This application is related to and claims priority from European Patent Application No. 01 104 723.0 filed on Feb. 26, 2001.
The present invention relates to an optimization method based on an evolution strategy, to a method for optimizing spline coded structures on the basis of an evolution strategy, to a computer software for executing such a method as well as to the use of such a method for the optimization of the shape of aerodynamic or hydrodynamic structures.
In the field of evolution strategy, basic principles of natural evolution are used for generating or optimizing technical structures. Basic operations are mutation and recombination as a method for modifying structures or parameters. To eliminate unfavorable modifications and to proceed with modifications which increase the overall quality of the system, a selection operation is used. Principles of the evolution strategy can be found for example in Rechenberg, Ingo (1994) “Evolutions strategie”, Friedrich Frommann Holzboog Verlag.
With reference to
In a step 1 the object parameters to be optimized are encoded as real numbers in a vector called individual or chromosome. One individual can alternatively also consist of several vectors or chromosomes. A number of such individuals are generated that comprise the initial parent generation and the quality (fitness) of each individual in the parent generation is evaluated. In a step S2 the parents are reproduced by applying operators called mutation and recombination. Thus, a new generation is produced in step S3, which is called the offspring generation. The quality of the offspring individuals is evaluated using a fitness function which is the objective of the optimization in step S4. Finally, depending on the calculated quality value, step S5 selects (possibly stochastically) the best offspring individuals (survival of the fittest) which are used as parents for the next generation cycle if the termination condition in step S6 is not satisfied.
In particular for this application the real number vector, the object parameter, represents the coding for a spline which describes a two or higher dimensional body. This mapping from the parameter vector to the spline encoded structure is usually referred to as the genotype (=the parameter vector)−phenotype (=the two or higher dimensional body) mapping. In order to determine the fitness in step S4, first the genotype is mapped to the phenotype and then the quality of the phenotype is derived. A particular example is the parameterization of an airfoil (=the phenotype) by a real-valued vector (=genotype) describing a spline which determines the geometry of the airfoil. Finally, the quality of the airfoil can be determined, e.g. by methods known from computational fluid dynamics.
The mutation operator for the reproduction in step S2 is realized by adding normal or Gaussian distributed random numbers to the already existing elements of the parameter set, the so-called chromosome. The step size of the mutation can be controlled by modifying the variance of the normal or Gaussian probability density function. The variances are called strategy parameters. In higher dimensions the strategy parameters can consist of all or some entries of the covariance matrix of the higher dimensional Gaussian probability density function. This method to control the mutation by means of strategy parameters particularly distinguishes evolution strategy from other evolutionary algorithms like genetic algorithms (GA) or genetic programming (GP).
Appropriate values for the strategy parameters are important for the convergence of the algorithm. The appropriate values depend on the problem and the actual position in the solution space. To adapt the mutation width online, different adaptation strategies are used. Some simple methods are the ⅕ rule (see Rechenberg) or the so-called mutative step size control. More complex methods are, for example, the de-randomized adaptation method or the co-variance matrix adaptation.
Evolution strategies have been shown to outperform other evolutionary algorithms like genetic algorithms or genetic programming for real-valued parameter optimization problems due to the above-mentioned possibilities of the adaptation or self-adaptation of the step size(s) of the mutation operator.
A known problem for the application of evolution strategy to design optimization is that the number of parameters which describe the model (the so-called object parameters) is fixed in evolution strategy. Therefore, an automatic refinement of the phenotype represented by the object parameters during the optimization is impossible.
Mathematically, the mutation operation step can be expressed by the following equation (1):
{right arrow over (x)}O={right arrow over (x)}P+N({right arrow over (0)},{right arrow over (σ)}P) (1)
thereby {right arrow over (x)}O represents the parameter set of the offspring, {right arrow over (x)}P represents the parameter set of the parents and N({right arrow over (0)},{right arrow over (σ)}P) represents a vector whose elements are normal distributed random numbers with zero mean with variances σP,12. As can be seen from
More generally, the mutation operation can be represented by the following equation (2):
{right arrow over (x)}O={right arrow over (x)}P+{right arrow over (δ)} (2)
wherein
a and b show the resulting probability distribution for placing an offspring, wherein
The covariance matrix Σ has to be adapted to the local quality function.
It is the object of the present invention to deal with the problem of variable parameter set length in evolution strategy in particular in context with the self-adaptation property of the strategy parameter set. With other words, the present invention proposes a technique for automatically refining the phenotype described by the parameter set during the optimization.
This object is achieved by means of the features of the independent claims. The dependent claims develop further the central idea of the present invention.
According to the present invention, the size of the describing parameter set during the evolution process can be adapted. For example, in the beginning a very small parameter set can be used to find a rough approximation of the optimal shape, which can be achieved very fast. During the optimization, the parameter set can be expanded to describe more and more complex shapes. However, the parameter set can not only be changed by inserting new object parameters and appropriate strategy parameters, but also by removing some parameters. This can be the case f.e. if an object parameter shows to be not sufficiently useful for further optimization.
