Embodiments of the subject matter described herein relate generally to medical devices, and more particularly, embodiments of the subject matter relate to dynamically updating the manner in which a medical device operates to regulate or otherwise influence a condition of an associated user based at least in part measurement data from that user.
Infusion pump devices and systems are relatively well known in the medical arts, for use in delivering or dispensing an agent, such as insulin or another prescribed medication, to a patient. A typical infusion pump includes a pump drive system which typically includes a small motor and drive train components that convert rotational motor motion to a translational displacement of a plunger (or stopper) in a reservoir that delivers medication from the reservoir to the body of a user via a fluid path created between the reservoir and the body of a user.
Over time, the needs of a particular user may change. For example, an individual's insulin sensitivity and/or insulin requirements may change as he or she ages or experiences lifestyle changes. Furthermore, each individual's needs may change in a manner that is unique relative to other users. While routine monitoring, doctor visits and manual adjustments to device settings may be performed to accommodate changes in an individual's needs, individuals often become discouraged from undertaking these activities on a frequent regular basis throughout their lifetime due to the amount of time and/or manual interaction involved. Accordingly, it is desirable to provide a fluid infusion device that is capable of adapting to suit the needs of its associated user with limited user impact.
In one example, a system includes one or more processors and one or more processor-readable storage media storing instructions which, when executed by the one or more processors, cause performance of: associating a medical device with an intermediate device, obtaining, from the medical device via the intermediate device, measurement data correlative to a condition of a user, determining updated control information for the medical device based at least in part on the measurement data, and streaming the updated control information to the medical device via the intermediate device.
In one example, a processor-implemented method includes associating a medical device with an intermediate device, obtaining, from the medical device via the intermediate device, measurement data correlative to a condition of a user, determining updated control information for the medical device based at least in part on the measurement data, and streaming the updated control information to the medical device via the intermediate device.
In one example, one or more non-transitory processor-readable storage media storing instructions which, when executed by one or more processors, cause performance of: associating a medical device with an intermediate device, obtaining, from the medical device via the intermediate device, measurement data correlative to a condition of a user, determining updated control information for the medical device based at least in part on the measurement data, and streaming the updated control information to the medical device via the intermediate device.
An embodiment of a medical device is provided. The medical device includes a motor, one or more data storage elements to maintain control information, and a control module coupled to the motor and the one or more data storage elements. The control module is configured to obtain updated control information via a peer-to-peer communication session over a network, store the updated control information in the one or more data storage elements, and thereafter operate the motor based at least in part on the updated control information.
In one embodiment, an apparatus for an infusion device is provided. The infusion device includes a motor operable to deliver fluid to a user, a sensing arrangement to obtain measurement data including one or more measured values indicative of a condition of the user, one or more data storage elements to maintain control information including a target value for the condition of the user and one or more control parameters. A control module is coupled to the motor, the sensing arrangement, and the one or more data storage elements, and the control module is configured to operate the motor to deliver the fluid to the user based at least in part on the one or more control parameters and a difference between the target value and a first value of the one or more measured values, wherein delivery of the fluid influences the condition of the user. The control module obtains updated control information including an updated target value for the condition of the user and one or more updated control parameters via a peer-to-peer communication session over a network, stores the updated control information in the one or more data storage elements, and thereafter operates the motor based at least in part on the one or more updated control parameters and a difference between the updated target value and a second value of the one or more measured values.
In another embodiment, a method of operating a medical device is provided. The method involves the medical device obtaining control information for regulating a condition of a user associated with the medical device via a peer-to-peer communication session over a network, obtaining a measured value for the condition of the user, and determining a command for operating the medical device based at least in part on the control information and the measured value.
In yet other embodiments, a system is provided that includes a medical device and a remote device. The medical device is operable to regulate a condition of a user. The remote device receives measurement data correlative to the condition of the user, determines control information for the medical device based at least in part on the measurement data, and transmits the control information via a first peer-to-peer communication session. The medical device receives the control information via a second peer-to-peer communication session and thereafter regulates the condition of the user based at least in part on the control information and subsequent measurement data.
In one embodiment, an infusion system is provided. The infusion system includes an infusion device, a remote device, and an intermediate device. The infusion device is operable to deliver fluid to a user, wherein the fluid influences a condition of the user. The remote device receives measurement data correlative to the condition of the user, determines control information for the infusion device based at least in part on the measurement data, and transmits the control information. The intermediate device receives the measurement data from the infusion device via a first peer-to-peer communication session over a first communications network, transmits the measurement data to the remote device via a second peer-to-peer communication session over a second communications network, receives the control information from the remote device via a third peer-to-peer communication session over the second communications network, and transmits the control information to the infusion device via a fourth peer-to-peer communication session over the first communications network. The infusion device receives the control information and thereafter delivers the fluid to the user to regulate the condition based at least in part on the control information and subsequent measurement data.
In yet another embodiment, a method of updating a medical device is provided. The method involves uploading measurement data from the medical device to a remote device, the measurement data comprising one or more measured values correlative to a condition of a user associated with the medical device, determining, by the remote device based at least in part on the measurement data, control information for regulating the condition of the user, initiating a peer-to-peer communication session with the medical device over a network, and providing the control information to the medical device via the peer-to-peer communication session.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures, which may be illustrated for simplicity and clarity and not necessarily drawn to scale.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
While the subject matter described herein can be implemented with any electronic device, exemplary embodiments described below are implemented in the form of medical devices, such as portable electronic medical devices. Although many different applications are possible, the following description focuses on a fluid infusion device (or infusion pump) as part of an infusion system deployment. For the sake of brevity, conventional techniques related to infusion system operation, insulin pump and/or infusion set operation, and other functional aspects of the systems (and the individual operating components of the systems) may not be described in detail here. Examples of infusion pumps may be of the type described in, but not limited to, U.S. Pat. Nos. 4,562,751; 4,685,903; 5,080,653; 5,505,709; 5,097,122; 6,485,465; 6,554,798; 6,558,320; 6,558,351; 6,641,533; 6,659,980; 6,752,787; 6,817,990; 6,932,584; 7,402,153; and 7,621,893, which are herein incorporated by reference. That said, the subject matter described herein is not limited to infusion devices and may be implemented in an equivalent manner for any medical device capable of regulating or otherwise influencing a condition of an associated user that wears or otherwise operates the medical device on his or her body.
Embodiments of the subject matter described herein generally relate to infusion devices that periodically and autonomously provide, to a remote device (alternatively referred to herein as a monitoring device), measurement data that quantifies, characterizes, or otherwise correlates to a condition of the user that is wearing or otherwise associated with the infusion device along with delivery data that quantifies or otherwise characterizes the delivery of fluid to the user by the infusion device. The monitoring device stores or otherwise maintains the measurement data and delivery data and analyzes the measurement data and delivery data to determine whether the manner in which the infusion device is operated to influence that condition should be modified or otherwise adjusted to improve regulation of that condition of the user. When the monitoring device determines the operation of the infusion device should be modified, the monitoring device determines updated control information for the infusion device and provides the updated control information to the infusion device. Thereafter, the infusion device executes or otherwise implements the updated control information, which, in turn, influences subsequent operation of the infusion device, and thereby influences regulation of the condition of the user in accordance with the updated control information. For example, the updated control information can include updated values for one or more parameters utilized by a control scheme or algorithm implemented by the infusion device to determine commands for operating the infusion device, an update to the control scheme or algorithm used by the infusion device to determine those operating commands, or a combination thereof.
As described in greater detail below, in exemplary embodiments, the infusion device utilizes closed-loop control to regulate the condition of the user by generating delivery commands for operating a motor to deliver a desired amount of fluid to the user based on a difference between a desired (or target) value for the condition and a measured value for the condition (or alternatively, a measured value that is correlative to the condition). In this regard, the infusion device periodically provides recently obtained measured values to the monitoring device along with recent delivery data, which, in turn, analyzes the recently obtained measured values and delivery data in conjunction with previously obtained measured values and delivery data to determine how values for gain coefficients, target values, or other parameters used by the closed-loop control should be adjusted to better regulate the condition of the user. The monitoring device determines and provides the updated parameter values to the infusion device, which, in turn, utilizes the updated parameter values in lieu of the previous parameter values when generating subsequent delivery commands, for example, by writing a new parameter value to a register associated with that parameter, thereby overwriting the previous parameter value.
As described in the context of
It should be noted that in practice, the closed-loop control schemes described herein may not be performed continuously by the infusion device. For example, a closed-loop control system may be disabled during intervals of time when the user is awake, alert, or otherwise able to manually operate the infusion device to control the condition of the user, with the closed-loop control being enabled to automatically regulate the condition of the user while the user is asleep or otherwise unable to manually operate the infusion device. In this regard, when the closed-loop control is disabled, the user may manually interact with the infusion device and operate the infusion device to deliver a bolus of fluid at the appropriate time of day or as needed. However, it should be appreciated that even when the closed-loop control is not enabled, the infusion device may continually obtain measurement data from its sensing arrangements and periodically upload the measurement data obtained while the closed-loop control is not enabled to the monitoring device along with delivery data and/or information indicative of the amount of fluid delivered by the infusion device and the timing of fluid delivery while the closed-loop control is not enabled. Accordingly, the monitoring device may utilize measurement data and delivery data that is obtained and uploaded by the infusion device while the closed-loop control is not enabled to determine updated values for control parameters, target values, and the like that will be downloaded to the infusion device and utilized by the infusion device to autonomously regulate the condition of the user when the closed-loop control is subsequently enabled.
Turning now to
In the illustrated embodiment of
The sensing arrangement 104 generally represents the components of the infusion system 100 configured to sense, detect, measure or otherwise quantify a condition of the user, and may include a sensor, a monitor, or the like, for providing data indicative of the condition that is sensed, detected, measured or otherwise monitored by the sensing arrangement. In this regard, the sensing arrangement 104 may include electronics and enzymes reactive to a biological condition, such as a blood glucose level, or the like, of the user, and provide data indicative of the blood glucose level to the infusion device 102, the CCD 106 and/or the computer 108. For example, the infusion device 102, the CCD 106 and/or the computer 108 may include a display for presenting information or data to the user based on the sensor data received from the sensing arrangement 104, such as, for example, a current glucose level of the user, a graph or chart of the user's glucose level versus time, device status indicators, alert messages, or the like. In other embodiments, the infusion device 102, the CCD 106 and/or the computer 108 may include electronics and software that are configured to analyze sensor data and operate the infusion device 102 to deliver fluid to the body of the user based on the sensor data and/or preprogrammed delivery routines. Thus, in exemplary embodiments, one or more of the infusion device 102, the sensing arrangement 104, the CCD 106, and/or the computer 108 includes a transmitter, a receiver, and/or other transceiver electronics that allow for communication with other components of the infusion system 100, so that the sensing arrangement 104 may transmit sensor data or monitor data to one or more of the infusion device 102, the CCD 106 and/or the computer 108. For example, as described in greater detail below in the context of
Still referring to
As described above, in some embodiments, the CCD 106 and/or the computer 108 may include electronics and other components configured to perform processing, delivery routine storage, and to control the infusion device 102 in a manner that is influenced by sensor data measured by and/or received from the sensing arrangement 104. By including control functions in the CCD 106 and/or the computer 108, the infusion device 102 may be made with more simplified electronics. However, in other embodiments, the infusion device 102 may include all control functions, and may operate without the CCD 106 and/or the computer 108. In various embodiments, the CCD 106 may be a portable electronic device. In addition, in various embodiments, the infusion device 102 and/or the sensing arrangement 104 may be configured to transmit data to the CCD 106 and/or the computer 108 for display or processing of the data by the CCD 106 and/or the computer 108.
