Streaming digital video between video devices using a cable television system

Information

  • Patent Grant
  • 9021541
  • Patent Number
    9,021,541
  • Date Filed
    Friday, October 14, 2011
    13 years ago
  • Date Issued
    Tuesday, April 28, 2015
    10 years ago
Abstract
Systems and methods are presented that permit an individual to share digital video between video devices using a cable television system. A first video device streams digital video to a cable headend, which transcodes it and stitches it with other video content, such as a menuing system. The headend then transmits the digital video to a second video device, such as a set top box, for display. The data stream may be controlled using a standard set top box remote control, and the system may be used without purchasing additional hardware or software, or configuring a wireless local area network.
Description
TECHNICAL FIELD

The present invention relates to sharing digital video between electronic devices, and more particularly to using a television system to establish a private, bidirectional data channel to stream personalized digital video for the enjoyment of subscribers.


BACKGROUND ART

Digital video forms an integral part of modern life. Private digital video devices allow us to record our life experiences for later review and enjoyment. Professional digital video, in the form of movies and television, allows us to see life through the eyes of others, and to benefit from their wisdom and their follies. As social creatures, we often wish to share these experiences with others, and we relish the opportunity to invite others into our homes for viewing sessions.


Digital media may be downloaded for viewing using a video player, or viewed on web sites such as YouTube using a web browser that supports streaming media. Digital media also may be recorded using video devices ranging from smartphones, to professional and amateur video cameras, to webcams on personal computers. There are many different and incompatible methods and locations for storing this media. As a result, there are many different and incompatible methods for later viewing: on a phone display, on a television screen, on a computer display (using one of several incompatible viewers). As a result, people who wish to later view this digital video must learn many different display and control interfaces, and educate themselves as to the intricacies of the different media formats. It would be simpler to view all digital media using a single video device, as the viewer would only have to learn how to use that single device.


It is known in the art to share video between computers and televisions, although methods for doing so are cumbersome or expensive. Some computers, including laptops, have video outputs that may be connected directly to a television video input using special cables. Setting up such systems is often difficult, as the process entails several steps of varying technical skill: analyzing the computer and the television to determine which kind of cable or cables are required; connecting the components properly; directing the computer to transmit video to the television, often through a non-intuitive sequence or combination of keystrokes or by running a custom application; tuning the television to the appropriate channel; adjusting the video resolution, size and position of the viewable area, brightness and color balance, and so on. Many of these steps are beyond the capabilities of the average person, and even if they are performed correctly, the video quality is often poor, and control of the television display must be performed awkwardly from the computer. Furthermore, for cable television subscribers, this arrangement often bypasses a cable set top box that controls ordinary cable television reception. Thus, a subscriber must learn how to change back and forth between ordinary cable television and the direct connection to the computer having the digital video.


One solution to this problem has been the use of an intermediate computer that interfaces to both the personal computer and the television. Commercial embodiments of this solution include the Apple TV® digital media extender from Apple, Inc. of Cupertino, Calif. However, this solution requires the user to purchase an additional computer and learn how to configure it, which some individuals may be unwilling or unable to do. Also, this solution requires the user to set up a wireless local network on the premises to allow the intermediate computer to connect to the personal computer, which a non-skilled person may find difficult. A different solution, in which the television itself has wireless networking and the personal computer connections with the television wirelessly, suffers from the same problem. Yet another solution is to convert the personal computer into a cable set top box, or “media center,” using purchased or downloaded software. An advantage of using this approach is that other, more general applications found on the computer may be used on the television, such as web browsers, email clients and so on. Examples of this solution are the MythTV home entertainment application developed by Mr. Isaac Richards, and the Boxee system, from Boxee, Inc. However, these solutions do not solve the problem of avoiding complex and unfamiliar user interfaces, as they typically have custom menus and require the use of a keyboard and mouse to control the web browser, email client, and other added features that appear on the television. These solutions may also require the user to set up a wireless local area network, although some do permit direct cable connections from a set top box to the personal computer (with the aforementioned disadvantages).


SUMMARY OF ILLUSTRATED EMBODIMENTS

In accordance with various embodiments of the present invention, systems and methods are presented that overcome these difficulties by using existing cable television infrastructure to share digital video on smartphones, personal computers, and other devices with a set top box. These systems and methods do not require connecting a computer to a television with a cable, purchasing additional computers and configuring them, or setting up a local, wireless data connection on the premises. Furthermore, these systems are controlled using a standard set top box remote control, permitting cable subscribers to use a standard cable system menu, without being forced to use a keyboard and mouse to control the image displayed on the television or to learn a new menuing interface.


In a first embodiment there is provided a method of streaming digital video between a first video device and a second video device. The digital video may include audio data, moving image data, still image data, or any combination of these, and may be encoded according to an MPEG specification. The first video device, which may be a personal computer or a smartphone for example, is connected to a public data network, such as the Internet. The second video device may be a television or a TV set top box, and is connected to a cable television system having a cable network and a cable headend. The cable headend is also connected to the public data network. The second video device may be controlled by a video device controller, such as a remote control.


The method includes establishing a first bidirectional data channel from the first video device to the cable headend and establishing a second bidirectional data channel over the cable network from the second video device to the cable headend. Doing so permits bidirectional data communication between the first video device and the second video device through the cable headend. Once the data communication has been established, the method further includes receiving a first data stream that includes the digital video at the cable headend from the first video device using the first data channel. Next, the method includes forming a second data stream that includes a second video that is based on the received digital video. The second video may be the received digital video, or it may comprise a transcoding of the received digital video into a format that is decodable by the second video device. Furthermore, the second video may include a plurality of video frames, each video frame having a frame of the digital video stitched together with another image, such as a navigation button, an advertisement, information associated with the first video device, information associated with the digital video. The method further includes transmitting the second data stream from the cable headend to the second video device using the second data channel. The data stream is controlled by sending commands from the video device controller to the first video device over the first and second data channels. Finally, the second video may be displayed on a television.


In some related embodiments, the first and second video devices are located within the premises of an individual. In such cases, it may be the case that no bidirectional data channel between the first and second video devices exists entirely within the premises. In other related embodiments, establishing the first data channel includes receiving, from the first video device, a first request to establish the first data channel, the first request having request parameters that include a unique identifier; and authorizing the establishment of the first data channel based on the request parameters. The first request may be received over either the public data network or over the cable network. The unique identifier may be a media access control (MAC) address that is uniquely associated with the first video device. And establishing the second data channel may include receiving, from the second video device, a second request to establish the second data channel, the second request having request parameters that include the unique identifier; identifying the first video device using the received unique identifier; and associating the second video device with the identified first video device.


These methods may be implemented using the systems described below, or similar systems. Further, the methods may be implemented in computer hardware or software, or a combination of these. Computer software may be provided as a computer program product having program code stored thereon.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:



FIG. 1 is a depiction of an example embodiment of the invention in which an individual streams video data from a smartphone into a cable television system for display on a television;



FIG. 2 is a depiction of a second example embodiment in which an individual streams video data from a personal computer to a television located on the same premises;



FIG. 3 is a block diagram showing the functional components of the embodiment of FIG. 2;



FIG. 4 is a timing diagram showing example processes that may be used to share digital video between a first video device and a second video device in accordance with an embodiment of the invention; and



FIG. 5 is a flowchart showing these processes from the perspective of a cable television operator at a cable television headend.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Definitions. As used in this description and the accompanying claims, the following terms shall have the meanings indicated, unless the context otherwise requires:


Digital video refers to encoded digital data pertaining to a plurality of images, sounds, or both images and sounds. The plurality of images may include moving images, different images presented sequentially with a perceptible delay, or repetitions of a still image. The data may be encoded using any encoding format known in the art, especially a format according to an MPEG specification.


A video device refers to any electronic device capable of capturing, encoding, or displaying digital video, including without limitation smartphones, personal computers, video cameras, television set top boxes, and smart televisions.


A cable network is a network of physical cables that is used for distributing electrical or optical signals, including digital video. For example, a television system uses a network of coaxial or optical fiber cables to distribute television signals to subscribers.


Cable television system refers to a television system that delivers television signals to viewers using a cable network, be it electrical, optical, or a combination of these. While specific reference is made in various places to components of an electrical cable television system for ease of explanation, the corresponding components in a fiber optic television system are expressly contemplated.


A bidirectional data channel is a data channel that sends digital video from a first video device to a second video device in a first direction, and commands for controlling the first video device from the second video device to the first video device in the opposite direction. In embodiments of the invention, the second video device does not share video with the first video device, so the channel in the first direction may use a much higher data rate than the channel in the opposite direction.



FIG. 1 is a depiction of a typical embodiment of the invention. In accordance with this embodiment, an individual is able to take video of an interesting scene and stream it back to a television for viewing by someone else. The individual 100 possesses a video device, such as smartphone 110. The individual 100 uses smartphone 110 to capture streaming video (and perhaps audio) of an interesting scene, in this case a building 120. The smartphone 110 encodes the captured audiovisual data into digital video, and streams the digital video to a communications tower 130, for example using the smartphone's cellular network connection. Communications tower 130 transmits the digital video across a public data network 140, such as the Internet, to a cable television headend 150. The headend 150 forwards the digital video through a private cable network 160 to a subscriber premises 170. Inside the premises 170 is a typical cable television apparatus, including a cable set top box 172, a television 174, and a remote control 176. The cable set top box 172 receives the digital video and decodes it for display on the television 174. The remote control 176 is used to tune the set top box 172 to an appropriate channel for such display. In an alternate embodiment (not shown), the television 174 incorporates the decoding and tuning functions of the set top box 172, in which case the remote control 176 may directly control those functions inside the television.


As described in more detail below, cable television headend 150 performs any necessary reformatting and transcoding of the digital video stream to allow it to be viewed optimally on television 174. Such reformatting may include resizing the video, altering the video's resolution, mixing in other video such as advertisements, and other reformatting as is known in the art. Transcoding may include converting the digital video from a source format to a format that is decodable by the set top box 172.



FIG. 2 is a depiction of a second example embodiment in which an individual streams video data from a personal computer to a television located on the same premises. In this embodiment the individual 100 accesses the digital video on a personal computer, such as laptop 200. For example, the individual 100 may have transferred to laptop 200 the video previously shot using the smartphone 110 from FIG. 1, and now wishes to relive a memory associated with the experience. Or, laptop 200 may contain digital video from another source, such as a DVD or Blu-Ray disc or a stored video file, and the individual wishes to watch the video on television 174 using the remote control 176 to control playback. This latter use case is advantageous in that the individual 100 need not possess a standalone player to be able to watch video discs.


In FIG. 2, the connection 210 to the public data network 140 may be accomplished using wires or cables, or it may be wireless. In a particularly advantageous embodiment, individual 100 is a cable television subscriber and cable television headend 150 provides Internet access. In this embodiment, connection 210, which is used to stream the digital video upstream, uses the same cables as connections 220, 222, which are used to stream appropriately encoded television signals to set top box 172 from the cable television headend 150. In this way, no additional cables are required to connect laptop 200 to set top box 172 or television 174.


However, it should be emphasized that, while the connection between laptop 200 and public data network 140 and the connection between headend 150 and set top box 172 may travel over the same physical cables, they comprise separate logical networks. For example, a cable television provider typically transmits data between headend 150 and premises 170 using signals having a frequency spectrum, and allocates different frequency windows to each connection. Frequencies belonging to the first connection may be selected using a signal filter in a cable modem. Thus, the laptop 200 does not have access to the television signals transmitted to set top box 172, and likewise set top box 172 does not have access to digital data on frequencies selected by the cable modem.


