This application relates to straw dispensers and more particularly to straw dispensers with sterilization devices.
Straw dispensers with sterilization devices are known. These devices typically have a housing defining a bin for storing a reservoir of straws. A short wave ultraviolet (UV-C) light source to kill or inactivate microorganisms is located over the straws in the bin. Manual dispensers deliver straws from the bottom of the bin to the user. Automated devices use a continuous belt with outwardly projecting arms to gather straws from the bottom of the bin on the belt. However, the UV light source is unable to irradiate all of the straws in the bin, particularly the straws at the bottom of the bin which are blocked from the UV radiation by straws laying above them. Thus, many of the straws are not properly sterilized.
A device for dispensing drinking straws includes a housing having a compartment for containing a plurality of straws, a passage for conveying straws from the compartment to an area outside the housing, at least one partition member extending into the passage to meter one straw at a time from the plurality of straws, and a UV light source disposed directly over the passage to sterilize the one straw as the straw travels through the passage. The device may also include a controller for selectively energizing the UV source when the straw is in the passage beneath the UV source. The device may also include a wireless communications module for sending information regarding usage of the device to a remote location.
A device for dispensing straws or other cylindrical objects includes a housing with a compartment holding the objects is disclosed. The objects are metered to pass under a UV source before exiting the housing. In this way each individual straw or object is fully irradiated and sterilized by the UV source one at a time before exiting the housing. The device also includes a communications module for communicating with a remote device to provide information about usage and inventory. Additionally, the device may include an electronic graphic display on the front of the housing.
As shown in
As shown in
The belt 34 is supported by an idler roller 42 and a drive roller 44. An electric servomotor 46 is connected to the drive roller 44 by a drive belt 45 to propel the belt. Alternatively, the drive motor can be incorporated into the roller. When the belt 34 travels, a single straw 40 falls into the gap 38 between the groups of arms 36 to be carried up the belt into an exit passage 50. The entry of the exit passage 50 is formed between a surface 52 of the belt 34 and the gap 38 formed an end 54 of the upper partition 32. The distance between the partition 32 and surface of the belt is greater than the outer diameter of the straw 40 but less than twice the outer diameter of the straw 40 to meter the straws into the passage so only one straw can pass through the passage.
Angled upper partition 32 and the upper front wall 18 form a compartment 59 for a ultraviolet light source including a fixture 56 holding an ultraviolet lamp 58. The lamp 58 is mounted so as to direct the UV light transversely over a top 60 of the run of the belt. The UV lamp extends the width of the belt 34. Thus, the straws are carried under the end 54 of the upper partition then under the UV light to be fully irradiated and sterilized by the UV light. The straw is carried on the belt 34 over the idler roller 42 until the belt 34 turns downwardly.
The straw 40 drops out of the belt down into a delivery passage 66 formed between a lower end 67 of the upper front wall 18 and an upper end 69 lower front wall 19. The straw 40 exits the delivery passage 66 and drops to a receiving area 29 which is formed by a V shaped portion lower front wall 19. The V shaped portion has an upper portion 62 extending beneath the belt and a lower horizontal portion 64. The receiving area 29 is provided to permit insertion of the user's hand to receive the straw 40. A presence sensor such as an infrared sensor 66 is mounted in the horizontal portion 64. The infrared sensor 66 senses the presence of a hand under the delivery passage 66. Upon sensing the presence of a hand, a signal is sent from the sensor module 66 to a controller 75 which energizes the motor 46 to drive the belt a predetermined distance to dump the straw 40 into the passage 66 and bring a new straw to a position under the light. The controller 75 energizes the light for a predetermined time such as 3 seconds to fully sterilize the straw. The motor 46 drives the belt a predetermined distance equal to a group 36 of four arms and the gap 38. This moves the straw a sufficient distance to travel under the UV light source and drop the straw into the delivery passage 66. A light module 68 which emits blue light such as a blue LED may also be mounted to the housing. The module is mounted above the passage 66 to direct blue light into the receiving area 29 to indicate that the straw has been sterilized.
As shown in
The content to be displayed by the LCD screen 72 may be delivered by an Internet protocol such as Windows 10 and ARM to the communications module 74 and the communications module may be accessed by a mobile device or other Internet connected device. Thus, information, advertising, photographs, and the like can be uploaded from a mobile device or terminal through the communications module 74 and then delivered to a network or to individual dispensers depending upon the desired application. At the same time instructions can be delivered to the dispenser by a mobile app to control nearby smart devices such as the HVAC system, lighting, or the like through the communications module 74. Thus, a store operator through a mobile device and communications module 74 communicate with the dispenser. The communications module then in turn may send signals by Bluetooth or other manner peripheral devices to turn on and off the lights or to change thermostat settings.
A card reader 76 may also be mounted to module 70. The card reader 76 reads credit cards, debit cards, rewards cards, and the like. The card reader allows the dispenser 10 to be a point of sale device and/or to control the dispensing of straws. Information from the card reader is delivered through the communications module 74 to a remote processing system. This allows sales of beverage or other goods to be processed through the dispenser. Likewise, each dispensing operation may be controlled or limited by the machine so that, for instance, only one straw is delivered per sale.
Additionally, the information about usage of the dispenser 10 may be gathered from the controller 75 and delivered by the communications device to a remote location. Information for use in analytics such as the frequency of use and time of use may be gathered. Additionally, the data can be used for keeping track of the inventory of straws in the bin of the dispenser, at an appropriate time, a stock reorder can be sent automatically from the controller or a notification can be sent to the machine's owner to restock the bin with inventory. A near field communications tag (not shown) can be placed on the reader allowing a customer to use the phone to access an offsite location such as the main controller to obtain coupons and other information about the location or menu items offered by the merchant. The servomotor 46, UV light 58, blue light 68, sensor 66 and display module 70 may be powered by a battery 78 or other source of electrical power.
As shown in
As shown in
As shown in
As shown in
The dispenser may be provided with the display module 70 which is disclosed above for the automated dispenser above. The power supply also supplies power for the controller and screen.
Thus is disclosed two embodiments of the invention by which straws are sterilized fully and completely just before they pass into the user's hands. It will be apparent to those skilled in the art that many variations of the invention are within the scope of the disclosure.
This application claims priority of U.S. Provisional Application 62/343,358 filed May 31, 2016, and U.S. Provisional Application 62/352,157 filed Jun. 20, 2016, both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62352157 | Jun 2016 | US | |
62343358 | May 2016 | US |