In some embodiments, the CCD 106 and/or the computer 108 may provide information to the user that facilitates the user's subsequent use of the infusion device 102. For example, the CCD 106 may provide information to the user to allow the user to determine the rate or dose of medication to be administered into the user's body. In other embodiments, the CCD 106 may provide information to the infusion device 102 to autonomously control the rate or dose of medication administered into the body of the user. In some embodiments, the sensing arrangement 104 may be integrated into the CCD 106. Such embodiments may allow the user to monitor a condition by providing, for example, a sample of his or her blood to the sensing arrangement 104 to assess his or her condition. In some embodiments, the sensing arrangement 104 and the CCD 106 may be for determining glucose levels in the blood and/or body fluids of the user without the use of, or necessity of, a wire or cable connection between the infusion device 102 and the sensing arrangement 104 and/or the CCD 106.
In some embodiments, the sensing arrangement 104 and/or the infusion device 102 are cooperatively configured to utilize a closed-loop system for delivering fluid to the user. Examples of sensing devices and/or infusion pumps utilizing closed-loop systems may be found at, but are not limited to, the following U.S. Pat. Nos. 6,088,608, 6,119,028, 6,589,229, 6,740,072, 6,827,702, 7,323,142, and 7,402,153, all of which are incorporated herein by reference in their entirety. In such embodiments, the sensing arrangement 104 is configured to sense or measure a condition of the user, such as, blood glucose level or the like. The infusion device 102 may be configured to deliver fluid in response to the condition sensed by the sensing arrangement 104. In turn, the sensing arrangement 104 may continue to sense or otherwise quantify a current condition of the user, allowing the infusion device 102 to deliver fluid continuously in response to the condition currently (or most recently) sensed by the sensing arrangement 104 indefinitely. In some embodiments, the sensing arrangement 104 and/or the infusion device 102 may be configured to utilize the closed-loop system only for a portion of the day, for example only when the user is asleep or awake.
In exemplary embodiments, the base plate 204 is temporarily adhered to the skin of the user, as illustrated in
In exemplary embodiments, the fluid reservoir 206 includes a fluid delivery port 210 that cooperates with the reservoir port receptacle to establish a fluid delivery path. In this regard, the fluid delivery port 210 has an interior 211 defined therein that is shaped, sized, and otherwise configured to receive a sealing element when the fluid reservoir 206 is engaged with the reservoir port receptacle on base plate 204. The sealing element forms part of a sealing assembly for the fluid infusion device 200 and preferably includes one or more sealing elements and/or fluid delivery needles configured to establish fluid communication from the interior of the reservoir 206 to the cannula 208 via the fluid delivery port 210 and a mounting cap 212, and thereby establish a fluid delivery path from the reservoir 206 to the user via the cannula 208. In the illustrated embodiment, the fluid reservoir 206 includes a second fluid port for receiving fluid. For example, the second fluid port 213 may include a pierceable septum, a vented opening, or the like to accommodate filling (or refilling) of the fluid reservoir 206 by the patient, a doctor, a caregiver, or the like.
As illustrated in
In exemplary embodiments, the motor 232 is realized as a DC motor, such as a stepper motor or brushless DC motor capable of precisely controlling the amount of displacement of the plunger 222 during operation of the infusion device 200. As best illustrated in
During operation of the fluid infusion device 200, when the motor 232 is operated to rotate the rotor 530, the rotary shaft 402 rotates in unison with the rotor 530 to cause a corresponding rotation of the first gear 404, which, in turn, actuates the gears of the gear assembly 236 to produce a corresponding rotation or displacement of the pinion gear 238, which, in turn, displaces the shaft 224. In this manner, the rotary shaft 402 translates rotation (or displacement) of the rotor 530 into a corresponding rotation (or displacement) of the gear assembly 236 such that the teeth 239 of the pinion gear 238 apply force to the teeth 225 of the shaft 224 of the plunger 222 in the fluid delivery direction 250 to thereby displace the plunger 222 in the fluid delivery direction 250 and dispense, expel, or otherwise deliver fluid from the barrel 220 of the reservoir 206 to the user via the fluid delivery path provided by the cannula 208.
Referring to
In exemplary embodiments, the sensor 500 is realized as an incremental position sensor configured to measure, sense, or otherwise detect incremental rotations of the rotary shaft 402 and/or the rotor 530 of the motor 232. For example, in accordance with one or more embodiments, the sensor 500 is realized as a rotary encoder. In alternative embodiments, the sensor 500 may be realized using any other suitable sensor, such as (but not limited to) a magnetic sensor, optical sensor (or other light detector), tactile sensor, capacitive sensor, inductive sensor, and/or the like. In exemplary embodiments, the incremental position sensor 500 may be configured to count or otherwise sense incremental rotations of the motor 232 via the wheel 502, for example, by counting each time a protruding feature 504 passes by the sensor 500. In this regard, when the number of protruding features 504 equals or otherwise corresponds to the number of discrete motor steps of the stepper motor 232, the incremental position sensor 500 counts or otherwise senses the number of motor steps traversed by the rotary shaft 402 and/or rotor of the motor 232. In some embodiments, the sensor 500 includes an emitter 510 and a detector 512 disposed on opposite sides of the wheel 502 such that at least a portion of the protruding features 504 passes between the emitter 510 and the detector 512 as the wheel 502 rotates. In this regard, the sensor 500 may detect or otherwise count each instance when a protruding feature 504 interrupts a transmission from the emitter 510 to the detector 512. Alternatively, the sensor 500 may detect or otherwise count each instance a transmission from the emitter 510 to the detector 512 is uninterrupted or otherwise completed (e.g., via gaps between protruding features 504).
Referring now to
In the illustrated embodiment, the infusion device 702 includes a control module 708 coupled to a motor 710 (e.g., motor 232) that is operable to displace a plunger (e.g., plunger 222) in a reservoir 712 (e.g., reservoir 206). Although
The illustrated control module 708 implements or otherwise provides proportional-integral-derivative (PID) control to determine or otherwise generate delivery commands for operating the motor 710 based at least in part on a difference between the desired value and a measured value for that condition in the body 704 obtained from the sensing arrangement 706. In this regard, the PID control attempts to minimize the difference between the measured value and the desired value, and thereby regulates the measured value to the desired value. For example, the control module 708 may apply PID control parameters to the difference between a target blood glucose level at input 707 and a measured blood glucose level in the body 704 received from the sensing arrangement 706 to determine a delivery command. Based on that delivery command, the control module 708 operates the motor 710 to deliver insulin from the reservoir 712 to the body 704 of the user to influence the user's blood glucose level and thereby reduce the difference between a subsequently measured blood glucose level and the target blood glucose level.
Still referring to
Again, it should be noted that
Referring now to
As described in greater detail below, in exemplary embodiments, the infusion device 802 periodically and/or autonomously uploads measurement data indicative of a particular condition of its associated user to the monitoring device 804 via the intermediate device 806. For example, the infusion device 802 may periodically upload measured blood glucose values obtained from a sensing arrangement (e.g., sensing arrangement 104, 706) to the monitoring device 804 via the intermediate device 806. In exemplary embodiments, the monitoring device 804 is coupled to a database 808 or another suitable data storage element, and the monitoring device 804 stores or otherwise maintains the measurement data in the database 808 in association with the infusion device 802 and/or its associated user. For example, the monitoring device 804 may utilize a unique identifier associated with the infusion device 802 and/or a unique identifier associated with the user to which the infusion device 802 belongs to maintain measurement data obtained from that infusion device 802 in association with the appropriate user. Along with the measurement data, the infusion device 802 may also periodically and/or autonomously upload delivery data indicative of the amount of fluid delivered by the infusion device (e.g., delivery commands), the timing of the fluid delivery (e.g., date and/or time of day a delivery command was executed), and/or other information that characterizes or otherwise quantifies the delivery of fluid by the infusion device 802. In such embodiments, the monitoring device 804 stores or otherwise maintains the delivery data in the database 808 in association with the measurement data, the infusion device 802 and/or its associated user (e.g., using the unique identifier associated with the infusion device 802 and/or the unique identifier associated with the user to which the infusion device 802 belongs.
The monitoring device 804 analyzes the user's measurement data and/or the delivery data for the infusion device 802 that is stored in the database 808 to determine whether one or more control parameters or other control information for the infusion device 802 should be updated, modified, or otherwise adjusted. In exemplary embodiments, the monitoring device 804 autonomously and automatically analyzes the user's stored measurement data and/or delivery data in the database 808 on a periodic basis (e.g., daily or every 24 hours) to update, modify, or otherwise adjust one or more control parameters or other control information for the infusion device 802. For example, the monitoring device 804 may periodically analyze the measurement data and delivery data to calculate or otherwise determine an updated daily insulin requirement for the user by averaging the amount of insulin delivered by the infusion device 802 and adjust one or more of the PID gain coefficients and/or a target value for a PID control loop based on the updated daily insulin requirement. Additionally, using the updated daily insulin requirement, the stored measurement data from the most recent 24-hour period along with stored measurement data from preceding 24-hour intervals (or days) along with the delivery data for the infusion device 802 during those intervals, the monitoring device 804 may determine updated values for one or more patient-specific control parameters (e.g., an insulin sensitivity factor, a daily insulin requirement, an insulin limit, a reference basal rate, a reference fasting glucose, an active insulin action duration, pharmodynamical time constants, or the like). In various embodiments, the monitoring device 804 may perform regression analysis, curve fitting, or some other mathematical techniques to adjust or otherwise optimize the control parameters and/or target values. Depending on the embodiment, a subset of the control parameters implemented by the infusion device 802 may be automatically updated on the periodic basis while another subset of control parameters implemented by the infusion device 802 may only updated when the updated values determined by the monitoring device 804 deviate from the current values being implemented by the infusion device 802 by more than some threshold amount (e.g., when a difference between the updated control parameter value and the current control parameter value utilized by the infusion device 802 exceeds a threshold percentage of the current control parameter value). When the monitoring device 804 determines that one or more control parameters should be adjusted or otherwise updated, the monitoring device 804 determines updated values for those control parameters and autonomously provides those updated control parameter values to the infusion device 802 via the intermediate device 806, as described in greater detail below.