When expanding the number of object parameters in the parameter sets, the associated number of strategy parameters has also to be expanded by inserting new strategy parameters. The present invention therefore proposes a technique for estimating the value of newly inserted strategy parameters.
According to a first aspect of the present invention therefore an optimization method based on an evolution strategy is proposed. A model, structure, shape or design to be optimized is thereby described by a parameter set comprising object parameters which are mutated and/or recombined to create offsprings of the parameter set. The quality of the offspring is then evaluated. The parameter set furthermore comprises at least one strategy parameter representing the variance of the mutation of associated object parameters. Thereby, the number of object parameters as well as the number of associated strategy parameters can be adapted during the optimization process.
For example the object parameters and strategy parameters can be selectively inserted and/or removed.
The value of a newly inserted strategy parameter can be estimated based on the information of strategy parameters of correlated object parameters.
The position and/or the time of a removal or an insertion of an object parameter and an associated strategy parameter can be determined by a random function.
The changes of the object parameter set and the associated strategy parameters can be performed such that it has no influence on the result of the evaluation step, thus the change of the parameters can be selectively neutral.
According to a further aspect of the present invention, an optimization method based on an evolution strategy is proposed. Thereby the structure of a parameter set defined by the number and/or position of the object parameters and strategy parameters can be mutated to create these offsprings.
According to a still further aspect of the present invention, a method for the optimization of spline coded problems is proposed. The object parameters in this case can comprise control and knot points, wherein new control points and strategy parameters can be inserted.
The values of newly inserted strategy parameters can be estimated on the basis of the values of the strategy parameters of neighboring control points.
According to a further aspect of the present invention, a method for optimizing spline coded shapes on the basis of an evolution strategy is proposed. Thereby a model, structure, shape or design to be optimized is described by a parameter set comprising object parameters representing control points and knot points of the spline coded shapes and at least one strategy parameter representing the variance of the mutation of associated object parameters. The object parameters and strategy parameters are mutated to create offsprings of the parameter set. Finally, the quality of the offsprings is evaluated. According to the invention, the step of mutating comprises the step of determination of a control point insertion position, insertion of the control point, adjustment of the knot vector, insertion of the appropriate strategy parameter for the inserted control point, weighted averaging of the strategy parameter values of the modified control points, and assigning the weighted average value as the value of the inserted strategy parameter.
According to a further aspect of the present invention, a computer software program for executing a method as said above is proposed.
Finally, the invention proposes the use of such a method for the optimization of the shape of aerodynamic or hydrodynamic structures.
Further features, objects and advantages of the present invention will become evident for the man skilled in the art when reading the following description of embodiments of the present invention when taken in conjunction with the figures of the enclosed drawings.
The principles of evolution strategy have already been explained with reference to
With reference to
The structure mutation of the covariance matrix is schematically shown in
The present invention is for example applied to the field of optimization of spline coded problems. An example of a spline coded problem is shown in
The present invention now allows for an online modification of the parametric description (modification of the structure of the genotype) in order to allow new attributes in the encoding and therefore also in the shape (=the phenotype) to be inserted. Note, that the parameter set can not only be expanded by inserting new object and strategy parameters, but also be reduced by removing these parameters. This can be the case f.e. if an object parameter shows to be not sufficiently useful for further optimization.
As has already been said, one of the main advantages of the evolution strategies compared to other evolutionary algorithms is the use of the strategy parameters which can represent a preferred direction and step size for a further search. The strategy parameters are also adapted (mutated) in evolution strategies during the optimization to the local properties of the quality function. When new components (new control points in the case of spline coded problems) are inserted in the encoding or the encoding is modified, the values of the newly inserted strategy parameters have to be calculated.
According to the present invention, when determining a value of a newly inserted strategy parameter, the information of correlated components, e.g. the information of correlation parameters associated with correlated object parameters is used.
In the case of spline encoded structures, strategy parameters of new points are usually similar to strategy parameters of their neighboring points. Therefore, in the case of spline encoded structures, the strategy parameter value can be estimated from the strategy parameter values of neighboring control points.
The optimization process for a spline encoded problem or structure can therefore be represented in a simple way as follows:
This process usable for example for spline encoded problems will now be explained with reference to
In step S1 the initial encoding of the problem, for example represented by control and knot points, is set. In step S2 it is decided whether the encoding should be mutated. This decision can for example be triggered by a random function or a function that depends on the progress of the optimization. In case the result of step S2 is yes, in step S3 it is decided whether a new control point is to be inserted. If the answer of the decision step S3 is yes (which can be again decided on the basis of a random function or some kind of sensitivity analysis of the spline coding), the position for the newly to be inserted control point has to be found in step S4. Therefore the index i of the newly to be inserted point representing the position of the newly inserted point in the parameter set has to be found in step S4 and the new control point is inserted at the index i in step S5. Finally in a step S6, the value of the correspondingly to be inserted strategy parameters strati is calculated. The value of the newly inserted strategy parameters strati is a function ƒ(strat i−1,strat i+1) of the values of the neighboring strategy parameters i−1 and i+1 or in more general terms a function of a subset of all old strategy parameters.