The arrangement of FIG. 2 is advantageous, because the set top box 172 integrates into the cable television system directly, so it is not necessary for subscriber 100 to separately purchase a second device (such as a second set top box) to share the digital video between devices. This arrangement may be used when there is no bidirectional data channel that connects the laptop 200 and the set top box 172, such as a wireless LAN, contained entirely within the premises.


Details of these embodiments now follow. FIG. 3 is a block diagram showing the functional components of the embodiment of FIG. 2. Cable television headend 150 and personal computer 200 are shown in greater detail. In accordance with the embodiment shown in FIG. 3, the subscriber obtains internet access through cable television headend 150 so connection 210 is omitted for clarity. However, other embodiments are contemplated in which the subscriber obtains internet access through other means, such as the cellular network as shown in FIG. 1, so the embodiment shown in FIG. 3 should not be construed to limit the scope of the invention. Further, while reference will be made to personal computer 200, it will be understood that other video devices may be employed, such as the smartphone 110 shown in FIG. 1, provided that they have installed on them the appropriate hardware or software applications as now described. In addition, while the various components are described as software, it is contemplated that particularly computationally expensive operations such as video and audio capture or video encoding may be performed in hardware.


Referring to FIG. 3, the functions of personal computer 200 are explained in more detail. Personal computer 200 includes a video application 310. This video application 310 may be, by way of illustration: a web browser that displays web pages having embedded videos in Java, Flash, HTML 5, or other web video format; a proprietary video disc player application such as the CyberLink PowerDVD player; an application that plays digital video from a file or a URL, such as the Microsoft Windows Media Player or the Apple QuickTime Player; screen capture software, such as that found in remote desktop applications like Windows Terminal Server, VNC Server from RealVNC Limited, or any of several applications from Citrix Systems, Inc.; or any other application that provides digital video and may be controlled programmatically through an application programming interface 312. For concreteness, and not by way of limitation, video application 310 will be treated as a web browser having open a web page having embedded digital video 350.


Personal computer 200 also includes video capture software 320 and audio capture software 322. Capture software 320, 322 may be embodied in a single software package, or they may be separate, and perform video and audio capture according to techniques known in the art. Although both video and audio capture are shown in FIG. 3, audio capture may be omitted in various contemplated embodiments. For example, if video application 310 does not provide any audio, then cable television headend 150 will not receive any audio from personal computer 200. In such cases, headend 150 may optionally mix audio into the video to provide a more enjoyable subscriber experience. Such audio may be selectable by the subscriber from an audio library using a remote control, or it may be of the television operator's choosing. Also, in some embodiments video capture and audio capture are performed using hardware instead of software.


Captured video (and audio, if present) are sent to encoder 330, which encodes the video and audio into encoded digital video data according to an encoding format known in the art, such as MPEG. Encoder 330 presents the encoded digital video to streamer 332. Streamer 332 streams the encoded digital video to cable television headend 150 over a bidirectional data channel using techniques known in the art. In such a configuration, streamer 332 acts as a server, and headend 150 acts as a video client that requests the digital video after a connection with the second video device has been established.


Control software 340 is provided to control and monitor streamer 332, and to provide feedback to a user of personal computer 200. Control software 340 is executed by the user to launch the streaming components, and communicates with streamer 332 using a local network (TCP) connection. Control software 340, upon launch, establishes a service connection with headend 150, and obtains a list of authorized IP addresses that are permitted to access the streaming video data. When a client attempts to connect to the streamer 332 and request streaming video, streamer 332 requests authorization from control software 340. Control software determines whether the IP address is authorized, and responds to streamer 332 so that streamer 332 may accept or deny the connection as appropriate. Control software 340 may also direct streamer 332 to terminate execution at the request of a subscriber.


Conversely, streamer 332 may provide status updates to control software 340, such as whether streamer 332 is awaiting a connection with the headend 150, that such a connection has been established or torn down, or that streamer 332 is currently streaming digital video. Control software 340 may display these status updates on a display of personal computer 200. Encoder 330, streamer 332, and control software 340 may be provided by the cable television system operator as a single downloadable software application for the convenience of a subscriber.


The functions of cable television headend 150 are now explained in greater detail. Headend 150 includes several computing modules connected by a local area network 360. These modules include a cable network interface 370 for communicating with the cable network 160. Interface 370 may include, for example, a cable modem termination system (CMTS) that provides high speed data services, such as Internet access and digital video streaming, to subscribers. Interface 370, when employed to provide the Internet access required by web browser 310, forwards requests to a public network interface 372, such as a network router, that acts as a gateway to public data network 140. Other hardware and software used in this process is omitted for clarity, but can include various modules that provide data security such as encryption, virus detection and removal, and so on. Thus, for example, requests for digital video 350 from browser 310 are passed through the cable network 160, cable network interface 370, local area network 360, and public network interface 372 on their way to the public data network 140. This data path is comparable to data path 210 of FIG. 2.


In addition to these data components, cable television headend 150 also includes transcoders 374 and stitchers 376. As is known in the art, transcoders convert data encoded in one format into a different format. In this connection, digital video that is not displayable using cable set top box 172 is transcoded into the appropriate format. In one embodiment, to reduce latency between the video application and display of its content on the television 174, encoder 330 may encode captured video and audio data using a simple encoding scheme. Such simple encoding schemes may be desired in some embodiments if personal computer 200 is not computationally powerful. In an alternate embodiment, digital video 350 may be directly downloaded from the public data network 140 via the public network interface 372. In this embodiment, the digital video 350 is saved at the headend for later streaming playback, but its format may be different from what set top box 172 supports. In either case, transcoders 374 re-encode the data into an appropriate format that is decodable by set top box 172. One or more transcoders may be employed to accommodate the demand of many subscribers.


Stitchers 376 take the transcoded content, along with other audiovisual content such as interactive menus, advertisements, and the like, and stitch them together to make a final television signal for display on television 174. Stitchers 376 may also contain other logic, for example logic that determines what other content should be stitched together with the transcoded digital video, logic for processing control messages from a remote control 176 (such as menu item selection or movement commands, start/stop stream commands, and the like), and logic to perform other functions. As with the transcoders, several stitchers 376 may be employed within cable television headend 150 to meet subscriber demand. Cable network interface 370, public networking interface 372, transcoders 374, and stitchers 376 may be hardware, software, or a combination of these.


It should be appreciated that cable television headend 150 may be part of a cable television system comprising several such headends, each headend serving a different cable network in a different geographic area. Further, multiple cable television systems may be grouped together under the administrative control of a single multiple system operator (MSO), as is known in the art. In such larger systems, each headend may or may not include the functional units shown in FIG. 3. For example, transcoders 374 and stitchers 376 servicing headend 150 may be located at a different headend of the MSO, or at a data center remote from the headend 150. These remote transcoders and stitchers may be connected to headend 150 using a private data network of the MSO (not shown). The low latency added by such a physical arrangement of components, coupled with the ease of administration gained by placing multiple pieces of equipment having similar functions in the same physical location, provides advantages over prior art systems.


The processes for establishing data channels between the personal computer 200 and the set top box 172, and for streaming digital video over those channels, are now described. These data channels are bidirectional. In a first direction, the personal computer 200 streams digital video to cable television headend 150, which forwards the video (after transcoding and stitching) to set top box 172 for eventual display. In the opposite direction, set top box 172 receives keystrokes from a remote control. These keystrokes may include commands to establish the channel, tear down the channel, and to start and stop playback of video, or select a different digital video source. In some more generalized embodiments, keystrokes are sent from the remote control to control the personal computer 200 in ways unrelated to streaming the digital video. For example, the remote control may be used to select a computer shut down function, or to launch an application such as an email client that will then display on the television connected to set top box 172. Other ways in which a remote control may fully utilize the bidirectional data channel between the set top box 172 and personal computer 200 in accordance with these embodiments may be envisioned by persons having skill in the art.



FIG. 4 is a timing diagram that illustrates the relevant processes. The first video device includes control software 410 and encoder/streamer 420, which appear in the example embodiment of FIG. 3 as control software 340, encoder 330, and streamer 332 respectively. The cable television headend includes transcoder 374 and stitcher 376, one or more rendezvous servers 430, and a streaming application 440, described in more detail below. The second video device in this example figure is a set top box 172. It will be appreciated that the only functionality required of set top box 172 is the ability to receive video data, change channels, and pass keystrokes upstream to a headend. No more complex hardware or software is required in the set top box 172, although some commercial embodiments may include them. It will be also appreciated that these processes are applicable not just to personal computers and set top boxes as described in the following, but may be generalized to operate on any video devices that are configured to play the roles of producer and consumer, respectively, of digital video.


In order to establish a bidirectional connection between the personal computer 200 and the set top box 172, two bidirectional data channels must be set up: one between the personal computer 200 and the cable television headend 150, and one between the headend 150 and the set top box 172. However, there is no pre-established association between a subscriber's set top box and her personal computer. Rendezvous servers 430 are provided at the headend to make this association, and to permit these two video devices to ‘find each other’, and to ensure authentication of the subscriber and authorization of the connection based on subscription and service parameters. Rendezvous may be facilitated using the fact that both video devices are associated with the subscriber. Rendezvous servers 430 accept offers to stream digital video and requests for the streamed digital video, and pair these offers and requests based on a unique subscriber identifier. The number of servers 430 used by any given headend may be determined by demand. In an alternate embodiment, a multiple system operator may house such rendezvous servers 430 at a data center or other location away from the cable headend that services the subscriber participating in these processes, and may share servers between headends depending on relative demand. Such an arrangement provides advantages when the MSO services several time zones, where demand for rendezvous services peaks and ebbs in different time zones at the same local time in each time zone.


In general, the cable television provider may wish to provide television signals to the subscriber at all times in order to avoid “dead air.” Practically speaking, this means that the connection between the headend 150 and the set top box 172 should be made only after a digital video stream is already available; in other words, after the connection between the headend 150 and the personal computer 200 has already been established and is pending on a rendezvous server 430. Other embodiments are contemplated; for example, if the connection between the set top box 172 and the headend 150 is made first, headend 150 may give the subscriber a “Waiting” screen, advertisements, or otherwise fill the “dead air” with meaningful television signals of the television operator's choosing.


Streaming application 440 provides two functions. First, it communicates with rendezvous servers 430 on behalf of the set top box 172 to establish one of the two bidirectional data channels. Second, it receives commands from a remote control 176 (shown in FIGS. 1 and 2) via the set top box 172, and forwards them to the first video device. In some embodiments, the streaming application 440 runs on a computer processor located at the headend. In other embodiments, the processor may be located elsewhere, such as another headend, or an MSO data center in close proximity to the rendezvous servers 430.


To begin the process, control software 410 connects to encoder/streamer 420 and verifies that these modules are functioning correctly. Next, control software 410 requests authorization to establish a first data channel to stream video data by sending a request to a rendezvous server 430. This request includes parameters that identify the subscriber. Rendezvous server 430 determines whether to permit the establishment of the data channel based on the subscriber identification, and may include, in some embodiments, determining whether the subscriber has paid for this feature. If authorization is granted, the rendezvous server 430 transmits service information to control software 410. This service information includes, among other data, a list of authorized IP addresses belonging to transcoders 374 that are employed by the cable television operator. Control software 410 stores this service information, and notifies the rendezvous server 430 that it stands ready to stream digital video.


Next, the subscriber uses remote control 176 to direct the set top box 172 to tune to a special channel. The headend receives a channel designation for the special channel, and instructs stitcher 376, which is responsible for providing the final, stitched video to the set top box, to launch streaming application 440. Application 440, under the assumption that a streaming peer has already been established, immediately requests that peer's information from rendezvous server 430. This second request to establish a data channel includes parameters that uniquely identify the subscriber, similar to the first request to establish a data channel. Thus, for example, the application 440 may request a web page URL using an HTTP GET request that includes this information.