In response to receiving updated control information, the infusion device 802 updates the corresponding components of the closed-loop control loop to implement the updated control information (e.g., by changing the coefficients used by one or more of the gain blocks 722, 726, 730). Thereafter, the infusion device 802 operates in accordance with the updated control information, such that the updated control information influences subsequent deliveries of fluid to the user, and thereby influences subsequent measurement data for the user. In a similar manner as described above, the infusion device 802 may periodically and/or autonomously upload the subsequent measurement data and/or delivery data to the monitoring device 804, which, in turn, stores and analyzes the subsequent measurement data and/or delivery data to determine whether the control parameters should be adjusted further. In this manner, the infusion device 802 and the monitoring device 804 are cooperatively configured to dynamically adjust the control information for operating the infusion device 802 based on that user's recent measurement data and/or delivery data to accommodate lifestyle changes by that user and/or changes to that user's individual needs.
In the embodiment of
In exemplary embodiments, the infusion device 802 and the client device 806 establish an association (or pairing) with one another over the first network 810 to support subsequently establishing a peer-to-peer communication session 814 between the infusion device 802 and the client device 806 via the first network 810. For example, in accordance with one embodiment, the first network 810 is realized as a Bluetooth network, wherein the infusion device 802 and the client device 806 are paired with one another (e.g., by obtaining and storing network identification information for one another) by performing a discovery procedure or another suitable pairing procedure. In this regard, the pairing information obtained during the discovery procedure allows either of the infusion device 802 or the client device 806 to initiate the establishment of a secure peer-to-peer communication session 814 via the first network 810.
Additionally, the monitoring device 804 establishes an association between the client device 806 and its paired infusion device 802 and/or associated user to support establishing another peer-to-peer communication session 816 between the client device 806 and the monitoring device 804 via the second network 812. For example, after the client device 806 is paired with the infusion device 802, the update module 807 may automatically operate the client device 806 to contact the monitoring device 804 via the second network 812 and provide network identification information for the client device 806 on the second network 812 along with an indication of its paired infusion device 802 and/or associated user. Alternatively, the user may manipulate or otherwise operate the client device 806 and/or update module 807 to contact the monitoring device 804 via the second network 812 and provide the identification information. The monitoring device 804 stores or otherwise maintains the network identification information for the client device 806 in the database 808 in association with the infusion device 802 and/or its associated user to allow either of the monitoring device 804 or the client device 806 to initiate the establishment of a secure peer-to-peer communication session 816 via the second network 812.
As described in greater detail below in the context of
In a similar manner, to communicate updated control parameters to the infusion device 802, the monitoring device 804 autonomously attempts to initiate the peer-to-peer communication session 816 with the client device 806 over the second network 812. In response to the connection request, the client device 806 and/or update module 807 automatically attempts to initiate the peer-to-peer communication session 814 with the infusion device 802 over the first network 810. In response to receiving an acknowledgement that establishes the peer-to-peer communication session 814, the client device 806 and/or update module 807 automatically provides an acknowledgment to the monitoring device 804 that establishes the peer-to-peer communication session 816. In response to receiving the acknowledgment, the monitoring device 804 automatically transmits the updated control parameter values via the peer-to-peer communication session 816 over the second network 812 to the client device 806 and/or update module 807, which, in turn, automatically transmits the updated control parameter values via the peer-to-peer communication session 814 over the first network 810 to the infusion device 802. In this regard, in exemplary embodiments, the updated control parameter values are not stored on the client device 806, other than whatever temporary storing or buffering may be required to prevent loss of data while receiving and re-transmitting the updated control parameter values. In exemplary embodiments, the monitoring device 804 terminates the peer-to-peer communication session 816 after transmitting the updated control parameter values to the client device 806 and/or update module 807, which, in turn, terminates the peer-to-peer communication session 814 after re-transmitting the updated control parameter values to the infusion device 802.
The control module 902 generally represents the hardware, circuitry, logic, firmware and/or other components of the infusion device 900 configured to determine delivery commands for operating the motor 904 using closed-loop control and perform various additional tasks, operations, functions and/or operations described herein. Depending on the embodiment, the control module 902 may be implemented or realized with a general purpose processor, a microprocessor, a controller, a microcontroller, a state machine, a content addressable memory, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. Furthermore, the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by the control module 902, or in any practical combination thereof. In exemplary embodiments, the motor control module 902 includes or otherwise accesses a data storage element or memory 908, including any sort of random access memory (RAM), read only memory (ROM), flash memory, registers, hard disks, removable disks, magnetic or optical mass storage, short or long term storage media, or any other non-transitory computer-readable medium capable of storing programming instructions for execution by the control module 902. The computer-executable programming instructions, when read and executed by the control module 902, cause the control module 902 to perform the tasks, operations, functions, and processes described in greater detail below. In this regard, the control scheme or algorithm implemented by the control module 902 may be realized as control application code that is stored or otherwise maintained in the memory 908 and executed by the control module 902 to implement or otherwise provide the closed-loop PID control components (e.g., blocks 720, 722, 724, 726, 728, 730) in software.
Still referring to
In the illustrated embodiment of
Still referring to
Referring to
It should be understood that
The control module 1002 generally represents the hardware, circuitry, logic, firmware and/or other components of the electronic device 1000 configured to perform the various tasks, operations, functions and/or operations described herein and support the updating and monitoring processes described herein in connection with the infusion system 800 of
In the illustrated embodiment, the communications interface 1006 generally represents the hardware, software, firmware and/or combination thereof that is coupled to the control module 1002 and cooperatively configured to support communications to/from the electronic device 1000 via a network in a conventional manner. In this regard, when the electronic device 1000 is realized as the client device 806, the communications arrangement may include a first transceiver module configured to support communications on the first network 810 and a second transceiver module configured to support communications on the second network 812.
The display device 1008 is realized as an electronic display (e.g., a liquid crystal display (LCD), a light emitting diode (LED) display, or the like) configured to graphically display data and/or information under control of the control module 1002. For example, the user associated with the infusion device 802 may manipulate the client device 806 in a manner that causes the control module 1002 to generate, on the display device 1008, one or more graphical representations associated with the condition of the user being regulated by the infusion device 802, such as, for example, a current glucose level of the user, a graph or chart of the user's glucose level versus time, device status indicators, alert messages, or the like. In some embodiments, the user associated with the infusion device 802 may manipulate the client device 806 in a manner that causes the control module 1002 to contact the monitoring device 804 for a graphical representation of the stored measurement data maintained in the database 808. For example, the monitoring device 804 may generate a graph of the user's historical daily average insulin concentration profile and provide the graph to the client device 806 for presentation on the display 1008. In other embodiments, the control module 1002 may present, on the display 1008, graphical user interface (GUI) elements adapted to allow the user to modify one or more aspects of his or her treatment. For example, a user may modify a target value utilized by the infusion device 802 to generate delivery commands or modify the reference (or target) insulin profiles used by the monitoring device 804 to determine control information for the infusion device 802.
The illustrated process 1100 initializes or otherwise begins by pairing a fluid infusion device with an electronic device that will function as an intermediary for communications between the fluid infusion device and a monitoring device (task 1102). In this regard, the infusion device 702, 802, 900 establishes an association with the client device 806 that is subsequently utilized to establish, create, or otherwise support the peer-to-peer communication session 814. For example, the user may manipulate the infusion device 802, 900 in a manner that causes the control module 902 to enable or otherwise operate a transceiver module associated with the communications interface 906 such that the infusion device 802, 900 is discoverable on the first network 810 or is otherwise capable of discovering the client device 806 on the first network 810. Additionally, the user manipulates the client device 806 to initiate the update module 807 and enable or otherwise operate a transceiver module of the client device 806 such that the client device 806 is discoverable on the first network 810 or is otherwise capable of discovering the infusion device 802 on the first network 810.
In response to detecting the client device 806 on the first network 810, the infusion device 802, 900 and/or control module 902 obtains network identification information for the client device 806 and stores the network identification information (e.g., in memory 908). In this regard, the network identification information may be utilized to uniquely identify and/or authenticate the client device 806 on the first network 810. For example, the network identification information for the client device 806 may include an address of the client device 806 on the first network 810, a unique identifier associated with the transceiver module or another hardware component of the client device 806 used to access the first network 810 (e.g., a Bluetooth address, a media access control address, or the like), and/or the like. In some embodiments, the infusion device 802, 900 may also obtain identification information for the client device 806 on the second network 812, such as a unique identifier associated with the client device 806 (e.g., a mobile phone number, an international mobile station equipment identity number, or the like).
The client device 806 also obtains network identification information that may be utilized to uniquely identify and/or authenticate the infusion device 802, 900 on the first network 810 and stores the obtained network identification information. For example, the network identification information for the infusion device 802, 900 may include an address of the infusion device 802, 900 on the first network 810, and/or the like. In exemplary embodiments, the infusion device 802, 900 may also be configured to provide a unique identifier associated with the infusion device 802, 900 (e.g., a pump ID number) and/or a unique identifier associated with the user (e.g., a user ID number) that may be used by the monitoring device 804 to maintain an association between the client device 806, the infusion device 802, 900, and/or the user wearing the infusion device 802, 900.
As described in greater detail below in the context of
Still referring to
In response to receiving an indication of an update to the control information, the update process 1100 continues by establishing a peer-to-peer communication session with the paired client device (task 1106). In this regard, the client device 806 automatically transmits or otherwise provides an indication or notification of a desire to establish the peer-to-peer communication session 814 (e.g., a connection request) to the infusion device 802, 900 via the first network 810 in response to receiving an indication or notification from the monitoring device 804. In response to receiving the indication from the client device 806, the infusion device 802, 900 automatically transmits or otherwise provides a response or acknowledgement to the client device 806 via the first network 810 that establishes or otherwise creates the peer-to-peer communication session 814. In response to the peer-to-peer communication session 814 being established, the client device 806 and/or update module 807 automatically transmits or otherwise provides, to the monitoring device 804 via the network 812, a response to the indication or notification previously received from the monitoring device 804 that establishes or otherwise creates the peer-to-peer communication session 816.
