleration, like that resulting from release of the accelerator, will quickly drop the desired boost set-point. The inventive strategy causes EGR valve 26 to be promptly operated in its opening direction to quickly increase the mass flow rate of exhaust gas through the EGR valve so that more exhaust gas is introduced into the engine cylinders. The quickly increased amount of EGR can limit NOx formation during the deceleration.
A comparison of the traces shown in
In both
While a presently preferred embodiment of the invention has been illustrated and described, it should be appreciated that principles of the invention apply to all embodiments falling within the scope of the invention that is generally described as follows.