If the subscriber is not authorized to receive this service, an error message may be returned by rendezvous server 430, allowing the set top box 172 to send an error message to the television. Otherwise, server 430 returns a detailed response to this request. As several personal computers, smartphones, or other video devices may be providing streaming digital video and have established connections, rendezvous server 430 returns peer information pertaining to one or more peers that are available for viewing selection by identifying the video devices using the unique identifier and associating the set top box with these devices. The peer information may include, for example, a list of connected set top boxes at the subscriber premises, a list of disconnected set top boxes that are available to stream video, a list of set top boxes that are not available to stream video, and other useful information, such as Internet Protocol (IP) addresses, media access control (MAC) addresses, timestamps, and the like. Typically, this information is returned in an XML format, but other formats known in the art may be used. Application 440 may use the returned information to display a menu of choices to the subscriber on set top box 172. Once a selection of which digital video to view, application 440 requests the digital video from rendezvous server 430.


Now that both bidirectional data channels have been established, rendezvous server 430 announces the completed connection to control software 410 on the first video device. The announcement includes an address of a transcoder 374. Control software 410 then instructs encoder/streamer 420 to connect begin encoding and streaming the digital video as a server. At the same time, control software contacts the transcoder 374 from the announcement, instructing it to request the streamed digital video from the encoder/streamer 420 as a client. Transcoder 374 requests the video stream from encoder/streamer 420, which, as noted above, requests authorization to stream from control software 410.


The video data stream itself includes the digital video, as well as other data. As is known in the art, header information may be added to the digital video data, such as real time streaming protocol (RTSP) headers, transmission control protocol (TCP) or user datagram protocol (UDP) headers, internet protocol (IP) headers, Ethernet frame headers, and so on. The digital video data is encoded using an encoding format known in the art, or in the case of live capture, unformatted data may be streamed.


As transcoder 374 receives the video stream, it transcodes it into a format that is decodable by the set top box 172. Next, this transcoded video stream is passed to stitcher 376, which performs stitching, scaling, and other video manipulation. Stitcher 376 forms a second video stream for display, by optionally stitching the digital video with another image, such as context help information, one or more navigation buttons, a menuing interface, an advertisement, information associated with the first video device, or information associated with the digital video. This stitched digital video is then passed as a second data stream from the headend to the set top box 172, and from there to the television.


A subscriber can control the video stream from the remote control 176, and need not return to the personal computer 200 or other first video device to do so, because the data channels are bidirectional. In particular, the subscriber may use the remote control 176 to send keystroke commands to the streaming application 440, as shown. In this case, the streaming application 440 receives the keystrokes and determines what interactive feature the subscriber wishes to access. If the feature is relevant to the streaming of digital video, application 440 forwards this information to stitcher 376. For example, if the subscriber clicks a “stop” or “disconnect” button in the set top graphical interface, presses a channel up or channel down key, or navigates away from the special channel, the stitcher will be notified that new television signals are required. In this case, the stitcher will notify the encoder/streamer 420 that a change to the stream (i.e., a tear down) is required. If necessary, the encoder/streamer 420 will notify control software 410 of the change.


However, in some embodiments, the subscriber may perform other actions using the remote control. It is contemplated that a subscriber may use a graphical user interface, provided by stitcher 376 or streaming application 440 to set top box 172, to alter other stream parameters. These other parameters include, for example: audio and video encoding parameters, a video resolution, a new file name or URL to stream, and the like. Control software may then present these changes to the video application 310 using an application programming interface (API). The use of such APIs is known in the art for this purpose. It is contemplated that any parameter that may be altered using an API of a video application 310 may be accessed and changed using a set top box remote control.


Further, in some additional embodiments, the remote control 176 may be used to control other aspects of the function of the first video device. For instance, if the first video device is obtaining the digital video from a web site, the remote control 176 may be used to cause the first video device to navigate to a new URL to obtain new digital video. Or, the remote control 176 can be used to send real-time text message data to the first video device. This embodiment is particularly useful in the environment of FIG. 1 to request that the individual 100 use smartphone 110 to film a different interesting scene, or to provide feedback on the quality of the streamed video, for example. In alternate embodiments, such as that of FIG. 2, the remote control 176 may be used to control a personal computer 200 in other ways, such as launching and using an email client or other software application, directing the computer to shut down, or performing some other useful action. A person skilled in the art may envision other useful applications of the control channel.



FIG. 5 is a flowchart showing the processes in FIG. 4 from the perspective of a cable television operator at a cable television headend, such as headend 150. In step 510 the headend establishes a first bidirectional data channel with a first video device, such as smartphone 110 or personal computer 200. Typically, the headend will employ a rendezvous server for this purpose, and includes authorizing the establishment of the first data channel based on parameters sent to the rendezvous server. In step 520 the headend establishes a second bidirectional data channel with a second video device, such as set top box 172. This step is typically performed when the headend receives information that the set top box has tuned to a special channel devoted to this purpose. Once both connections have been established, the headend may display a menu on the special channel, informing the subscriber what devices are currently available to stream digital video for viewing, and permitting the subscriber to choose a device using a remote control. Once the subscriber makes a selection, the headend directs the first video device to begin streaming digital video in a first data stream. This first data stream is received by the headend using the first data channel in step 530, and may be requested by a transcoder located at the headend. In step 540, the headend forms a second data stream including second video that is based on the received digital video. For example, the transcoder may transcode the received digital video into a format that is decodable by the second video device, if necessary. The properly formatted video may then be stitched together with other video images, such as a menu that permits the subscriber to start and stop playback or otherwise control the video stream from the remote control. If the other video images should not be mixed with or overlaid onto the digital video, the digital video may also be scaled at this time to provide empty space in each video frame in which to stitch the other video images. The second data stream includes the final transcoded, stitched video. In step 550, the headend transmits the second data stream to the second video device using the second data channel. The second video device may then send the video to a viewing device, such as a television 174, for the subscriber's enjoyment.


It should be noted that this logic flow diagram is used herein to demonstrate various aspects of the invention, and should not be construed to limit the present invention to any particular logic flow or logic implementation. The described logic may be partitioned into different logic blocks (e.g., programs, modules, functions, or subroutines) without changing the overall results or otherwise departing from the true scope of the invention. Often times, logic elements may be added, modified, omitted, performed in a different order, or implemented using different logic constructs (e.g., logic gates, looping primitives, conditional logic, and other logic constructs) without changing the overall results or otherwise departing from the true scope of the invention.


The present invention may be embodied in many different forms, including, but in no way limited to, computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device (e.g., a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof.


Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, linker, or locator). Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.


The computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g., PCMCIA card), or other memory device. The computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).


Hardware logic (including programmable logic for use with a programmable logic device) implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL).


Programmable logic may be fixed either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), or other memory device. The programmable logic may be distributed as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).


The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.

Claims
  • 1. A method of streaming digital video between a first video device and a second video device, the first video device being connected to a public data network, wherein the second video device is connected to a cable television system having a cable network and a cable headend, the cable headend also being connected to the public data network, the second video device being controlled by a video device controller, the method comprising: establishing a first bidirectional data channel from the first video device to the cable headend;establishing a second bidirectional data channel over the cable network from the second video device to the cable headend, thereby permitting bidirectional data communication between the first video device and the second video device through the cable headend;receiving a first data stream that includes the digital video at the cable headend from the first video device using the first bidrectional data channel;forming a second data stream that includes a second video that is based on the digital video received in the first data stream; andtransmitting the second data stream from the cable headend to the second video device using the second bidirectional data channel, wherein playback of the second video is controlled by sending commands from the video device controller to the second video device for onward transmission to the first video device over the first and second bidirectional data channels.
  • 2. The method of claim 1, wherein the digital video includes audio data, moving image data, still image data, or any combination of these.
  • 3. The method of claim 1, wherein the digital video is encoded according to an MPEG specification.
  • 4. The method of claim 1, wherein the first video device is a personal computer or a smartphone.
  • 5. The method of claim 1, wherein the second video device is a television or a set top box connected to a television and the device controller is a remote control.
  • 6. The method of claim 5, wherein the second data stream is a video stream transmitted from the headend to the second video device, and further comprising: decoding the video stream at the television or set top box; anddisplaying the second video on the television.
  • 7. The method of claim 1, wherein the second data stream is a video stream transmitted from the headend to the second video device.
  • 8. The method of claim 1, wherein forming the second data stream that includes the second video based on the digital video received in the first data stream further comprises transcoding of the received digital video into a format that is decodable by the second video device.
  • 9. The method of claim 1, wherein the second video comprises a plurality of video frames, each video frame comprising a frame of the digital video stitched together with an interactive menu.
  • 10. The method of claim 1, wherein the second video comprises a plurality of video frames, each video frame comprising a frame of the digital video stitched together with information associated with the first video device.
  • 11. The method of claim 1, wherein the public data network is the Internet accessed through a cellular network.
  • 12. The method of claim 1, wherein the first and second video devices are located within the same premises.
  • 13. The method of claim 12, wherein no bidirectional data channel between the first and second video devices exists entirely within the premises.
  • 14. The method of claim 1, wherein establishing the first data channel comprises: receiving from the first video device, a first request to establish the first bidirectional data channel, the first request having request parameters that include a unique identifier; andauthorizing the establishment of the first bidirectional data channel based on the request parameters.
  • 15. The method of claim 14, wherein the first request is received over either the public data network or over the cable network.
  • 16. The method of claim 14, wherein the unique identifier is a media access control (MAC) address that is uniquely associated with the first video device.
  • 17. The method of claim 14, wherein establishing the second bidirectional data channel comprises: receiving, from the second video device, a second request to establish the second bidirectional data channel, the second request having request parameters that include the unique identifier;identifying the first video device using the received unique identifier; andassociating the second video device with the identified first video device.
  • 18. The method of claim 1, wherein controlling the playback of the second video is selected from a group consisting of: establishing a video stream channel, tearing down the video stream channel, starting playback of digital video, stopping playback for the digital video, and selecting a different digital video source.
  • 19. A tangible, non-transitory, data storage medium in which is stored computer program code for streaming digital video between a first video device and a second video device, the first video device being connected to a public data network, wherein the second video device is connected to a cable television system having a cable network and a cable headend, the cable headend also being connected to the public data network, the second video device being controlled by a video device controller, the storage medium comprising: program code for establishing a first bidirectional data channel from the first video device to the cable headend;program code for establishing a second bidirectional data channel over the cable network from the second video device to the cable headend, thereby permitting bidirectional data communication between the first video device and the second video device through the cable headend;program code for receiving a first data stream that includes the digital video at the cable headend from the first video device using the first bidirectional data channel;program code for forming a second data stream that includes a second video that is based on the digital video received in the first data stream; andprogram code for transmitting the second data stream from the cable headend to the second video device using the second bidirectional data channel, wherein playback of the second video is controlled by sending commands from the video device controller to the second video device for onward transmission to the first video device over the first and second bidirectional data channels.
  • 20. The tangible, non-transitory, data storage medium of claim 19, wherein the second data stream is a video stream transmitted from the headend to the second video device.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 61/393,262, filed Oct. 14, 2010, the contents of which are incorporated by reference in their entirety.