In case it is decided in step S3 to mutate the coding without insertion of a new control point, the removal position has to be chosen in step S7 and the corresponding control point is removed in step S8.
Finally, the parameter set including the control points, knot points and strategy parameter is mutated in step S9. The resulting structure of this mutation step S9 is then evaluated in step S10 using a so-called fitness function, f.e. measuring the fluid-dynamics properties of the spline coded shape.
In step S11, it is checked whether all individuals, i.e., all parameter sets (comprised of the object parameters and the strategy parameters) have been mutated. If this is not the case, the process goes back to step S2.
If the decision in S11 is positive, the n best individuals out of the m individuals generated in step S9 and evaluated in step S10 are selected in step S12 (“survival of the fittest”); this corresponds to a (n,m) selection, other selection methods like (n+M) or tournament selection, etc. can be applied. After the selection process, the optimization is either stopped, S13, in case some pre-defined criterion has been reached or a new generation is started with the reproduction step in S14 and a new mutation step in S1.
The mutation of the parameter set (object parameters S15 and strategy parameters S16) in a step S9 is already known. However, according to the present invention, also the structure, e.g. the number and position of the object parameters and strategy parameters of the parameter set can be mutated in a step S17 (comprising the steps S2 to S8 in
Finally, an extended genotype with optimized strategy parameters for the new object parameters is generated.
A simple example for the application of the present invention on a spline encoded structure is shown in
The mutation process for such spline encoded structures can be summarized as follows:
According to the description, the present invention finds application for all structure encodings in which the optimal strategy parameter can be estimated from already existing strategy parameters.
Further examples for the application of the present invention apart from airfoil shapes are compressor/turbine blades for gas turbines (stator and rotor blades) and other aerodynamic or hydrodynamic structures. Other fields of application are architecture and civil engineering, computer science, wing design, engine valve design and scheduling problems.
Number | Date | Country | Kind |
---|---|---|---|
01104723 | Feb 2001 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
5074752 | Murphy et al. | Dec 1991 | A |
5136686 | Koza | Aug 1992 | A |
5148513 | Koza et al. | Sep 1992 | A |
5265830 | Allen | Nov 1993 | A |
5319781 | Syswerda | Jun 1994 | A |
5355528 | Roska et al. | Oct 1994 | A |
5461570 | Wang et al. | Oct 1995 | A |
5487130 | Ichimori et al. | Jan 1996 | A |
5541848 | McCormack et al. | Jul 1996 | A |
5724258 | Roffman | Mar 1998 | A |
5819244 | Smith | Oct 1998 | A |
5924048 | McCormack et al. | Jul 1999 | A |
6285968 | Motoyama et al. | Sep 2001 | B1 |
6292763 | Dunbar et al. | Sep 2001 | B1 |
6430993 | Seta | Aug 2002 | B1 |
6449603 | Hunter | Sep 2002 | B1 |
6516309 | Eberhart et al. | Feb 2003 | B1 |
6549233 | Martin | Apr 2003 | B1 |
6578018 | Ulyanov | Jun 2003 | B1 |
6606612 | Rai et al. | Aug 2003 | B1 |
6654710 | Keller | Nov 2003 | B1 |
6662167 | Xiao | Dec 2003 | B1 |
6781682 | Kasai et al. | Aug 2004 | B1 |
6879388 | Kasai et al. | Apr 2005 | B2 |
6928434 | Choi et al. | Aug 2005 | B1 |
6950712 | Ulyanov et al. | Sep 2005 | B2 |
7043462 | Jin et al. | May 2006 | B2 |
7047169 | Pelikan et al. | May 2006 | B2 |
20020099929 | Jin et al. | Jul 2002 | A1 |
20020138457 | Jin et al. | Sep 2002 | A1 |
20020165703 | Olhofer et al. | Nov 2002 | A1 |
20030030637 | Grinstein et al. | Feb 2003 | A1 |
20030055614 | Pelikan et al. | Mar 2003 | A1 |
20030065632 | Hubey | Apr 2003 | A1 |
20030191728 | Kulkami et al. | Oct 2003 | A1 |
20040014041 | Allan | Jan 2004 | A1 |
20040030666 | Ulyanov et al. | Feb 2004 | A1 |
20040034610 | Marra et al. | Feb 2004 | A1 |
20040049472 | Hayashi et al. | Mar 2004 | A1 |
20050209982 | Jin et al. | Sep 2005 | A1 |
20050246297 | Chen et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
1 205 863 | May 2002 | EP |
1 205 877 | May 2002 | EP |
1205877 | May 2002 | EP |
WO 02057946 | Jul 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20020165703 A1 | Nov 2002 | US |