After establishing the peer-to-peer communication session with the client device, the update process 1100 continues by receiving the control information determined by the monitoring device from the client device via the peer-to-peer communication session (task 1108). In this regard, in response to the peer-to-peer communication session 816 being established, the monitoring device 804 automatically transmits or otherwise provides the control information intended for the infusion device 802, 900 to the client device 806 and/or update module 807 via the peer-to-peer communication session 816 over the network 812. The client device 806 and/or update module 807 automatically retransmits, streams, or otherwise forwards the control information received from the monitoring device 804 to the infusion device 802, 900 via the peer-to-peer communication session 814 over the first network 810. In this manner, the infusion device 802, 900 receives or otherwise obtains the control information via the peer-to-peer communication session 814.
Once the updated control information is received by the infusion device, the update process 1100 continues by terminating the peer-to-peer communication session with the client device (task 1110). In one or more embodiments, the client device 806 and/or update module 807 may identify or otherwise determine when all of the control information received from the monitoring device 804 has been transmitted to the infusion device 802, 900. For example, the monitoring device 804 may automatically indicate a desire to terminate the peer-to-peer communication session 816 after transmitting all of the control information intended for the infusion device 802, 900. Thereafter, the client device 806 and/or update module 807 identifies that the peer-to-peer communication session 814 can be terminated in response to termination of the peer-to-peer communication session 816 when all of the control information has been transmitted to the infusion device 802, 900. In some embodiments, the client device 806 and/or update module 807 may also request a confirmation from the infusion device 802, 900 that the entirety of the control information has been received. In response to determining that the peer-to-peer communication session 814 can be terminated, the client device 806 and/or update module 807 may automatically transmit or otherwise provide an indication or notification to terminate the peer-to-peer communication session 814 (e.g., a disconnection request) to the infusion device 802, 900 via the first network 810. In response to receiving the indication, the infusion device 802, 900 automatically terminates the peer-to-peer communication session 814. In exemplary embodiments, the control module 902 automatically transitions the transceiver module of the communications interface 906 that is utilized for receiving the control information from the active mode to a low power mode (e.g., a sleep mode, an idle mode, or the like), thereby terminating the peer-to-peer communication session 814.
Still referring to
After the control information maintained by the infusion device is updated, the update process 1100 continues by operating the infusion device to deliver fluid to the user and regulate a condition of the user in accordance with the updated control information (task 1114). In exemplary embodiments, when closed-loop control of the infusion device 702, 802, 900 is enabled, the control module 708, 902 executes or otherwise implements the control application code maintained in the memory 908 to provide closed-loop PID control of the condition of its associated user in accordance with the control parameter values maintained in the parameter registers 910. In this regard, the control module 708, 902 obtains a measured value for the condition of the user from sensing arrangement 706, obtains the target value for the condition from the target parameter register 910, and determines the difference between the measured value and the target value. Thereafter, the control module 708, 902 multiplies the difference by the proportional gain coefficient value in the proportional gain parameter register 910, multiples the integral of the difference by the integration gain coefficient value in the integration gain parameter register 910, multiples the derivative of the difference by the derivative gain coefficient value in the derivative gain parameter register 910, and sums the products to obtain a delivery command for operating the motor 710, 904. Thereafter, the delivery command is converted to one or more motor commands corresponding an amount of rotation of the rotor of the motor 710, 904 (e.g., a number of motor steps or the like) that displaces the plunger of the reservoir 712 to deliver, to the body 704 of the user, an amount of fluid corresponding to the delivery command. In this manner, the closed-loop PID control regulates the condition of the user to the target value maintained in the target parameter register 910 in accordance with the control scheme or algorithm stored in memory 908. Accordingly, subsequently measured values for the condition of the user obtained by the sensing arrangement 706 are influenced by the delivery command determined by the control module 708, 902, which, in turn, is influenced by the control information received from the monitoring device 804.
Still referring to
In response to determining that updated measurement data should be uploaded, the update process 1100 continues by establishing a peer-to-peer communication session with the client device, transmitting or otherwise providing the measurement data to the client device via the peer-to-peer communication session, and then terminating the peer-to-peer communication session (tasks 1118, 1120, 1122). The infusion device 802, 900 autonomously initiates the peer-to-peer communication session 814 by transitioning the transceiver module of the communications interface 906 from a low power mode to an active mode and transmitting or otherwise providing an indication of a desire to establish the peer-to-peer communication session 814 (e.g., a connection request) to the client device 806 via the first network 810. In response, the client device 806 and/or update module 807 initiates or otherwise establishes the peer-to-peer communication session 816 with the monitoring device 804 before providing a response to the infusion device 802, 900 that establishes the peer-to-peer communication session 814. In response to the peer-to-peer communication sessions 814, 816 being established, the infusion device 802, 900 automatically transmits the measurement data and delivery data to the client device 806 via the peer-to-peer communication session 814, and the client device 806 and/or update module 807 automatically retransmits, streams, or otherwise forwards the measurement data and delivery data received via the peer-to-peer communication session 814 to the monitoring device 804 via the peer-to-peer communication session 816 over the second network 812. In this manner, the infusion device 802, 900 autonomously pushes or otherwise uploads measurement data and delivery data to the monitoring device 804 via the client device 806.
In exemplary embodiments, after transmitting the measurement data, the infusion device 802, 900 transmits or otherwise provides a termination request to the client device 806 to terminate the peer-to-peer communication session 814 and delete or otherwise remove any measurement data from the client device 806. After transmitting all of the measurement data and receiving the termination request, the client device 806 transmits a confirmation to the infusion device 802, 900 indicating that the measurement data has been deleted from the client device 806 and that the peer-to-peer communication session 814 will be terminated, and terminates the peer-to-peer communication session 816 in response to termination of the peer-to-peer communication session 814. In response to the confirmation, the control module 902 may automatically transition the transceiver module of the communications interface 906 from the active mode to a low power mode thereby terminating the peer-to-peer communication session 814.
In exemplary embodiments, the update process 1100 continues operating the infusion device in accordance with the stored control information and periodically uploading measurement data to the monitoring device (e.g., tasks 1114, 1116, 1118, 1120, 1122) until receiving an indication of an update to the control information (e.g., task 1104). In this regard, recent (or new) measurement data that is influenced by the control information currently stored and/or implemented by the infusion device 802, 900 is periodically provided to the monitoring device 804, which, in turn, analyzes that recently obtained measurement data for that user in conjunction with historical measurement data and/or delivery data for that user stored in the database 808 to determine whether any control information should be adjusted. When the monitoring device 804 determines the control information for that user should be adjusted, the monitoring device 804 indicates or otherwise notifies the client device 806 and/or update module 807 to establish the peer-to-peer communication session 814. Thereafter, the update process 1100 repeats the steps of downloading the updated control information to the infusion device and updating the control information implemented by the infusion device as described above (e.g., tasks 1106, 1108, 1110, 1112). In this manner, the control information maintained by the infusion device may be dynamically updated in a user-specific (or patient-specific) manner based on that user's recent and historical measurement and delivery data to better accommodate lifestyle changes by the user and/or changes in the user's needs.
The illustrated process 1200 begins by establishing an association between a client device and a fluid infusion device and/or user (task 1202). As described above, in response to pairing the client device 806 with the infusion device 802, the client device 806 and/or update module 807 automatically communicates with the monitoring device 804 to identify its associated infusion device 802 and/or user. In response, the monitoring device 804 establishes or otherwise maintains an association between the client device 806, the infusion device 802, and/or the user wearing the infusion device 802 using the information received from the client device 806. For example, the client device 806 may establish a peer-to-peer communication session 816 with the monitoring device 804 over the second network 812 and provide the monitoring device 804 with the unique identifier(s) associated with the infusion device 802, 900 and/or the user wearing the infusion device 802, 900 along with identification information for the client device 806 on the second network 812. The network identification information for the client device 806 may include an address of the client device 806 on the second network 812, a unique identifier associated with the transceiver module or another hardware component of the client device 806 used to access the second network 812, a unique identifier associated with the client device 806 on the second network 812 (e.g., a mobile phone number, an international mobile station equipment identity number, or the like), and/or other information that may be utilized to uniquely identify and/or authenticate the client device 806 on the second network 812. The monitoring device 804 stores the network identification information for the client device 806 in the database 808 in association with the unique identifier(s) associated with the infusion device 802 and/or the user wearing the infusion device 802, thereby establishing and maintaining an association between the client device 806 and its associated infusion device 802 and/or user.
In the illustrated embodiment, the monitoring process 1200 continues by receiving or otherwise obtaining measurement data from the infusion device via its associated client device and storing or otherwise maintaining the measurement data in association with the infusion device (tasks 1204, 1206). For example, as described above, the infusion device 802 may periodically initiate the peer-to-peer communication session 814 with the client device 806 over network 810 to periodically upload measurement data and/or delivery data to the monitoring device 804. In response to the request for the peer-to-peer communication session 814 from the infusion device 802, the client device 806 and/or update module 807 automatically initiates the peer-to-peer communication session 816 with the monitoring device 804, for example, by transmitting a request for the peer-to-peer communication session 816 over the second network 812. The monitoring device 804 transmits or otherwise provides a response or acknowledgement of the request that establishes the peer-to-peer communication session 816 with the client device 806, which, in turn establishes the peer-to-peer communication session 814 with the infusion device 802. Thereafter, the measurement data and/or delivery data is uploaded to the monitoring device 804 by the client device 806 automatically retransmitting measurement data and/or delivery data received from the infusion device 802 via the peer-to-peer communication session 814 to the monitoring device 804 via the peer-to-peer communication session 816 on the second network 812. The monitoring device 804 uses the stored identification information for the client device 806 on the second network 812 to identify the received measurement data and/or delivery data as being from the client device 806 associated with the infusion device 802 (e.g., by analyzing source information in a packet header), and thereby stores the received measurement data and/or delivery data in association with the infusion device 802, its associated user and/or the client device 806 using their respective stored identifiers. In exemplary embodiments, the client device 806 terminates the peer-to-peer communication session 816 after retransmitting the entirety of the measurement and delivery data received from the infusion device 802 to the monitoring device 804 and ensuring that the measurement and delivery data is deleted or otherwise removed from the client device 806.