US Referenced Citations (706)
Number Name Date Kind
3889050 Thompson Jun 1975 A
3934079 Barnhart Jan 1976 A
3997718 Ricketts et al. Dec 1976 A
4002843 Rackman Jan 1977 A
4032972 Saylor Jun 1977 A
4077006 Nicholson Feb 1978 A
4081831 Tang et al. Mar 1978 A
4107734 Percy et al. Aug 1978 A
4107735 Frohbach Aug 1978 A
4145720 Weintraub et al. Mar 1979 A
4168400 de Couasnon et al. Sep 1979 A
4186438 Benson et al. Jan 1980 A
4222068 Thompson Sep 1980 A
4245245 Matsumoto et al. Jan 1981 A
4247106 Jeffers et al. Jan 1981 A
4253114 Tang et al. Feb 1981 A
4264924 Freeman Apr 1981 A
4264925 Freeman et al. Apr 1981 A
4290142 Schnee et al. Sep 1981 A
4302771 Gargini Nov 1981 A
4308554 Percy et al. Dec 1981 A
4350980 Ward Sep 1982 A
4367557 Stern et al. Jan 1983 A
4395780 Gohm et al. Jul 1983 A
4408225 Ensinger et al. Oct 1983 A
4450477 Lovett May 1984 A
4454538 Toriumi Jun 1984 A
4466017 Banker Aug 1984 A
4471380 Mobley Sep 1984 A
4475123 Dumbauld et al. Oct 1984 A
4484217 Block et al. Nov 1984 A
4491983 Pinnow et al. Jan 1985 A
4506387 Walter Mar 1985 A
4507680 Freeman Mar 1985 A
4509073 Baran et al. Apr 1985 A
4523228 Banker Jun 1985 A
4533948 McNamara et al. Aug 1985 A
4536791 Campbell et al. Aug 1985 A
4538174 Gargini et al. Aug 1985 A
4538176 Nakajima et al. Aug 1985 A
4553161 Citta Nov 1985 A
4554581 Tentler et al. Nov 1985 A
4555561 Sugimori et al. Nov 1985 A
4562465 Glaab Dec 1985 A
4567517 Mobley Jan 1986 A
4573072 Freeman Feb 1986 A
4591906 Morales-Garza et al. May 1986 A
4602279 Freeman Jul 1986 A
4614970 Clupper et al. Sep 1986 A
4616263 Eichelberger Oct 1986 A
4625235 Watson Nov 1986 A
4627105 Ohashi et al. Dec 1986 A
4633462 Stifle et al. Dec 1986 A
4670904 Rumreich Jun 1987 A
4682360 Frederiksen Jul 1987 A
4695880 Johnson et al. Sep 1987 A
4706121 Young Nov 1987 A
4706285 Rumreich Nov 1987 A
4709418 Fox et al. Nov 1987 A
4710971 Nozaki et al. Dec 1987 A
4718086 Rumreich et al. Jan 1988 A
4732764 Hemingway et al. Mar 1988 A
4734764 Pocock et al. Mar 1988 A
4748689 Mohr May 1988 A
4749992 Fitzemeyer et al. Jun 1988 A
4750036 Martinez Jun 1988 A
4754426 Rast et al. Jun 1988 A
4760442 O'Connell et al. Jul 1988 A
4763317 Lehman et al. Aug 1988 A
4769833 Farleigh et al. Sep 1988 A
4769838 Hasegawa Sep 1988 A
4789863 Bush Dec 1988 A
4792849 McCalley et al. Dec 1988 A
4801190 Imoto Jan 1989 A
4805134 Calo et al. Feb 1989 A
4807031 Broughton et al. Feb 1989 A
4816905 Tweedy et al. Mar 1989 A
4821102 Ichikawa et al. Apr 1989 A
4823386 Dumbauld et al. Apr 1989 A
4827253 Maltz May 1989 A
4827511 Masuko May 1989 A
4829372 McCalley et al. May 1989 A
4829558 Welsh May 1989 A
4847698 Freeman Jul 1989 A
4847699 Freeman Jul 1989 A
4847700 Freeman Jul 1989 A
4848698 Newell et al. Jul 1989 A
4860379 Schoeneberger et al. Aug 1989 A
4864613 Van Cleave Sep 1989 A
4876592 Von Kohorn Oct 1989 A
4889369 Albrecht Dec 1989 A
4890320 Monslow et al. Dec 1989 A
4891694 Way Jan 1990 A
4901367 Nicholson Feb 1990 A
4903126 Kassatly Feb 1990 A
4905094 Pocock et al. Feb 1990 A
4912760 West, Jr. et al. Mar 1990 A
4918516 Freeman Apr 1990 A
4920566 Robbins et al. Apr 1990 A
4922532 Farmer et al. May 1990 A
4924303 Brandon et al. May 1990 A
4924498 Farmer et al. May 1990 A
4937821 Boulton Jun 1990 A
4941040 Pocock et al. Jul 1990 A
4947244 Fenwick et al. Aug 1990 A
4961211 Tsugane et al. Oct 1990 A
4963995 Lang Oct 1990 A
4975771 Kassatly Dec 1990 A
4989245 Bennett Jan 1991 A
4994909 Graves et al. Feb 1991 A
4995078 Monslow et al. Feb 1991 A
5003384 Durden et al. Mar 1991 A
5008934 Endoh Apr 1991 A
5014125 Pocock et al. May 1991 A
5027400 Baji et al. Jun 1991 A
5051720 Kittirutsunetorn Sep 1991 A
5051822 Rhoades Sep 1991 A
5057917 Shalkauser et al. Oct 1991 A
5058160 Banker et al. Oct 1991 A
5060262 Bevins, Jr et al. Oct 1991 A
5077607 Johnson et al. Dec 1991 A
5083800 Lockton Jan 1992 A
5088111 McNamara et al. Feb 1992 A
5093718 Hoarty et al. Mar 1992 A
5109414 Harvey et al. Apr 1992 A
5113496 McCalley et al. May 1992 A
5119188 McCalley et al. Jun 1992 A
5130792 Tindell et al. Jul 1992 A
5132992 Yurt et al. Jul 1992 A
5133009 Rumreich Jul 1992 A
5133079 Ballantyne et al. Jul 1992 A
5136411 Paik et al. Aug 1992 A
5142575 Farmer et al. Aug 1992 A
5144448 Hornbaker, III et al. Sep 1992 A
5155591 Wachob Oct 1992 A
5172413 Bradley et al. Dec 1992 A
5191410 McCalley et al. Mar 1993 A
5195092 Wilson et al. Mar 1993 A
5208665 McCalley et al. May 1993 A
5220420 Hoarty et al. Jun 1993 A
5230019 Yanagimichi et al. Jul 1993 A
5231494 Wachob Jul 1993 A
5236199 Thompson, Jr. Aug 1993 A
5247347 Litteral et al. Sep 1993 A
5253341 Rozmanith et al. Oct 1993 A
5262854 Ng Nov 1993 A
5262860 Fitzpatrick et al. Nov 1993 A
5303388 Kreitman et al. Apr 1994 A
5319455 Hoarty et al. Jun 1994 A
5319707 Wasilewski et al. Jun 1994 A
5321440 Yanagihara et al. Jun 1994 A
5321514 Martinez Jun 1994 A
5351129 Lai Sep 1994 A
5355162 Yazolino et al. Oct 1994 A
5359601 Wasilewski et al. Oct 1994 A
5361091 Hoarty et al. Nov 1994 A
5371532 Gelman et al. Dec 1994 A
5404393 Remillard Apr 1995 A
5408274 Chang et al. Apr 1995 A
5410343 Coddington et al. Apr 1995 A
5410344 Graves et al. Apr 1995 A
5412415 Cook et al. May 1995 A
5412720 Hoarty May 1995 A
5418559 Blahut May 1995 A
5422674 Hooper et al. Jun 1995 A
5422887 Diepstraten et al. Jun 1995 A
5442389 Blahut et al. Aug 1995 A
5442390 Hooper et al. Aug 1995 A
5442700 Snell et al. Aug 1995 A
5446490 Blahut et al. Aug 1995 A
5469283 Vinel et al. Nov 1995 A
5469431 Wendorf et al. Nov 1995 A
5471263 Odaka Nov 1995 A
5481542 Logston et al. Jan 1996 A
5485197 Hoarty Jan 1996 A
5487066 McNamara et al. Jan 1996 A
5493638 Hooper et al. Feb 1996 A
5495283 Cowe Feb 1996 A
5495295 Long Feb 1996 A
5497187 Banker et al. Mar 1996 A
5517250 Hoogenboom et al. May 1996 A
5526034 Hoarty et al. Jun 1996 A
5528281 Grady et al. Jun 1996 A
5537397 Abramson Jul 1996 A
5537404 Bentley et al. Jul 1996 A
5539449 Blahut et al. Jul 1996 A
RE35314 Logg Aug 1996 E
5548340 Bertram Aug 1996 A
5550578 Hoarty et al. Aug 1996 A
5557316 Hoarty et al. Sep 1996 A
5559549 Hendricks et al. Sep 1996 A
5561708 Remillard Oct 1996 A
5570126 Blahut et al. Oct 1996 A
5570363 Holm Oct 1996 A
5579143 Huber Nov 1996 A
5581653 Todd Dec 1996 A
5583927 Ely et al. Dec 1996 A
5587734 Lauder et al. Dec 1996 A
5589885 Ooi Dec 1996 A
5592470 Rudrapatna et al. Jan 1997 A
5594507 Hoarty Jan 1997 A
5594723 Tibi Jan 1997 A
5594938 Engel Jan 1997 A
5596693 Needle et al. Jan 1997 A
5600364 Hendricks et al. Feb 1997 A
5600573 Hendricks et al. Feb 1997 A
5608446 Carr et al. Mar 1997 A
5617145 Huang et al. Apr 1997 A
5621464 Teo et al. Apr 1997 A
5625404 Grady et al. Apr 1997 A
5630757 Gagin et al. May 1997 A
5631693 Wunderlich et al. May 1997 A
5631846 Szurkowski May 1997 A
5632003 Davidson et al. May 1997 A
5649283 Galler et al. Jul 1997 A
5668592 Spaulding, II Sep 1997 A
5668599 Cheney et al. Sep 1997 A
5708767 Yeo et al. Jan 1998 A
5710815 Ming et al. Jan 1998 A
5712906 Grady et al. Jan 1998 A
5740307 Lane Apr 1998 A
5742289 Naylor et al. Apr 1998 A
5748234 Lippincott May 1998 A
5754941 Sharpe et al. May 1998 A
5786527 Tarte Jul 1998 A
5790174 Richard, III et al. Aug 1998 A
5802283 Grady et al. Sep 1998 A
5812665 Hoarty et al. Sep 1998 A
5812786 Seazholtz et al. Sep 1998 A
5815604 Simons et al. Sep 1998 A
5818438 Howe et al. Oct 1998 A
5821945 Yeo et al. Oct 1998 A
5822537 Katseff et al. Oct 1998 A
5828371 Cline et al. Oct 1998 A
5844594 Ferguson Dec 1998 A
5845083 Hamadani et al. Dec 1998 A
5862325 Reed et al. Jan 1999 A
5864820 Case Jan 1999 A
5867208 McLaren Feb 1999 A
5883661 Hoarty Mar 1999 A
5903727 Nielsen May 1999 A
5903816 Broadwin et al. May 1999 A
5905522 Lawler May 1999 A
5907681 Bates et al. May 1999 A
5917822 Lyles et al. Jun 1999 A
5946352 Rowlands et al. Aug 1999 A
5952943 Walsh et al. Sep 1999 A
5959690 Toebes et al. Sep 1999 A
5961603 Kunkel et al. Oct 1999 A
5963203 Goldberg et al. Oct 1999 A
5966163 Lin et al. Oct 1999 A
5978756 Walker et al. Nov 1999 A
5982445 Eyer et al. Nov 1999 A
5990862 Lewis Nov 1999 A
5995146 Rasmussen Nov 1999 A
5995488 Kalkunte et al. Nov 1999 A
5999970 Krisbergh et al. Dec 1999 A
6014416 Shin et al. Jan 2000 A
6021386 Davis et al. Feb 2000 A
6031989 Cordell Feb 2000 A
6034678 Hoarty et al. Mar 2000 A
6049539 Lee et al. Apr 2000 A
6049831 Gardell et al. Apr 2000 A
6052555 Ferguson Apr 2000 A
6055314 Spies et al. Apr 2000 A
6055315 Doyle et al. Apr 2000 A
6064377 Hoarty et al. May 2000 A
6078328 Schumann et al. Jun 2000 A
6084908 Chiang et al. Jul 2000 A
6100883 Hoarty Aug 2000 A
6108625 Kim Aug 2000 A
6131182 Beakes et al. Oct 2000 A
6141645 Chi-Min et al. Oct 2000 A
6141693 Perlman et al. Oct 2000 A
6144698 Poon et al. Nov 2000 A
6167084 Wang et al. Dec 2000 A
6169573 Sampath-Kumar et al. Jan 2001 B1
6177931 Alexander et al. Jan 2001 B1
6182072 Leak et al. Jan 2001 B1
6184878 Alonso et al. Feb 2001 B1
6192081 Chiang et al. Feb 2001 B1
6198822 Doyle et al. Mar 2001 B1
6205582 Hoarty Mar 2001 B1
6226041 Florencio et al. May 2001 B1
6236730 Cowieson et al. May 2001 B1
6243418 Kim Jun 2001 B1
6253238 Lauder et al. Jun 2001 B1
6256047 Isobe et al. Jul 2001 B1
6259826 Pollard et al. Jul 2001 B1
6266369 Wang et al. Jul 2001 B1
6266684 Kraus et al. Jul 2001 B1
6275496 Burns et al. Aug 2001 B1
6292194 Powell, III Sep 2001 B1
6305020 Hoarty et al. Oct 2001 B1
6317151 Ohsuga et al. Nov 2001 B1
6317885 Fries Nov 2001 B1
6349284 Park et al. Feb 2002 B1
6385771 Gordon May 2002 B1
6386980 Nishino et al. May 2002 B1
6389075 Wang et al. May 2002 B2
6389218 Gordon et al. May 2002 B2
6415031 Colligan et al. Jul 2002 B1
6415437 Ludvig et al. Jul 2002 B1
6438140 Jungers et al. Aug 2002 B1
6446037 Fielder et al. Sep 2002 B1
6459427 Mao et al. Oct 2002 B1
6477182 Calderone Nov 2002 B2
6481012 Gordon et al. Nov 2002 B1
6512793 Maeda Jan 2003 B1
6525746 Lau et al. Feb 2003 B1
6536043 Guedalia Mar 2003 B1
6557041 Mallart Apr 2003 B2
6560496 Michener May 2003 B1
6564378 Satterfield et al. May 2003 B1
6578201 LaRocca et al. Jun 2003 B1
6579184 Tanskanen Jun 2003 B1
6584153 Gordon et al. Jun 2003 B1
6588017 Calderone Jul 2003 B1
6598229 Smyth et al. Jul 2003 B2
6604224 Armstrong et al. Aug 2003 B1
6614442 Ouyang et al. Sep 2003 B1
6621870 Gordon et al. Sep 2003 B1
6625574 Taniguchi et al. Sep 2003 B1
6639896 Goode et al. Oct 2003 B1
6645076 Sugai Nov 2003 B1
6651252 Gordon et al. Nov 2003 B1
6657647 Bright Dec 2003 B1
6675385 Wang Jan 2004 B1
6675387 Boucher Jan 2004 B1
6681326 Son et al. Jan 2004 B2
6681397 Tsai et al. Jan 2004 B1
6684400 Goode et al. Jan 2004 B1
6687663 McGrath et al. Feb 2004 B1
6691208 Dandrea et al. Feb 2004 B2
6697376 Son et al. Feb 2004 B1
6704359 Bayrakeri et al. Mar 2004 B1
6717600 Dutta et al. Apr 2004 B2
6718552 Goode Apr 2004 B1
6721794 Taylor et al. Apr 2004 B2
6721956 Wasilewski Apr 2004 B2
6727929 Bates et al. Apr 2004 B1
6732370 Gordon et al. May 2004 B1
6747991 Hemy et al. Jun 2004 B1
6754271 Gordon et al. Jun 2004 B1
6754905 Gordon et al. Jun 2004 B2
6758540 Adolph et al. Jul 2004 B1
6766407 Lisitsa et al. Jul 2004 B1
6771704 Hannah Aug 2004 B1
6785902 Zigmond et al. Aug 2004 B1
6807528 Truman et al. Oct 2004 B1
6810528 Chatani Oct 2004 B1
6817947 Tanskanen Nov 2004 B2
6886178 Mao et al. Apr 2005 B1
6907574 Xu et al. Jun 2005 B2
6931291 Alvarez-Tinoco et al. Aug 2005 B1
6941019 Mitchell et al. Sep 2005 B1
6941574 Broadwin et al. Sep 2005 B1
6947509 Wong Sep 2005 B1
6952221 Holtz et al. Oct 2005 B1
6956899 Hall et al. Oct 2005 B2
7030890 Jouet et al. Apr 2006 B1
7050113 Campisano et al. May 2006 B2
7089577 Rakib et al. Aug 2006 B1
7095402 Kunii et al. Aug 2006 B2
7114167 Slemmer et al. Sep 2006 B2
7146615 Hervet et al. Dec 2006 B1
7158676 Rainsford Jan 2007 B1
7200836 Brodersen et al. Apr 2007 B2
7212573 Winger May 2007 B2
7224731 Mehrotra May 2007 B2
7272556 Aguilar et al. Sep 2007 B1
7310619 Baar et al. Dec 2007 B2
7325043 Rosenberg et al. Jan 2008 B1
7346111 Winger et al. Mar 2008 B2
7360230 Paz et al. Apr 2008 B1
7412423 Asano Aug 2008 B1
7412505 Slemmer et al. Aug 2008 B2
7421082 Kamiya et al. Sep 2008 B2
7444306 Varble Oct 2008 B2
7444418 Chou et al. Oct 2008 B2
7500235 Maynard et al. Mar 2009 B2
7508941 O'Toole, Jr. et al. Mar 2009 B1
7512577 Slemmer et al. Mar 2009 B2
7543073 Chou et al. Jun 2009 B2
7596764 Vienneau et al. Sep 2009 B2
7623575 Winger Nov 2009 B2
7669220 Goode Feb 2010 B2
7742609 Yeakel et al. Jun 2010 B2
7743400 Kurauchi Jun 2010 B2
7751572 Villemoes et al. Jul 2010 B2
7757157 Fukuda Jul 2010 B1
7830388 Lu Nov 2010 B1
7840905 Weber et al. Nov 2010 B1
7936819 Craig et al. May 2011 B2
7970263 Asch Jun 2011 B1
7987489 Krzyzanowski et al. Jul 2011 B2
8027353 Damola et al. Sep 2011 B2
8036271 Winger et al. Oct 2011 B2
8046798 Schlack et al. Oct 2011 B1
8074248 Sigmon, Jr. et al. Dec 2011 B2
8118676 Craig et al. Feb 2012 B2
8136033 Bhargava et al. Mar 2012 B1
8149917 Zhang et al. Apr 2012 B2
8155194 Winger et al. Apr 2012 B2
8155202 Landau Apr 2012 B2
8170107 Winger May 2012 B2
8194862 Herr et al. Jun 2012 B2
8243630 Luo et al. Aug 2012 B2
8270439 Herr et al. Sep 2012 B2
8284842 Craig et al. Oct 2012 B2
8296424 Malloy et al. Oct 2012 B2
8370869 Paek et al. Feb 2013 B2
8411754 Zhang et al. Apr 2013 B2
8442110 Pavlovskaia et al. May 2013 B2
8473996 Gordon et al. Jun 2013 B2
8619867 Craig et al. Dec 2013 B2
8621500 Weaver et al. Dec 2013 B2
20010008845 Kusuda et al. Jul 2001 A1
20010049301 Masuda et al. Dec 2001 A1
20020007491 Schiller et al. Jan 2002 A1
20020013812 Krueger et al. Jan 2002 A1
20020016161 Dellien et al. Feb 2002 A1
20020021353 DeNies Feb 2002 A1
20020026642 Augenbraun et al. Feb 2002 A1
20020027567 Niamir Mar 2002 A1
20020032697 French et al. Mar 2002 A1
20020040482 Sextro et al. Apr 2002 A1
20020047899 Son et al. Apr 2002 A1
20020049975 Thomas et al. Apr 2002 A1
20020056083 Istvan May 2002 A1
20020056107 Schlack May 2002 A1
20020056136 Wistendahl et al. May 2002 A1
20020059644 Andrade et al. May 2002 A1
20020062484 De Lange et al. May 2002 A1
20020067766 Sakamoto et al. Jun 2002 A1
20020069267 Thiele Jun 2002 A1
20020072408 Kumagai Jun 2002 A1
20020078171 Schneider Jun 2002 A1
20020078456 Hudson et al. Jun 2002 A1
20020083464 Tomsen et al. Jun 2002 A1
20020095689 Novak Jul 2002 A1
20020105531 Niemi Aug 2002 A1
20020108121 Alao et al. Aug 2002 A1
20020131511 Zenoni Sep 2002 A1
20020136298 Anantharamu et al. Sep 2002 A1
20020152318 Menon et al. Oct 2002 A1
20020171765 Waki et al. Nov 2002 A1
20020175931 Holtz et al. Nov 2002 A1
20020178447 Plotnick et al. Nov 2002 A1
20020188628 Cooper et al. Dec 2002 A1
20020191851 Keinan Dec 2002 A1
20020194592 Tsuchida et al. Dec 2002 A1
20020196746 Allen Dec 2002 A1
20030018796 Chou et al. Jan 2003 A1
20030027517 Callway et al. Feb 2003 A1
20030035486 Kato et al. Feb 2003 A1
20030038893 Rajamaki et al. Feb 2003 A1
20030039398 McIntyre Feb 2003 A1
20030046690 Miller Mar 2003 A1
20030051253 Barone, Jr. Mar 2003 A1
20030058941 Chen et al. Mar 2003 A1
20030061451 Beyda Mar 2003 A1
20030065739 Shnier Apr 2003 A1
20030071792 Safadi Apr 2003 A1
20030072372 Shen et al. Apr 2003 A1
20030076546 Johnson et al. Apr 2003 A1
20030088328 Nishio et al. May 2003 A1
20030088400 Nishio et al. May 2003 A1
20030095790 Joshi May 2003 A1
20030122836 Doyle et al. Jul 2003 A1
20030123664 Pedlow, Jr. et al. Jul 2003 A1
20030126608 Safadi Jul 2003 A1
20030126611 Chernock et al. Jul 2003 A1
20030131349 Kuczynski-Brown Jul 2003 A1
20030135860 Dureau Jul 2003 A1
20030169373 Peters et al. Sep 2003 A1
20030177199 Zenoni Sep 2003 A1
20030188309 Yuen Oct 2003 A1
20030189980 Dvir et al. Oct 2003 A1
20030196174 Pierre Cote et al. Oct 2003 A1
20030208768 Urdang et al. Nov 2003 A1
20030229719 Iwata et al. Dec 2003 A1
20030229900 Reisman Dec 2003 A1
20030231218 Amadio Dec 2003 A1
20040016000 Zhang et al. Jan 2004 A1
20040034873 Zenoni Feb 2004 A1
20040040035 Carlucci et al. Feb 2004 A1
20040078822 Breen et al. Apr 2004 A1
20040088375 Sethi et al. May 2004 A1
20040091171 Bone May 2004 A1
20040107443 Clancy Jun 2004 A1
20040111526 Baldwin et al. Jun 2004 A1
20040117827 Karaoguz et al. Jun 2004 A1
20040128686 Boyer et al. Jul 2004 A1
20040133704 Krzyzanowski et al. Jul 2004 A1
20040136698 Mock Jul 2004 A1
20040139158 Datta Jul 2004 A1
20040157662 Tsuchiya Aug 2004 A1
20040163101 Swix et al. Aug 2004 A1
20040184542 Fujimoto Sep 2004 A1
20040193648 Lai et al. Sep 2004 A1
20040210824 Shoff et al. Oct 2004 A1
20040261106 Hoffman Dec 2004 A1
20040261114 Addington et al. Dec 2004 A1
20050015259 Thumpudi et al. Jan 2005 A1
20050015816 Christofalo et al. Jan 2005 A1
20050021830 Urzaiz et al. Jan 2005 A1
20050034155 Gordon et al. Feb 2005 A1
20050034162 White et al. Feb 2005 A1