In exemplary embodiments, the monitoring process 1200 continues by analyzing the recently received measurement data from an infusion device in conjunction with the previously stored measurement data from the infusion device to autonomously determine whether the control information for that infusion device should be updated, changed, or otherwise adjusted to better accommodate the needs of its associated user (tasks 1208, 1210). For example, depending on the embodiment, the monitoring device 804 may determine that the control information implemented by an infusion device 802 should be updated automatically when a particular duration of time has elapsed since the last time the control information was updated (e.g., for periodic updates), when an updated value for a control parameter deviates from the current value for that control parameter being implemented by the infusion device 802 by more than a threshold amount, or when a new control algorithm is available for being implemented by the infusion device 802 (e.g., a new release of control application code and/or an update to the existing application code). In this regard, for each particular infusion device 802 in the infusion system 800, the monitoring device 804 may store or otherwise maintain (e.g., in database 808) versioning information for the control application code being implemented by that infusion device 802 along with the values for control parameters that are currently being utilized by that infusion device 802 (e.g., the current gain coefficients and/or target value).
When the monitoring process 1200 determines that the control information for an infusion device should be updated, adjusted or otherwise modified, the monitoring process 1200 determines updated control information for the infusion device based on the stored measurement data and/or delivery data for its associated user (task 1212). For example, using the recently received measurement data and/or delivery data for the user along with the previously stored measurement data and/or delivery data for the user, the monitoring device 804 may calculate or otherwise determine updated PID gain coefficients, updated target values, and/or updated values for one or more other patient-specific control parameters as described above. In this regard, by utilizing relatively greater amounts of measurement data and/or delivery data that may be stored by the database 808 to determine the updated control information, the updated control information determined by the monitoring device 804 is likely to more accurately and/or reliably reflect the user's insulin response and/or requirements.
Once the updated control information is determined, the monitoring process 1200 continues by initiating establishment of peer-to-peer communication sessions with the client device and transmitting the updated control information to the infusion device via the peer-to-peer communication sessions with the client device (tasks 1214, 1216, 1218). In this regard, the monitoring device 804 initiates the peer-to-peer communication session 816 by transmitting or otherwise providing a request to the client device 806 and/or update module 807 via the second network 812, wherein in response, the client device 806 and/or update module 807 automatically attempts to initiate the peer-to-peer communication session 814 over the first network 810. In response to the peer-to-peer communication session 814 being established, the client device 806 and/or update module 807 provides a response, acknowledgment, or some other indication to the monitoring device 804 that establishes the peer-to-peer communication session 816. Once the peer-to-peer communication sessions 814, 816 are established, the monitoring device 804 automatically transmits the updated control information to the client device 806 via the peer-to-peer communication session 816 over the second network 812, wherein the client device 806 automatically retransmits the updated control information to the infusion device 802 via the peer-to-peer communication session 814 over the first network 810. After the monitoring device 804 has transmitted the entirety of the control information to the client device 806, the monitoring device 804 terminates the peer-to-peer communication session 816, which, in turn, causes the client device 806 to terminate the peer-to-peer communication session 814 with the infusion device 802. In this manner, the monitoring device 804 autonomously pushes updated control information to the infusion device 802. The loop defined by tasks 1204, 1206, 1208, 1210, 1212, 1214, 1216, and 1218 may repeat indefinitely throughout operation of an infusion device to dynamically update or otherwise adjust the closed-loop control being implemented by the infusion device to better accommodate the changes to the needs of its associated user.
In one or more embodiments, after transmitting the updated control information, the monitoring device 804 transmits or otherwise provides a termination request to the client device 806 to terminate the peer-to-peer communication session 816 and delete or otherwise remove any control information from the client device 806. After transmitting all of the control information and receiving the termination request, the client device 806 transmits a confirmation to the monitoring device 804 indicating that the control information has been deleted from the client device 806 and that the peer-to-peer communication session 816 will be terminated, and terminates the peer-to-peer communication session 814 in response to termination of the peer-to-peer communication session 816. In response to the confirmation, the monitoring device 804 may automatically terminate the peer-to-peer communication session 816.
To periodically upload new measurement data and/or delivery data to the monitoring device 804, the infusion device 802 utilizes the stored identification information for the client device 806 on the first network 810 to initiate the peer-to-peer communication session 814 by transmitting 1312 a connection request to the client device 806. In response, the client device 806 automatically transmits 1314 a connection request to the monitoring device 804. When the monitoring device 804 responds 1316 to establish the peer-to-peer communication session 816, the client device 806 automatically responds 1318 to the infusion device 802 to establish the peer-to-peer communication session 814. In response to establishing the peer-to-peer communication session 814, the infusion device 802 automatically transmits 1320 the measurement data and/or delivery data to the client device 806 via the peer-to-peer communication session 814, and the client device 806 automatically retransmits 1322 the measurement data to the monitoring device 804 via the peer-to-peer communication session 816. Using the association between the client device 806 and the infusion device 802, the monitoring device 804 stores 1324 the received measurement data and/or delivery data in association with the infusion device 802 and/or its associated user. It should be noted that, in exemplary embodiments, the new measurement data and/or delivery data is uploaded from the infusion device 802 to the monitoring device 804 via the client device 806 in an automated manner without any interaction being required on behalf of the user wearing the infusion device 802 and/or using the client device 806. As described above, in some embodiments, after transmitting the measurement data and/or delivery data to the client device 806, the infusion device 802 and the client device 806 may perform a termination procedure that requires the client device 806 to provide an acknowledgment or confirmation to the infusion device 802 that the measurement data and/or delivery data has been deleted or otherwise removed from the client device 806 before terminating the peer-to-peer communication sessions 814, 816.
To periodically update the control information implemented by the infusion device 802, the monitoring device 804 may periodically access or otherwise obtain 1326 the stored measurement data and/or delivery data associated with the infusion device 802 in the database 808 and analyze the measurement data and/or delivery data to determine updated control parameters for the infusion device 802. Thereafter, the monitoring device 804 utilizes the stored identification information for the client device 806 on the second network 812 to initiate the peer-to-peer communication session 816 by transmitting 1328 a connection request to the client device 806. In response, the client device 806 automatically transmits 1330 a connection request to the infusion device 802. When the infusion device 802 responds 1332 to establish the peer-to-peer communication session 814, the client device 806 automatically responds 1334 to the monitoring device 804 to establish the peer-to-peer communication session 816. In response to establishing the peer-to-peer communication session 816, the monitoring device 804 automatically transmits 1336 the updated control information to the client device 806 via the peer-to-peer communication session 816, and the client device 806 automatically retransmits 1338 the control information to the infusion device 802 via the peer-to-peer communication session 814. Thereafter, the infusion device 802 may update its stored control information, for example, by overwriting previous parameter values stored in the parameter registers 910 with updated parameter values. Again, it should be noted that the updated control information may be downloaded to the infusion device 802 from the monitoring device 804 via the client device 806 in an automated manner without any interaction being required on behalf of the user wearing the infusion device 802 and/or using the client device 806. Furthermore, in some embodiments, after transmitting the updated control information to the client device 806, the monitoring device 804 and the client device 806 may perform a termination procedure that requires the client device 806 provide an acknowledgment or confirmation to the monitoring device 804 that the control information has been deleted or otherwise removed from the client device 806 before terminating the peer-to-peer communication sessions 814, 816.
The foregoing description may refer to elements or nodes or features being “connected” or “coupled” together. As used herein, unless expressly stated otherwise, “coupled” means that one element/node/feature is directly or indirectly joined to (or directly or indirectly communicates with) another element/node/feature, and not necessarily mechanically. In addition, certain terminology may also be used in the herein for the purpose of reference only, and thus is not intended to be limiting. For example, terms such as “first”, “second”, and other such numerical terms referring to structures do not imply a sequence or order unless clearly indicated by the context.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. For example, the subject matter described herein is not limited to the infusion devices and related systems described herein. Moreover, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application. Accordingly, details of the exemplary embodiments or other limitations described above should not be read into the claims absent a clear intention to the contrary.