20050044575 Der Kuyl Feb 2005 A1
20050055685 Maynard et al. Mar 2005 A1
20050055721 Zigmond et al. Mar 2005 A1
20050071876 van Beek Mar 2005 A1
20050076134 Bialik et al. Apr 2005 A1
20050089091 Kim et al. Apr 2005 A1
20050091690 Delpuch et al. Apr 2005 A1
20050091695 Paz et al. Apr 2005 A1
20050105608 Coleman et al. May 2005 A1
20050114906 Hoarty et al. May 2005 A1
20050132305 Guichard et al. Jun 2005 A1
20050135385 Jenkins et al. Jun 2005 A1
20050141613 Kelly et al. Jun 2005 A1
20050149988 Grannan Jul 2005 A1
20050160088 Scallan et al. Jul 2005 A1
20050166257 Feinleib et al. Jul 2005 A1
20050180502 Puri Aug 2005 A1
20050198682 Wright Sep 2005 A1
20050213586 Cyganski et al. Sep 2005 A1
20050216933 Black Sep 2005 A1
20050216940 Black Sep 2005 A1
20050226426 Oomen et al. Oct 2005 A1
20050273832 Zigmond et al. Dec 2005 A1
20050283741 Balabanovic et al. Dec 2005 A1
20060001737 Dawson et al. Jan 2006 A1
20060020960 Relan et al. Jan 2006 A1
20060020994 Crane et al. Jan 2006 A1
20060031906 Kaneda Feb 2006 A1
20060039481 Shen et al. Feb 2006 A1
20060041910 Hatanaka et al. Feb 2006 A1
20060088105 Shen et al. Apr 2006 A1
20060095944 Demircin et al. May 2006 A1
20060112338 Joung et al. May 2006 A1
20060117340 Pavlovskaia et al. Jun 2006 A1
20060143678 Chou et al. Jun 2006 A1
20060161538 Kiilerich Jul 2006 A1
20060173985 Moore Aug 2006 A1
20060174026 Robinson et al. Aug 2006 A1
20060174289 Theberge Aug 2006 A1
20060195884 van Zoest et al. Aug 2006 A1
20060212203 Furuno Sep 2006 A1
20060218601 Michel Sep 2006 A1
20060230428 Craig et al. Oct 2006 A1
20060242570 Croft et al. Oct 2006 A1
20060256865 Westerman Nov 2006 A1
20060269086 Page et al. Nov 2006 A1
20060271985 Hoffman et al. Nov 2006 A1
20060285586 Westerman Dec 2006 A1
20060285819 Kelly et al. Dec 2006 A1
20070009035 Craig et al. Jan 2007 A1
20070009036 Craig et al. Jan 2007 A1
20070009042 Craig et al. Jan 2007 A1
20070025639 Zhou et al. Feb 2007 A1
20070033528 Merril et al. Feb 2007 A1
20070033631 Gordon et al. Feb 2007 A1
20070074251 Oguz et al. Mar 2007 A1
20070079325 de Heer Apr 2007 A1
20070107016 Angel et al. May 2007 A1
20070115941 Patel et al. May 2007 A1
20070124282 Wittkotter May 2007 A1
20070124795 McKissick et al. May 2007 A1
20070130446 Minakami Jun 2007 A1
20070130592 Haeusel Jun 2007 A1
20070152984 Ording et al. Jul 2007 A1
20070172061 Pinder Jul 2007 A1
20070174790 Jing et al. Jul 2007 A1
20070180047 Dong et al. Aug 2007 A1
20070237232 Chang et al. Oct 2007 A1
20070250900 Marcuvitz Oct 2007 A1
20070300280 Turner et al. Dec 2007 A1
20080052742 Kopf et al. Feb 2008 A1
20080066135 Brodersen et al. Mar 2008 A1
20080077871 Baar et al. Mar 2008 A1
20080084503 Kondo Apr 2008 A1
20080094368 Ording et al. Apr 2008 A1
20080098450 Wu et al. Apr 2008 A1
20080104520 Swenson et al. May 2008 A1
20080127255 Ress et al. May 2008 A1
20080141325 Ludvig et al. Jun 2008 A1
20080148336 Walter et al. Jun 2008 A1
20080154583 Goto et al. Jun 2008 A1
20080163059 Craner Jul 2008 A1
20080163286 Rudolph et al. Jul 2008 A1
20080170619 Landau Jul 2008 A1
20080170622 Gordon et al. Jul 2008 A1
20080178243 Dong et al. Jul 2008 A1
20080178249 Gordon et al. Jul 2008 A1
20080189740 Carpenter et al. Aug 2008 A1
20080195573 Onoda et al. Aug 2008 A1
20080201731 Howcroft Aug 2008 A1
20080201736 Gordon et al. Aug 2008 A1
20080212942 Gordon et al. Sep 2008 A1
20080232452 Sullivan et al. Sep 2008 A1
20080243918 Holtman Oct 2008 A1
20080243998 Oh et al. Oct 2008 A1
20080246759 Summers Oct 2008 A1
20080253440 Srinivasan et al. Oct 2008 A1
20080271080 Gossweiler et al. Oct 2008 A1
20080307066 Amidon et al. Dec 2008 A1
20080320392 Cleron et al. Dec 2008 A1
20090003446 Wu et al. Jan 2009 A1
20090003705 Zou et al. Jan 2009 A1
20090007199 La Joie Jan 2009 A1
20090025027 Craner Jan 2009 A1
20090031341 Schlack et al. Jan 2009 A1
20090041118 Pavlovskaia et al. Feb 2009 A1
20090083781 Yang et al. Mar 2009 A1
20090083813 Dolce et al. Mar 2009 A1
20090083824 McCarthy et al. Mar 2009 A1
20090089188 Ku et al. Apr 2009 A1
20090094113 Berry et al. Apr 2009 A1
20090094646 Walter et al. Apr 2009 A1
20090100465 Kulakowski Apr 2009 A1
20090100489 Strothmann Apr 2009 A1
20090106269 Zuckerman et al. Apr 2009 A1
20090106386 Zuckerman et al. Apr 2009 A1
20090106392 Zuckerman et al. Apr 2009 A1
20090106425 Zuckerman et al. Apr 2009 A1
20090106441 Zuckerman et al. Apr 2009 A1
20090106451 Zuckerman et al. Apr 2009 A1
20090106511 Zuckerman et al. Apr 2009 A1
20090113009 Slemmer et al. Apr 2009 A1
20090138966 Krause et al. May 2009 A1
20090144781 Glaser et al. Jun 2009 A1
20090146779 Kumar et al. Jun 2009 A1
20090157868 Chaudhry Jun 2009 A1
20090158369 Van Vleck et al. Jun 2009 A1
20090160694 Di Flora Jun 2009 A1
20090172757 Aldrey et al. Jul 2009 A1
20090178098 Westbrook et al. Jul 2009 A1
20090183219 Maynard et al. Jul 2009 A1
20090189890 Corbett et al. Jul 2009 A1
20090193452 Russ et al. Jul 2009 A1
20090196346 Zhang et al. Aug 2009 A1
20090204920 Beverley et al. Aug 2009 A1
20090210899 Lawrence-Apfelbaum et al. Aug 2009 A1
20090225790 Shay et al. Sep 2009 A1
20090228620 Thomas et al. Sep 2009 A1
20090228922 Haj-Khalil et al. Sep 2009 A1
20090233593 Ergen et al. Sep 2009 A1
20090251478 Maillot et al. Oct 2009 A1
20090254960 Yarom et al. Oct 2009 A1
20090265617 Randall et al. Oct 2009 A1
20090271512 Jorgensen Oct 2009 A1
20090271818 Schlack Oct 2009 A1
20090298535 Klein et al. Dec 2009 A1
20090313674 Ludvig et al. Dec 2009 A1
20090328109 Pavlovskaia et al. Dec 2009 A1
20100033638 O'Donnell et al. Feb 2010 A1
20100058404 Rouse Mar 2010 A1
20100067571 White et al. Mar 2010 A1
20100077441 Thomas et al. Mar 2010 A1
20100104021 Schmit Apr 2010 A1
20100115573 Srinivasan et al. May 2010 A1
20100118972 Zhang et al. May 2010 A1
20100131996 Gauld May 2010 A1
20100146139 Brockmann Jun 2010 A1
20100158109 Dahlby et al. Jun 2010 A1
20100166071 Wu et al. Jul 2010 A1
20100174776 Westberg et al. Jul 2010 A1
20100175080 Yuen et al. Jul 2010 A1
20100180307 Hayes et al. Jul 2010 A1
20100211983 Chou Aug 2010 A1
20100226428 Thevathasan et al. Sep 2010 A1
20100235861 Schein et al. Sep 2010 A1
20100242073 Gordon et al. Sep 2010 A1
20100251167 DeLuca et al. Sep 2010 A1
20100254370 Jana et al. Oct 2010 A1
20100325655 Perez Dec 2010 A1
20110002376 Ahmed et al. Jan 2011 A1
20110002470 Purnhagen et al. Jan 2011 A1
20110023069 Dowens Jan 2011 A1
20110035227 Lee et al. Feb 2011 A1
20110067061 Karaoguz et al. Mar 2011 A1
20110096828 Chen et al. Apr 2011 A1
20110107375 Stahl et al. May 2011 A1
20110110642 Salomons et al. May 2011 A1
20110150421 Sasaki et al. Jun 2011 A1
20110153776 Opala et al. Jun 2011 A1
20110167468 Lee et al. Jul 2011 A1
20110243024 Osterling et al. Oct 2011 A1
20110258584 Williams et al. Oct 2011 A1
20110289536 Poder et al. Nov 2011 A1
20110317982 Xu et al. Dec 2011 A1
20120023126 Jin et al. Jan 2012 A1
20120030212 Koopmans et al. Feb 2012 A1
20120137337 Sigmon et al. May 2012 A1
20120204217 Regis et al. Aug 2012 A1
20120209815 Carson et al. Aug 2012 A1
20120224641 Haberman et al. Sep 2012 A1
20120257671 Brockmann et al. Oct 2012 A1
20130003826 Craig et al. Jan 2013 A1
20130086610 Brockmann Apr 2013 A1
20130179787 Brockmann et al. Jul 2013 A1
20130198776 Brockmann Aug 2013 A1
20130272394 Brockmann et al. Oct 2013 A1
20140033036 Gaur et al. Jan 2014 A1
Foreign Referenced Citations (312)
Number Date Country
191599 Apr 2000 AT
198969 Feb 2001 AT
250313 Oct 2003 AT
472152 Jul 2010 AT
475266 Aug 2010 AT
550086 Feb 1986 AU
199060189 Nov 1990 AU
620735 Feb 1992 AU
199184838 Apr 1992 AU
643828 Nov 1993 AU
2004253127 Jan 2005 AU
2005278122 Mar 2006 AU
2010339376 Aug 2012 AU
2011249132 Nov 2012 AU
2011258972 Nov 2012 AU
2011315950 May 2013 AU
682776 Mar 1964 CA
2052477 Mar 1992 CA
1302554 Jun 1992 CA
2163500 May 1996 CA
2231391 May 1997 CA
2273365 Jun 1998 CA
2313133 Jun 1999 CA
2313161 Jun 1999 CA
2528499 Jan 2005 CA
2569407 Mar 2006 CA
2728797 Apr 2010 CA
2787913 Jul 2011 CA
2798541 Dec 2011 CA
2814070 Apr 2012 CA
1507751 Jun 2004 CN
1969555 May 2007 CN
101180109 May 2008 CN
101627424 Jan 2010 CN
101637023 Jan 2010 CN
102007773 Apr 2011 CN
4408355 Oct 1994 DE
69516139 D1 Dec 2000 DE
69132518 D1 Sep 2001 DE
69333207 D1 Jul 2004 DE
98961961 Aug 2007 DE
602008001596 D1 Aug 2010 DE
602006015650 D1 Sep 2010 DE
0093549 Nov 1983 EP
0128771 Dec 1984 EP
0419137 Mar 1991 EP
0449633 Oct 1991 EP
0477786 Apr 1992 EP
0523618 Jan 1993 EP
0534139 Mar 1993 EP
0568453 Nov 1993 EP
0588653 Mar 1994 EP
0594350 Apr 1994 EP
0612916 Aug 1994 EP
0624039 Nov 1994 EP
0638219 Feb 1995 EP
0643523 Mar 1995 EP
0661888 Jul 1995 EP
0714684 Jun 1996 EP
0746158 Dec 1996 EP
0761066 Mar 1997 EP
0789972 Aug 1997 EP
0830786 Mar 1998 EP
0861560 Sep 1998 EP
0933966 Aug 1999 EP
0933966 Aug 1999 EP
1026872 Aug 2000 EP
1038397 Sep 2000 EP
1038399 Sep 2000 EP
1038400 Sep 2000 EP
1038401 Sep 2000 EP
1051039 Nov 2000 EP
1055331 Nov 2000 EP
1120968 Aug 2001 EP
1345446 Sep 2003 EP
1422929 May 2004 EP
1428562 Jun 2004 EP
1521476 Apr 2005 EP
1645115 Apr 2006 EP
1725044 Nov 2006 EP
1767708 Mar 2007 EP
1771003 Apr 2007 EP
1772014 Apr 2007 EP
1877150 Jan 2008 EP
1887148 Feb 2008 EP
1900200 Mar 2008 EP
1902583 Mar 2008 EP
1908293 Apr 2008 EP
1911288 Apr 2008 EP
1918802 May 2008 EP
2100296 Sep 2009 EP
2105019 Sep 2009 EP
2106665 Oct 2009 EP
2116051 Nov 2009 EP
2124440 Nov 2009 EP
2248341 Nov 2010 EP
2269377 Jan 2011 EP
2271098 Jan 2011 EP
2304953 Apr 2011 EP
2364019 Sep 2011 EP
2384001 Nov 2011 EP
2409493 Jan 2012 EP
2477414 Jul 2012 EP
2487919 Aug 2012 EP
2520090 Nov 2012 EP
2567545 Mar 2013 EP
2577437 Apr 2013 EP
2628306 Aug 2013 EP
2632164 Aug 2013 EP
2632165 Aug 2013 EP
2695388 Feb 2014 EP
2207635 Jun 2004 ES
8211463 Jun 1982 FR
2529739 Jan 1984 FR
2891098 Mar 2007 FR
2207838 Feb 1989 GB
2248955 Apr 1992 GB
2290204 Dec 1995 GB
2365649 Feb 2002 GB
2378345 Feb 2003 GB
1134855 Oct 2010 HK
1116323 Dec 2010 HK
19913397 Apr 1992 IE
99586 Feb 1998 IL
215133 D0 Dec 2011 IL
222829 D0 Dec 2012 IL
222830 D0 Dec 2012 IL
225525 D0 Jun 2013 IL
180215 Jan 1998 IN
200701744 Nov 2007 IN
200900856 May 2009 IN
200800214 Jun 2009 IN
3759 Mar 1992 IS
60-054324 Mar 1985 JP
63-033988 Feb 1988 JP
63-263985 Oct 1988 JP
2001-241993 Sep 1989 JP
04-373286 Dec 1992 JP
06-054324 Feb 1994 JP
7015720 Jan 1995 JP
7-160292 Jun 1995 JP
7160292 Jun 1995 JP
8095599 Apr 1996 JP
8-265704 Oct 1996 JP
8265704 Oct 1996 JP
10-228437 Aug 1998 JP
10-510131 Sep 1998 JP
11-134273 May 1999 JP
H11-261966 Sep 1999 JP
2000-152234 May 2000 JP
2001-203995 Jul 2001 JP
2001-245271 Sep 2001 JP
2001-514471 Sep 2001 JP
2002-016920 Jan 2002 JP
2002-057952 Feb 2002 JP
2002-112220 Apr 2002 JP
2002-141810 May 2002 JP
2002-208027 Jul 2002 JP
2002-319991 Oct 2002 JP
2003-506763 Feb 2003 JP
2003-087785 Mar 2003 JP
2003-529234 Sep 2003 JP
2004-501445 Jan 2004 JP
2004-056777 Feb 2004 JP
2004-110850 Apr 2004 JP
2004-112441 Apr 2004 JP
2004-135932 May 2004 JP
2004-264812 Sep 2004 JP
2004-533736 Nov 2004 JP
2004-536381 Dec 2004 JP
2004-536681 Dec 2004 JP
2005-033741 Feb 2005 JP
2005-084987 Mar 2005 JP
2005-095599 Mar 2005 JP
8-095599 Apr 2005 JP
2005-156996 Jun 2005 JP
2005-519382 Jun 2005 JP
2005-523479 Aug 2005 JP
2005-309752 Nov 2005 JP
2006-067280 Mar 2006 JP
2006-512838 Apr 2006 JP
11-88419 Sep 2007 JP
2008-523880 Jul 2008 JP
2008-535622 Sep 2008 JP
04252727 Apr 2009 JP
2009-543386 Dec 2009 JP
2011-108155 Jun 2011 JP
2012-080593 Apr 2012 JP
04996603 Aug 2012 JP
05121711 Jan 2013 JP
53-004612 Oct 2013 JP
05331008 Oct 2013 JP
05405819 Feb 2014 JP
2006067924 Jun 2006 KR
2007038111 Apr 2007 KR
20080001298 Jan 2008 KR
2008024189 Mar 2008 KR
2010111739 Oct 2010 KR
2010120187 Nov 2010 KR
2010127240 Dec 2010 KR
2011030640 Mar 2011 KR
2011129477 Dec 2011 KR
20120112683 Oct 2012 KR
2013061149 Jun 2013 KR
2013113925 Oct 2013 KR
1333200 Nov 2013 KR
2008045154 Nov 2013 KR
2013138263 Dec 2013 KR
1032594 Apr 2008 NL
1033929 Apr 2008 NL
2004670 Nov 2011 NL
2004780 Jan 2012 NL
239969 Dec 1994 NZ
99110 Dec 1993 PT
WO 8202303 Jul 1982 WO
WO 8908967 Sep 1989 WO
WO 9013972 Nov 1990 WO
WO 9322877 Nov 1993 WO
WO 9416534 Jul 1994 WO
WO 9419910 Sep 1994 WO
WO 9421079 Sep 1994 WO
WO 9515658 Jun 1995 WO
WO 9532587 Nov 1995 WO
WO 9533342 Dec 1995 WO
WO 9614712 May 1996 WO
WO 9627843 Sep 1996 WO
WO 9631826 Oct 1996 WO
WO 9637074 Nov 1996 WO
WO 9642168 Dec 1996 WO
WO 9716925 May 1997 WO
WO 9733434 Sep 1997 WO
WO 9739583 Oct 1997 WO
WO 9826595 Jun 1998 WO
WO 9900735 Jan 1999 WO
WO 9904568 Jan 1999 WO
WO 9900735 Jan 1999 WO
WO 9930496 Jun 1999 WO
WO 9930497 Jun 1999 WO
WO 9930500 Jun 1999 WO
WO 9930501 Jun 1999 WO
WO 9935840 Jul 1999 WO
WO 9941911 Aug 1999 WO
WO 9956468 Nov 1999 WO
WO 9965232 Dec 1999 WO
WO 9965243 Dec 1999 WO
WO 9966732 Dec 1999 WO
WO 0002303 Jan 2000 WO
WO 0007372 Feb 2000 WO
WO 0008967 Feb 2000 WO
WO 0019910 Apr 2000 WO
WO 0038430 Jun 2000 WO
WO 0041397 Jul 2000 WO
WO 0139494 May 2001 WO
WO 0141447 Jun 2001 WO
WO 0182614 Nov 2001 WO
WO 0192973 Dec 2001 WO
WO 02089487 Jul 2002 WO
WO 02076097 Sep 2002 WO
WO 02076099 Sep 2002 WO
WO 03026232 Mar 2003 WO
WO 03026275 Mar 2003 WO
WO 03047710 Jun 2003 WO
WO 03065683 Aug 2003 WO
WO 03071727 Aug 2003 WO
WO 03091832 Nov 2003 WO
WO 2004012437 Feb 2004 WO
WO 2004018060 Mar 2004 WO
WO 2004073310 Aug 2004 WO
WO 2005002215 Jan 2005 WO
WO 2005041122 May 2005 WO
WO 2005053301 Jun 2005 WO
WO 2005120067 Dec 2005 WO
WO 2006014362 Feb 2006 WO
WO 2006022881 Mar 2006 WO
WO 2006053305 May 2006 WO
WO 2006067697 Jun 2006 WO
WO 2006081634 Aug 2006 WO
WO 2006105480 Oct 2006 WO
WO 2006110268 Oct 2006 WO
WO 2007001797 Jan 2007 WO
WO 2007008319 Jan 2007 WO
WO 2007008355 Jan 2007 WO
WO 2007008356 Jan 2007 WO
WO 2007008357 Jan 2007 WO
WO 2007008358 Jan 2007 WO
WO 2007018722 Feb 2007 WO
WO 2007018726 Feb 2007 WO
WO 2008044916 Apr 2008 WO
WO 2008086170 Jul 2008 WO
WO 2008088741 Jul 2008 WO
WO 2008088752 Jul 2008 WO
WO 2008088772 Jul 2008 WO
WO 2008100205 Aug 2008 WO
WO 2009038596 Mar 2009 WO
WO 2009099893 Aug 2009 WO
WO 2009099895 Aug 2009 WO
WO 2009105465 Aug 2009 WO
WO 2009110897 Sep 2009 WO
WO 2009114247 Sep 2009 WO
WO 2009155214 Dec 2009 WO
WO 2010044926 Apr 2010 WO
WO 2010054136 May 2010 WO
WO 2010107954 Sep 2010 WO
WO 2011014336 Sep 2010 WO
WO 2011082364 Jul 2011 WO
WO 2011139155 Nov 2011 WO
WO 2011149357 Dec 2011 WO
WO 2012051528 Apr 2012 WO
WO 2012138660 Oct 2012 WO
WO 2012138660 Oct 2012 WO
WO 2013106390 Jul 2013 WO
WO 2013155310 Jul 2013 WO
Non-Patent Literature Citations (251)
Entry
Activevideo Networks Inc., International Preliminary Report on Patentability, PCT/US2011/056355, Apr. 16, 2013, 4 pgs.
Activevideo Networks Inc., International Search Report and Written Opinion, PCT/US2011/056355, Apr. 13, 2012, 7 pgs.
AC-3 digital audio compression standard, Extract, Dec. 20, 1995, 11 pgs.
ActiveVideo Networks BV, International Preliminary Report on Patentability, PCT/NL2011/050308, Sep. 6, 2011, 8 pgs.
ActiveVideo Networks BV, International Search Report and Written Opinion, PCT/NL2011/050308, Sep. 6, 2011, 8 pgs.
ActiveVideo Networks Inc., International Preliminary Report on Patentability, PCT/US2012/032010, Oct. 8, 2013, 4 pgs.
ActiveVideo Networks Inc., International Search Report and Written Opinion, PCT/US2012/032010, Oct. 10, 2012, 6 pgs.
ActiveVideo Networks Inc., International Search Report and Written Opinion, PCT/US2013/020769, May 9, 2013, 9 pgs.
ActiveVideo Networks Inc., International Search Report and Written Opinion, PCT/US2013/036182, Jul. 29, 2013, 12 pgs.
ActiveVideo Networks, Inc., International Search Report and Written Opinion, PCT/US2009/032457, Jul. 22, 2009, 7 pgs.
ActiveVideo Networks Inc., Extended EP Search Rpt, Application No. 09820936-4, 11 pgs.
ActiveVideo Networks Inc., Extended EP Search Rpt, Application No. 10754084-1, 11 pgs.
ActiveVideo Networks Inc., Extended EP Search Rpt, Application No. 10841764.3, 16 pgs.
ActiveVideo Networks Inc., Extended EP Search Rpt, Application No. 11833486.1, 6 pgs.
AcitveVideo Networks Inc., Korean Intellectual Property Office, International Search Report; PCT/US2009/032457, Jul. 22, 2009, 7 pgs.
Annex C—Video buffering verifier, information technology—generic coding of moving pictures and associated audio information: video, Feb. 2000, 6 pgs.
Antonoff, Michael, “Interactive Television,” Popular Science, Nov. 1992, 12 pages.
Avinity Systems B.V., Extended European Search Report, Application No. 12163713.6, 10 pgs.
Avinity Systems B.V., Extended European Search Report, Application No. 12163712-8, 10 pgs.
Benjelloun, A summation algorithm for MPEG-1 coded audio signals: a first step towards audio processed domain, 2000, 9 pgs.
Broadhead, Direct manipulation of MPEG compressed digital audio, Nov. 5-9, 1995, 41 pgs.