This application is a continuation of U.S. patent application Ser. No. 15/834,043, filed Dec. 6, 2017, which is a continuation of U.S. patent application Ser. No. 13/972,803, filed Aug. 21, 2013, the entire contents of each of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3631847 | Hobbs, II | Jan 1972 | A |
4212738 | Henne | Jul 1980 | A |
4270532 | Franetzki et al. | Jun 1981 | A |
4282872 | Franetzki et al. | Aug 1981 | A |
4373527 | Fischell | Feb 1983 | A |
4395259 | Prestele et al. | Jul 1983 | A |
4433072 | Pusineri et al. | Feb 1984 | A |
4443218 | Decant, Jr. et al. | Apr 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4542532 | Mcquilkin | Sep 1985 | A |
4550731 | Batina et al. | Nov 1985 | A |
4559037 | Franetzki et al. | Dec 1985 | A |
4562751 | Nason et al. | Jan 1986 | A |
4671288 | Gough | Jun 1987 | A |
4678408 | Nason et al. | Jul 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4731051 | Fischell | Mar 1988 | A |
4731726 | Ill | Mar 1988 | A |
4755173 | Konopka et al. | Jul 1988 | A |
4781798 | Gough | Nov 1988 | A |
4803625 | Fu et al. | Feb 1989 | A |
4809697 | Ill et al. | Mar 1989 | A |
4826810 | Aoki | May 1989 | A |
4871351 | Feingold | Oct 1989 | A |
4898578 | Rubalcaba, Jr. | Feb 1990 | A |
5003298 | Havel | Mar 1991 | A |
5011468 | Lundquist et al. | Apr 1991 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5080653 | Voss et al. | Jan 1992 | A |
5097122 | Colman et al. | Mar 1992 | A |
5100380 | Epstein et al. | Mar 1992 | A |
5101814 | Palti | Apr 1992 | A |
5108819 | Heller et al. | Apr 1992 | A |
5153827 | Coutre et al. | Oct 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5247434 | Peterson et al. | Sep 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5284140 | Allen et al. | Feb 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5307263 | Brown | Apr 1994 | A |
5317506 | Coutre et al. | May 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5339821 | Fujimoto | Aug 1994 | A |
5341291 | Roizen et al. | Aug 1994 | A |
5350411 | Ryan et al. | Sep 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5357427 | Langen et al. | Oct 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5370622 | Livingston et al. | Dec 1994 | A |
5371687 | Holmes, II et al. | Dec 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5403700 | Heller et al. | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5482473 | Lord et al. | Jan 1996 | A |
5485408 | Blomquist | Jan 1996 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5497772 | Schulman et al. | May 1996 | A |
5522803 | Teissen-Simony | Jun 1996 | A |
5543326 | Heller et al. | Aug 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5569187 | Kaiser | Oct 1996 | A |
5573506 | Vasko | Nov 1996 | A |
5582593 | Hultman | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593390 | Castellano et al. | Jan 1997 | A |
5593852 | Heller et al. | Jan 1997 | A |
5594638 | Illiff | Jan 1997 | A |
5609060 | Dent | Mar 1997 | A |
5626144 | Tacklind et al. | May 1997 | A |
5630710 | Tune et al. | May 1997 | A |
5643212 | Coutre et al. | Jul 1997 | A |
5660163 | Schulman et al. | Aug 1997 | A |
5660176 | Iliff | Aug 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5685844 | Martiila | Nov 1997 | A |
5687734 | Dempsey et al. | Nov 1997 | A |
5704366 | Tacklind et al. | Jan 1998 | A |
5750926 | Schulman et al. | May 1998 | A |
5754111 | Garcia | May 1998 | A |
5764159 | Neftel | Jun 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5779665 | Mastrototaro et al. | Jul 1998 | A |
5788669 | Peterson | Aug 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5807336 | Russo et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5814015 | Gargano et al. | Sep 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5832448 | Brown | Nov 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5861018 | Feierbach et al. | Jan 1999 | A |
5868669 | Iliff | Feb 1999 | A |
5871465 | Vasko | Feb 1999 | A |
5879163 | Brown et al. | Mar 1999 | A |
5885245 | Lynch et al. | Mar 1999 | A |
5897493 | Brown | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5904708 | Goedeke | May 1999 | A |
5913310 | Brown | Jun 1999 | A |
5917346 | Gord | Jun 1999 | A |
5918603 | Brown | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5933136 | Brown | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5940801 | Brown | Aug 1999 | A |
5954643 | Van Antwerp et al. | Sep 1999 | A |
5956501 | Brown | Sep 1999 | A |
5960403 | Brown | Sep 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5972199 | Heller et al. | Oct 1999 | A |
5978236 | Faberman et al. | Nov 1999 | A |
5997476 | Brown | Dec 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999849 | Gord et al. | Dec 1999 | A |
6009339 | Bentsen et al. | Dec 1999 | A |
6017328 | Fischell et al. | Jan 2000 | A |
6032119 | Brown et al. | Feb 2000 | A |
6043437 | Schulman et al. | Mar 2000 | A |
6081736 | Colvin et al. | Jun 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6101478 | Brown | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6183412 | Benkowski et al. | Feb 2001 | B1 |
6186982 | Gross et al. | Feb 2001 | B1 |
6246992 | Brown | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6259937 | Schulman et al. | Jul 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6355021 | Nielsen et al. | Mar 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6408330 | Delahuerga | Jun 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6472122 | Schulman et al. | Oct 2002 | B1 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6485465 | Moberg et al. | Nov 2002 | B2 |
6503381 | Gotoh et al. | Jan 2003 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6544173 | West et al. | Apr 2003 | B2 |
6544212 | Galley et al. | Apr 2003 | B2 |
6553263 | Meadows et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560741 | Gerety et al. | May 2003 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6591125 | Buse et al. | Jul 2003 | B1 |
6591876 | Safabash | Jul 2003 | B2 |
6592745 | Feldman et al. | Jul 2003 | B1 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607658 | Heller et al. | Aug 2003 | B1 |
6616819 | Liamos et al. | Sep 2003 | B1 |
6618934 | Feldman et al. | Sep 2003 | B1 |
6623501 | Heller et al. | Sep 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6671554 | Gibson et al. | Dec 2003 | B2 |
6676816 | Mao et al. | Jan 2004 | B2 |
6689265 | Heller et al. | Feb 2004 | B2 |
6723046 | Lichtenstein et al. | Apr 2004 | B2 |
6728576 | Thompson et al. | Apr 2004 | B2 |
6733471 | Ericson et al. | May 2004 | B1 |
6736797 | Larsen et al. | May 2004 | B1 |
6740072 | Starkweather et al. | May 2004 | B2 |
6746582 | Heller et al. | Jun 2004 | B2 |
6747556 | Medema et al. | Jun 2004 | B2 |
6749587 | Flaherty | Jun 2004 | B2 |
6749740 | Liamos et al. | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6766183 | Walsh et al. | Jul 2004 | B2 |
6801420 | Talbot et al. | Oct 2004 | B2 |
6804544 | Van Antwerp et al. | Oct 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6817990 | Yap et al. | Nov 2004 | B2 |
6827702 | Lebel et al. | Dec 2004 | B2 |
6881551 | Heller et al. | Apr 2005 | B2 |
6892085 | Mcivor et al. | May 2005 | B2 |
6893545 | Gotoh et al. | May 2005 | B2 |
6895263 | Shin et al. | May 2005 | B2 |
6916159 | Rush et al. | Jul 2005 | B2 |
6932584 | Gray et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6942518 | Liamos et al. | Sep 2005 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7029444 | Shin et al. | Apr 2006 | B2 |
7066909 | Peter et al. | Jun 2006 | B1 |
7137964 | Flaherty | Nov 2006 | B2 |
7153263 | Carter et al. | Dec 2006 | B2 |
7153289 | Vasko | Dec 2006 | B2 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7323142 | Pendo et al. | Jan 2008 | B2 |
7396330 | Banet et al. | Jul 2008 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7442186 | Blomquist | Oct 2008 | B2 |
7602310 | Mann et al. | Oct 2009 | B2 |
7621893 | Moberg et al. | Nov 2009 | B2 |
7647237 | Malave et al. | Jan 2010 | B2 |
7699807 | Faust et al. | Apr 2010 | B2 |
7727148 | Talbot et al. | Jun 2010 | B2 |
7785313 | Mastrototaro | Aug 2010 | B2 |
7806886 | Kanderian, Jr. et al. | Oct 2010 | B2 |
7819843 | Mann et al. | Oct 2010 | B2 |
7828764 | Moberg et al. | Nov 2010 | B2 |
7879010 | Hunn et al. | Feb 2011 | B2 |
7890295 | Shin et al. | Feb 2011 | B2 |
7892206 | Moberg et al. | Feb 2011 | B2 |
7892748 | Norrild et al. | Feb 2011 | B2 |
7901394 | Ireland et al. | Mar 2011 | B2 |
7942844 | Moberg et al. | May 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7955305 | Moberg et al. | Jun 2011 | B2 |
7963954 | Kavazov | Jun 2011 | B2 |
7977112 | Burke et al. | Jul 2011 | B2 |
7979259 | Brown | Jul 2011 | B2 |
7985330 | Wang et al. | Jul 2011 | B2 |
8024201 | Brown | Sep 2011 | B2 |
8100852 | Moberg et al. | Jan 2012 | B2 |
8114268 | Wang et al. | Feb 2012 | B2 |
8114269 | Cooper et al. | Feb 2012 | B2 |
8137314 | Mounce et al. | Mar 2012 | B2 |
8181849 | Bazargan et al. | May 2012 | B2 |
8182462 | Istoc et al. | May 2012 | B2 |
8192395 | Estes et al. | Jun 2012 | B2 |
8195265 | Goode, Jr. et al. | Jun 2012 | B2 |
8202250 | Stutz, Jr. | Jun 2012 | B2 |
8207859 | Enegren et al. | Jun 2012 | B2 |
8226615 | Bikovsky | Jul 2012 | B2 |
8257259 | Brauker et al. | Sep 2012 | B2 |
8267921 | Yodfat et al. | Sep 2012 | B2 |
8275437 | Brauker et al. | Sep 2012 | B2 |
8277415 | Mounce et al. | Oct 2012 | B2 |
8292849 | Bobroff et al. | Oct 2012 | B2 |
8298172 | Nielsen et al. | Oct 2012 | B2 |
8303572 | Adair et al. | Nov 2012 | B2 |
8305580 | Aasmul | Nov 2012 | B2 |
8308679 | Hanson et al. | Nov 2012 | B2 |
8313433 | Cohen et al. | Nov 2012 | B2 |
8318443 | Norrild et al. | Nov 2012 | B2 |
8323250 | Chong et al. | Dec 2012 | B2 |
8343092 | Rush et al. | Jan 2013 | B2 |
8352011 | Van Antwerp et al. | Jan 2013 | B2 |
8353829 | Say et al. | Jan 2013 | B2 |
8474332 | Bente, IV et al. | Jul 2013 | B2 |
8603026 | Favreau | Dec 2013 | B2 |
9444888 | Iyer | Sep 2016 | B2 |
9880528 | Mastrototaro et al. | Jan 2018 | B2 |
9889257 | Mastrototaro et al. | Feb 2018 | B2 |
11024408 | Mastrototaro et al. | Jun 2021 | B2 |
20010044731 | Coffman et al. | Nov 2001 | A1 |
20020013518 | West et al. | Jan 2002 | A1 |
20020055857 | Mault et al. | May 2002 | A1 |
20020082665 | Haller | Jun 2002 | A1 |
20020137997 | Mastrototaro et al. | Sep 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030060765 | Campbell et al. | Mar 2003 | A1 |
20030078560 | Miller et al. | Apr 2003 | A1 |
20030088166 | Say et al. | May 2003 | A1 |
20030144581 | Conn et al. | Jul 2003 | A1 |
20030152823 | Heller | Aug 2003 | A1 |
20030176183 | Drucker et al. | Sep 2003 | A1 |
20030188427 | Say et al. | Oct 2003 | A1 |
20030199744 | Buse et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030220552 | Reghabi et al. | Nov 2003 | A1 |
20040015132 | Brown | Jan 2004 | A1 |
20040061232 | Shah et al. | Apr 2004 | A1 |
20040061234 | Shah et al. | Apr 2004 | A1 |
20040064133 | Miller et al. | Apr 2004 | A1 |
20040064156 | Shah et al. | Apr 2004 | A1 |
20040073095 | Causey et al. | Apr 2004 | A1 |
20040074785 | Holker et al. | Apr 2004 | A1 |
20040093167 | Braig et al. | May 2004 | A1 |
20040097796 | Berman et al. | May 2004 | A1 |
20040102683 | Khanuja et al. | May 2004 | A1 |
20040111017 | Say et al. | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040167465 | Mihal et al. | Aug 2004 | A1 |
20040263354 | Mann et al. | Dec 2004 | A1 |
20050038331 | Silaski et al. | Feb 2005 | A1 |
20050038680 | Mcmahon et al. | Feb 2005 | A1 |
20050154271 | Rasdal et al. | Jul 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20060229694 | Schulman et al. | Oct 2006 | A1 |
20060238333 | Welch et al. | Oct 2006 | A1 |
20060293571 | Bao et al. | Dec 2006 | A1 |
20070078986 | Ethier et al. | Apr 2007 | A1 |
20070088521 | Shmuel et al. | Apr 2007 | A1 |
20070123819 | Mernoe et al. | May 2007 | A1 |
20070135866 | Baker et al. | Jun 2007 | A1 |
20070253021 | Mehta et al. | Nov 2007 | A1 |
20080071251 | Moubayed et al. | Mar 2008 | A1 |
20080154503 | Wittenber et al. | Jun 2008 | A1 |
20080249386 | Besterman et al. | Oct 2008 | A1 |
20080312512 | Brukalo et al. | Dec 2008 | A1 |
20090058635 | Lalonde et al. | Mar 2009 | A1 |
20090081951 | Erdmann et al. | Mar 2009 | A1 |
20090082635 | Baldus et al. | Mar 2009 | A1 |
20090153092 | Hosokawa et al. | Jun 2009 | A1 |
20090156991 | Roberts | Jun 2009 | A1 |
20100160861 | Causey, III et al. | Jun 2010 | A1 |
20100198842 | Giraudon et al. | Aug 2010 | A1 |
20100199162 | Boucard | Aug 2010 | A1 |
20110054391 | Ward et al. | Mar 2011 | A1 |
20110233393 | Hanson et al. | Sep 2011 | A1 |
20120016295 | Tsoukalis | Jan 2012 | A1 |
20120271380 | Roberts et al. | Oct 2012 | A1 |
20120277667 | Yodat et al. | Nov 2012 | A1 |
20130046281 | Javitt | Feb 2013 | A1 |
20130142367 | Berry | Jun 2013 | A1 |
20130171938 | Mears | Jul 2013 | A1 |
20130188040 | Kamen et al. | Jul 2013 | A1 |
20130191513 | Kamen | Jul 2013 | A1 |
20130203347 | Moosavi | Aug 2013 | A1 |
20130274705 | Burnes et al. | Oct 2013 | A1 |
20130294455 | Chen et al. | Nov 2013 | A1 |
20130317753 | Kamen et al. | Nov 2013 | A1 |
20140075015 | Chan | Mar 2014 | A1 |
20180101151 | Mastrototaro | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
1713849 | Dec 2005 | CN |
101257450 | Sep 2008 | CN |
101589393 | Nov 2009 | CN |
4329229 | Mar 1995 | DE |
0319268 | Nov 1988 | EP |
0806738 | Nov 1997 | EP |
0880936 | Dec 1998 | EP |
1338295 | Aug 2003 | EP |
1631036 | Mar 2006 | EP |
2410448 | Jan 2012 | EP |
2218831 | Nov 1989 | GB |
2010524050 | Jul 2010 | JP |
WO 9620745 | Jul 1996 | WO |
WO 9636389 | Nov 1996 | WO |
WO 9637246 | Nov 1996 | WO |
WO 9721456 | Jun 1997 | WO |
WO 9820439 | May 1998 | WO |
WO 9824358 | Jun 1998 | WO |
WO 9842407 | Oct 1998 | WO |
WO 9849659 | Nov 1998 | WO |
WO 9859487 | Dec 1998 | WO |
WO 9908183 | Feb 1999 | WO |
WO 9910801 | Mar 1999 | WO |
WO 9918532 | Apr 1999 | WO |
WO 9922236 | May 1999 | WO |
WO 0010628 | Mar 2000 | WO |
WO 0019887 | Apr 2000 | WO |
WO 0048112 | Aug 2000 | WO |
02066101 | Aug 2002 | WO |
WO 02058537 | Aug 2002 | WO |
WO 03001329 | Jan 2003 | WO |
2003015838 | Feb 2003 | WO |
WO 03094090 | Nov 2003 | WO |
WO 2005065538 | Jul 2005 | WO |
2008097316 | Aug 2008 | WO |
Entry |
---|
Response to Examiner's Requisition dated Jan. 10, 2022, from counterpart Canadian Application No. 2921189, filed Apr. 12, 2022, 23 pp. |
Office Action from counterpart Canadian Application No. 2,921,189 dated Jan. 10, 2022, 3 pp. |
(Animas Corporation, 1999). Animas . . . bringing new life to insulin therapy. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1999 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(Intensive Diabetes Management, 1995). Insulin Infusion Pump Therapy. pp. 66-78. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1995 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(Medtronic MiniMed, 2002). Medtronic MiniMed Meal Bolus Calculator and Correction Bolus Calculator. International Version. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 2002 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(Medtronic MiniMed, 2002). The 508 Insulin Pump a Tradition of Excellence. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 2002 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed Inc. 1999). MiniMed 508 Flipchart Guide to Insulin Pump Therapy. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1999 is sufficiently earlier than The effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed Inc., 1999). Insulin Pump Comparison I Pump Therapy Will Change Your Life. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1999 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed Inc., 2000). MiniMed® Now [I] Can Meal Bolus Calculator I MiniMed® Now [I] Can Correction Bolus Calculator. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 2000 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed Inc., 2000). Now [I] Can MiniMed Diabetes Management. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 2000 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed Inc., 2000). Now [I] Can MiniMed Pump Therapy. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 2000 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed International, 1998). MiniMed 507C Insulin Pump for those who appreciate the difference. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1998 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed Technologies, 1994). MiniMed 506 Insulin Pump User's Guide. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1994 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed Technologies, 1994). MiniMedrM Dosage Calculator Initial Meal Bolus Guidelines I MiniMed™ Dosage Calculator Initial Basal Rate Guidelines Percentage Method. 4 pages. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1994 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed, 1996). FAQ: The Practical Things . . . . pp. 1-4. Retrieved on Sep. 16, 2003 from the WOrld Wide Web: http://web.archive.orglwebl19961111054546/www.minimed.com/fileslfag_pract.htm. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1996 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed, 1996). MiniMedTM 507Insulin Pump User's Guide. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1996 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed, 1996). The MiniMed 506. 7 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http:/lweb.archive.orglweb/19961111054527/www.minimed.comlfiles/506_pic.htm. |
(Minimed, 1997). MiniMed 507 Specifications. 2 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/199701242348411www.minimed.comlfileslmmn075.htm. |
(MiniMed, 1997). MiniMedrM 507 Insulin Pump User's Guide. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1997 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed, 1997). Wanted: a Few Good Belt Clips! 1 page. Retrieved on Sep. 16, 2003 from the World Wide Web: http:l/web.archive.orglweb1199701242345591www.minimed.comlfileslmmn002.htm. |
(MiniMed, 1998). MiniMed 507C Insulin Pump User's Guide. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1998 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
(MiniMed, 2000). MiniMed® 508 User's Guide. Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 2000 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Abel, P., et al., “Experience with an implantable glucose sensor as a prerequiste of an artificial beta cell,” Biomed. Biochim. Acta 43 (1984) 5, pp. 577-584. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1984 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Bindra, Dilbir S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for a Subcutaneous Monitoring,” American Chemistry Society, 1991, 63, pp. 1692-1696. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Bode B W, et al. (1996). Reduction in Severe Hypoglycemia with Long-Term Continuous Subcutaneous Insulin Infusion in Type I Diabetes. Diabetes Care, vol. 19, No. 4, 324-327. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1984 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Boguslavsky, Leonid, et al., “Applications of redox polymers in biosensors,” Sold State Ionics 60, 1993, pp. 189-197. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1993 is sufficiently earlier than the effective U.S. filing date, so that the particular month ef publication is not in issue.). |
Boland E (1998). Teens Pumping it Up! Insulin Pump Therapy Guide for Adolescents. 2nd Edition. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1998 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Brackenridge B P (1992). Carbohydrate Gram Counting a Key to Accurate Mealtime Boluses in Intensive Diabetes Therapy. Practical Diabetology, vol. 11, No. 2, pp. 22-28. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1992 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Brackenridge, B P et al. (1995). Counting Carbohydrates How to Zero in on Good Control. MiniMed Technologies Inc. (Applicant points out, in accordance with MPEP 609.04(a), that the year publication, 1995 is earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Detlef Schoder et al. Core Concepts in Peer-to-Peer Networking. Peer to Peer Computing the Evolution of a Disruptive Technology. Rarnesh Subramanian and Brian D. Goodman. Editors. 2005, Chapter 1. pp. 1-27. Idea Group Inc .⋅ Hershey. PA. ISBN 1-59140-429-0 (hard cover)—ISBN 1-59140-430-4 (soft cover)—ISBN 1-59140-431-2 (Ebook). (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 2005 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
H-TRON® plus Quick Start Manual. (no date). |
H-TRON®plus Reference Manual. (no date). |
My Choice H-TRONplus Insulin Pump Reference Manual. (no date). |
My Choice™ D-TRONTM Insulin Pump Reference Manual. (no date). |
Farkas-Hirsch Ret al. (1994). Continuous Subcutaneous Insulin Infustion: a Review of the Past and Its Implementation for the Future. Diabetes Spectrum From Research to Practice, vol. 7, No.2, pp. 80-84, 136-138. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1994 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Geise, Robert J., et al., “Electropolymerized 1,3-diaminobenzene for the construction of a 1,1′-dimethylferrocene mediated glucose biosensor,” Analytica Chimica Acta, 2B1, 1993, pp. 467-473. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1993 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Gernet, S., et al., “A Planar Glucose Enzyme Electrode,” Sensors and Actuators, 17, 1989, pp. 537-540. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1989 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Gernet, S., et al., “Fabrication and Characterization of a Planar Electromechanical Cell and its Application as a Glucose Sensor,” Sensors and Actuators, 18, 1989, pp. 59-70. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1989 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Gorton, L., et al., “Amperometric Biosensors Based on an Apparent Direct Electron Transfer Between Electrodes and Immobilized Peroxiases,” Analyst, Aug. 1991, vol. 117, pp. 1235-1241. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Gorton, L., et al., “Amperometric Glucose Sensors Based on Immobilized Glucose—Oxidizing Enymes and Chemically Modified Electrodes,” Analytica Chimica Acta, 249, 1991, pp. 43-54. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Gough, D. A., et al., “Two-Dimensional Enzyme Electrode Sensor for Glucose,” Analytical Chemistry, vol. 57, No. 5, 1985, pp. 2351-2357. (Applicant points out; in accordance with MPEP 609.04(a), that the year of publication, 1985 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Gregg, Brian A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications,” Analytical Chemistry, 62, Feb. 1990, pp. 258-263. |
Gregg, Brian A., et al., “Redox Polymer Films Containing Enzymes. 1. a Redox- Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone,” The Journal of Physical Chemistry, vol. 95, No. 15, 1991, pp. 5970-5975. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
HASHIGUCHI, Yasuhiro, MD, et al., “Development of a Miniaturized Glucose Monitoring System by Combining a Needle-Type Glucose Sensor With Microdialysis Sampling Method,” Diabetes Care, vol. 17, No. 5, May 1994, pp. 387-389. |
Heller, Adam, “Electrical Wiring of Redox Enzymes,” Ace. Chern. Res., vol. 23, No. 5, May 1990, pp. 128-134. |
Hirsch I B et al. (1990). Intensive Insulin Therapy for Treatment of Type I Diabetes. Diabetes Care, vol. 13, No. 12, pp. 1265-1283. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1990 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Jacques L. Favreau, Dynamic Pulse-Width Modulation Motor Control and Medical Device Incorporating Same, U.S. Appl. No. 13/425,174, filed Mar. 20, 2012. |
Jobst, Gerhard, et al., “Thin-Film Microbiosensors for Glucose-Lactate Monitoring,” Analytical Chemistry, vol. 68, No. 18, Sep. 15, 1996, pp. 3173-3179. |
Johnson, K.W., et al., “In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue,” Biosensors & Bioelectronics, 7, 1992, pp. 709-714. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1992 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Jonsson, G., et al., “An Electromechanical Sensor for Hydrogen Peroxide Based on Peroxidase Adsorbed on a Spectrographic Graphite Electrode,” Electroanalysis, 1989, pp. 465-468. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1989 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Kanapieniene, J. J., et al., “Miniature Glucose Biosensor with Extended Linearity,” Sensors and Actuators, B. 10, 1992, pp. 37-40. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1992 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Kawamori, Ryuzo, et al., “Perfect Normalization of Excessive Glucagon Responses to Intraveneous Arginine in Human Diabetes Mellitus With the Artificial Beta-Cell,” Diabetes vol. 29, Sep. 1980, pp. 762-765. |
Kimura, J., et al., “An Immobilized Enzyme Membrane Fabrication Method,” Biosensors 4, 1988, pp. 41-52. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1988 is sufficiently earlier thar the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Koudelka, M., et al., “In-vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors,” Biosensors & Bioelectronics 6, 1991, pp. 31-36. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Koudelka, M., et al., “Planar Amperometric Enzyme-Based Glucose Microelectrode,” Sensors & Actuators, 18, 1989, pp. 157-165. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Kulkarni Ket al. (1999). Carbohydrate Counting a Primer for Insulin Pump Users to Zero in on Good Control. MiniMed Inc. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1999 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Marcus A 0 et al. (1996). Insulin Pump Therapy Acceptable Alternative to Injection Therapy. Postgraduate Medicine, vol. 99, No. 3, pp. 125-142. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1996 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Mastrototaro, John J., et al. “An electroenzymatic glucose sensor fabricated on a flexible substrate,” Sensors & Actuators, B. 5,1991, pp. 139-144. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Mastrototaro, John J., et al., “An Electroenzymatic Sensor Capable of 72 Hour Continuous Monitoring of Subcutaneous Glucose,” 14th Annual International Diabetes Federation Congress, Washington D.C .. Jun. 23-28, 1991. |
McKean, Brian D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors,” IEEE Transactions on Biomedical Engineering, Vo. 35, No. 7, Jul. 1988, pp. 526-532. |
Monroe, D., “Novel Implantable Glucose Sensors,” ACL, Dec. 1989, pp. 8-16. |
Morff, Robert J., et al., “Microfabrication of Reproducible, Economical, Electroenzymatic Glucose Sensors,” AnnuaalInternational Conference ofteh IEEE Engineering in Medicine and Biology Society, Vo. 12, No. 2, 1990, pp. 483-484. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1999 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Moussy, Francis, et al., “Performance of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a Novel Trilayer Coating,” Analytical Chemistry, vol. 65, No. 15, Aug. 1, 1993, pp. 2072-2077. |
Nakamoto, S., et al., “A Lift-off Method for Patterning Enzyme-Immobilized Membranes in Multi-Biosensors,” Sensors and Actuators 13, 1988, pp. 165-172. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1988 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Nishida, Kenro, et al., “Clinical applications often wearable artificial endocrine pancreas with the newly designed needle-type glucose sensor,” Elsevier Sciences B.V., 1994, pp. 353-358. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1994 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Nishida, Kenro, et al., “Development of a ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible membrane, 2-methacryloyloxyethylphosphorylcholine -co-n-butyl methacrylate,” Medical Progress Through Technology, vol. 21, 1995, pp. 91-103. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1995 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Poitout, V., et al., “A glucose monitoring system for on line estimation on man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit,” Diabetologia, vol. 36, published Jul. 1993, pp. 658-663. |
Reach, G., “A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors,” Biosensors 2, 1986, pp. 211-220. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1986 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Reed J et al. (1996). Voice of the Diabetic, vol. 11, No. 3, pp. 1-38. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1986 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Shaw, G. W., et al., “In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients,” Biosensors & Bioelectronics 6, 1991, pp. 401-406. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Shichiri, M., “A Needle-Type Glucose Sensor—a Valuable Tool Not Only for a Self-Blood Glucose Monitoring but for a Wearable Artificial Pancreas,” Life Support Systems Proceedings, XI Annual Meeting ESAO, Alpbach-Innsbruck, Austria, Sep. 1984, pp. 7-9. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers,” Hormone and Metabolic Research, Supplement Series vol. No. 20, 1988, pp. 17-20. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1998 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Shichiri, M., et al., “Membrane design for extending the long-life of an implantable glucose sensor,” Diab. Nutr. Metab., vol. 2, No. 4, 1989, pp. 309-313. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Shichiri, Motoaki, et al., “An artificial endocrine pancreas—problems awaiting solution for long-term clinical applications of a glucose sensor,” Frontiers Med. Bioi. Engng., 1991, vol. 3, No. 4, pp. 283-292. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1998 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Shichiri, Motoaki, et al., “Closed-Loop Glycemic Control with a Wearable Artificial Endocrine Pancreas—Variations in Daily Insulin Requirements to Glycemic Response,” Diabetes, vol. 33, Dec. 1984, pp. 1200-1202. |
Shichiri, Motoaki, et al., “Giycaemic Control in a Pacreatectomized Dogs with a Wearable Artificial Endocrine Pancreas,” Diabetologia, vol. 24, 1983, pp. 179-184. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1983 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Shichiri, Motoaki, et al., “Normalization of the Paradoxic Secretion of Glucagon in Diabetes Who Were Controlled by the Artificial Beta Cell,” Diabetes, vol. 28, Apr. 1979, pp. 272-275. |
Shichiri, Motoaki, et al., “Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: a useful Tool for Blood Glucose Monitoring in Diabetic Individuals,” Diabetes Care, vol. 9, No. 3, May-Jun. 1986, pp. 298-301. |
Shichiri, Motoaki, et al., “The Wearable Artificial Endocrine Pancreas with a Needle-Type Glucose Sensor: Perfect Glycemic Control in Ambulatory Diabetes,” Acta Paediatr Jpn, Dec. 1984, vol. 26, pp. 359-370. |
Shichiri, Motoaki, et al., “Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor,” The Lancet, Nov. 20, 1992, pp. 1129-1131. |
Shinkai, Seiji, “Molecular Recognition of Mono- and Di-saccharides by Phenylboronic Acids in Solvent Extraction and as a Monolayer,” J. Chem. Soc., Chem. Commun., 1991, pp. 1039-1041. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Shults, Mark C., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors,” IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, Oct. 1994, pp. 937-942. |
Skyler J S, “Continuous Subcutaneous Insulin Infusion [CSII] With External Devices: Current Status. Update in Drug Delivery Systems,” Chapter 13, pp. 163-183, 1989, Futura Publishing Company. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1989 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Skyler J S et al. (1995). The Insulin Pump Therapy Book Insights from the Experts. MiniMed Technologies, (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1995 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Sternberg, Robert, et al., “Study and Development of Multilayer Needle-type Enzyme—based Glucose Microsensors,” Biosensors, vol. 4, 1988, pp. 27-40. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1988 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Strowig S M (1993). Initiation and Management of Insulin Pump Therapy. The Diabetes Educator, vol. 19, No. 1, pp. 50-60. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1993 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Tamiya, E., et al., “Micro Glucose Sensors using Electron Mediators Immobilized on a Polypyrrole-Moditied Electrode,” Sensors and Actuators, vol. 18, 1989, pp. 297-307. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1989 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Tsukagoshi, Kazuhiko, et al., “Specific Complexation with Mono- and Disaccharides that can be Detected by Circular Dichroism,” J. Org. Chem., vol. 56, 1991, pp. 4089-4091. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Ubran, G., et al., “Miniaturized thin-film biosensors using covalently immobilized glucose oxidase,” Biosensors & Bioelectronics, vol. 6, 1991, pp. 555-562. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1991 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Urban, G., et al., “Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications,” Biosensors & Bioelectronics, vol. 7, 1992, pp. 733-739. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1992 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Velho, G., et al., “In vivo calibration of a subcutaneous glucose sensor for determination of subcutaneous glucose kinetics,” Diab. Nutr. Metab., vol. 3, 1988, pp. 227-233. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1988 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Walsh J, et al. (1989). Pumping Insulin: the Art of Using an Insulin Pump. Published by MiniMed Technologies. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1989 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Wang, Joseph, et al., “Needle-Type Dual Microsensor for the Simultaneous Monitoring of Glucose and Insulin,” Analytical Chemistry, vol. 73, 2001, pp. 844-847. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 2001 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Yamasaki, Yoshimitsu, et al., “Direct Measurement of Whole Blood Glucose by a Needle-Type Sensor,” Clinics Chimica Acta, vol. 93, 1989, pp. 93-98. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1989 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Yokoyama, K., “Integrated Biosensor for Glucose and Galactose,” Analytica Chimica Acta, vol. 218, 1989 pp. 137-142 (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 1989 is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
International Search Report from International Application No. PCT/US2002/03299, dated Dec. 31, 2002. |
International Search Report from International Application No. PCT/US2014/050775, dated Jan. 19, 2015, 16 pp. |
Prosecution History from European Patent Application No. 14755305.1, dated from Sep. 4, 2017 through Apr. 11, 2019, 190 pp. |
Prosecution History from European Patent Application No. 19159057.9, dated from Jul. 29, 2019 through Jan. 20, 2020, 23 pp. |
Prosecution History from U.S. Appl. No. 13/972,803, filed Mar. 24, 2016 through Dec. 18, 2017, 105 pp. |
Prosecution History from U.S. Appl. No. 15/834,043, filed Apr. 1, 2020 through Oct. 1, 2020, 28 pp. |
Number | Date | Country | |
---|---|---|---|
20210257076 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15834043 | Dec 2017 | US |
Child | 17313849 | US | |
Parent | 13972803 | Aug 2013 | US |
Child | 15834043 | US |