Cable Television Laboratories, Inc., “CableLabs Asset Distribution Interface Specification, Version 1.1”, May 5, 2006, 33 pgs.
CD 11172-3, Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit, Jan. 1, 1992, 39 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,176, Dec. 23, 2010, 8 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,183, Jan. 12, 2012, 7 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,183, Jul. 19, 2012, 8 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,189, Oct. 12, 2011, 7 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,176, Mar. 23, 2011, 8 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 13/609,183, Aug. 26, 2013, 8 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/103,838, Feb. 5, 2009, 30 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/178,181, Aug. 25, 2010, 17 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/103,838, Jul. 6, 2010, 35 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/178,176, Oct. 1, 2010, 8 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/178,183, Apr. 13, 2011, 16 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/178,177, Oct. 26, 2010, 12 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/178,181, Jun. 20, 2011, 21 pgs.
Craig, Office Action, U.S. Appl. No. 11/103,838, May 12, 2009, 32 pgs.
Craig, Office Action, U.S. Appl. No. 11/103,838, Aug. 19, 2008, 17 pgs.
Craig, Office Action, U.S. Appl. No. 11/103,838, Nov. 19, 2009, 34 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,176, May 6, 2010, 7 pgs.
Craig, Office-Action U.S. Appl. No. 11/178,177, Mar. 29, 2011, 15 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,177, Aug. 3, 2011, 26 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,177, Mar. 29, 2010, 11 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,181, Feb. 11, 2011, 19 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,181, Mar. 29, 2010, 10 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,182, Feb. 23, 2010, 15 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,183, Dec. 6, 2010, 12 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,183, Sep. 15, 2011, 12 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,183, Feb. 19, 2010, 17 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,183, Jul. 20, 2010, 13 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,189, Nov. 9, 2010, 13 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,189, Mar. 15, 2010, 11 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,189, Jul. 23, 2009, 10 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,189, May 26, 2011, 14 pgs.
Craig, Office Action, U.S. Appl. No. 13/609,183, May 9, 2013, 7 pgs.
Pavlovskaia, Office Action, JP 2011-516499, Feb. 14, 2014, 19 pgs.
Digital Audio Compression Standard(AC-3, E-AC-3), Advanced Television Systems Committee, Jun. 14, 2005, 236 pgs.
European Patent Office, Extended European Search Report for International Application No. PCT/US2010/027724, dated Jul. 24, 2012, 11 pages.
FFMPEG, http://www.ffmpeg.org, downloaded Apr. 8, 2010, 8 pgs.
FFMEG-0.4.9 Audio Layer 2 Tables Including Fixed Psycho Acoustic Model, 2001, 2 pgs.
Herr, Notice of Allowance, U.S. Appl. No. 11/620,593, May 23, 2012, 5 pgs.
Herr, Notice of Allowance, U.S. Appl. No. 12/534,016, Feb. 7, 2012, 5 pgs.
Herr, Notice of Allowance, U.S. Appl. No. 12/534,016, Sep. 28, 2011, 15 pgs.
Herr, Final Office Action, U.S. Appl. No. 11/620,593, Sep. 15, 2011, 104 pgs.
Herr, Office Action, U.S. Appl. No. 11/620,593, Mar. 19, 2010, 58 pgs.
Herr, Office Action, U.S. Appl. No. 11/620,593, Apr. 21, 2009 27 pgs.
Herr, Office Action, U.S. Appl. No. 11/620,593, Dec. 23, 2009, 58 pgs.
Herr, Office Action, U.S. Appl. No. 11/620,593, Jan. 24, 2011, 96 pgs.
Herr, Office Action, U.S. Appl. No. 11/620,593, Aug. 27, 2010, 41 pgs.
Herre, Thoughts on an SAOC Architecture, Oct. 2006, 9 pgs.
Hoarty, The Smart Headend—A Novel Approach to Interactive Television, Montreux Int'l TV Symposium, Jun. 9, 1995, 21 pgs.
ICTV, Inc., International Preliminary Report on Patentability, PCT/US2006/022585, Jan. 29, 2008, 9 pgs.
ICTV, Inc., International Search Report/Written Opinion, PCT/US2006/022585, Oct. 12, 2007, 15 pgs.
ICTV, Inc., International Search Report/Written Opinion, PCT/US2008/000419, May 15, 2009, 20 pgs.
ICTV, Inc., International Search Report/Written Opinion; PCT/US2006/022533, Nov. 20, 2006; 8 pgs.
Isovic, Timing constraints of MPEG-2 decoding for high quality video: misconceptions and realistic assumptions, Jul. 2-4, 2003, 10 pgs.
MPEG-2 Video elementary stream supplemental information, Dec. 1999, 12 pgs.
Ozer, Video Compositing 101. available from http://www.emedialive.com, Jun. 2, 2004, 5pgs.
Porter, Compositing Digital Images, 18 Computer Graphics (No. 3), Jul. 1984, pp. 253-259.
RSS Advisory Board, “RSS 2.0 Specification”, published Oct. 15, 2007. Not Found.
SAOC use cases, draft requirements and architecture, Oct. 2006, 16 pgs.
Sigmon, Final Office Action, U.S. Appl. No. 11/258,602, Feb. 23, 2009, 15 pgs.
Sigmon, Office Action, U.S. Appl. No. 11/258,602, Sep. 2, 2008, 12 pgs.
TAG Networks, Inc., Communication pursuant to Article 94(3) EPC, European Patent Application, 06773714.8, May 6, 2009, 3 pgs.
TAG Networks Inc, Decision to Grant a Patent, JP 209-544985, Jun. 28, 2013, 1 pg.
TAG Networks Inc., IPRP, PCT/US2006/010080, Oct. 16, 2007, 6 pgs.
TAG Networks Inc., IPRP, PCT/US2006/024194, Jan. 10, 2008, 7 pgs.
TAG Networks Inc., IPRP, PCT/US2006/024195, Apr. 1, 2009, 11 pgs.
TAG Networks Inc., IPRP, PCT/US2006/024196, Jan. 10, 2008, 6 pgs.
TAG Networks Inc., International Search Report, PCT/US2008/050221, Jun. 12, 2008, 9 pgs.
TAG Networks Inc., Office Action, CN 200680017662.3, Apr. 26, 2010, 4 pgs.
TAG Networks Inc., Office Action, EP 06739032.8, Aug. 14, 2009, 4 pgs.
TAG Networks Inc., Office Action, EP 06773714.8, May 6, 2009, 3 pgs.
TAG Networks Inc., Office Action, EP 06773714.8, Jan. 12, 2010, 4 pgs.
TAG Networks Inc., Office Action, JP 2008-506474, Oct. 1, 2012, 5 pgs.
TAG Networks Inc., Office Action, JP 2008-506474, Aug. 8, 2011, 5 pgs.
TAG Networks Inc., Office Action, JP 2008-520254, Oct. 20, 2011, 2 pgs.
TAG Networks, IPRP, PCT/US2008/050221, Jul. 7, 2009, 6 pgs.
TAG Networks, International Search Report, PCT/US2010/041133, Oct. 19, 2010, 13 pgs.
TAG Networks, Office Action, CN 200880001325.4, Jun. 22, 2011, 4 pgs.
TAG Networks, Office Action, JP 2009-544985, Feb. 25, 2013, 3 pgs.
Talley, A general framework for continuous media transmission control, Oct. 13-16, 1997, 10 pgs.
The Toolame Project, Psych—nl.c, 1999, 1 pg.
Todd, AC-3: flexible perceptual coding for audio transmission and storage, Feb. 26-Mar. 1, 1994, 16 pgs.
Tudor, MPEG-2 Video Compression, Dec. 1995, 15 pgs.
TVHEAD, Inc., First Examination Report, in 1744/MUMNP/2007, Dec. 30, 2013, 6 pgs.
TVHEAD, Inc., International Search Report, PCT/US2006/010080, Jun. 20, 2006, 3 pgs.
TVHEAD, Inc., International Search Report, PCT/US2006/024194, Dec. 15, 2006, 4 pgs.
TVHEAD, Inc., International Search Report, PCT/US2006/024195, Nov. 29, 2006, 9 pgs.
TVHEAD, Inc., International Search Report, PCT/US2006/024196, Dec. 11, 2006, 4 pgs.
TVHEAD, Inc., International Search Report, PCT/US2006/024197, Nov. 28, 2006, 9 pgs.
Vernon, Dolby digital: audio coding for digital television and storage applications, Aug. 1999, 18 pgs.
Wang, A beat-pattern based error concealment scheme for music delivery with burst packet loss, Aug. 22-25, 2001, 4 pgs.
Wang, A compressed domain beat detector using MP3 audio bitstream, Sep. 30-Oct. 5, 2001, 9 pgs.
Wang, A multichannel audio coding algorithm for inter-channel redundancy removal, May 12-15, 2001, 6 pgs.
Wang, An excitation level based psychoacoustic model for audio compression, Oct. 30-Nov. 4, 1999, 4 pgs.
Wang, Energy compaction property of the MDCT in comparison with other transforms, Sep. 22-25, 2000, 23 pgs.
Wang, Exploiting excess masking for audio compression, Sep. 2-5, 1999, 4 pgs.
Wang, schemes for re-compressing mp3 audio bitstreams, Nov. 30- Dec. 3, 2001, 5 pgs.
Wang, Selected advances in audio compression and compressed domain processing, Aug. 2001, 68 pgs.
Wang, The impact of the relationship between MDCT and DFT on audio compression, Dec. 13-15, 2000, 9 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Rule 94(3), EP08713106-6, Jun. 26, 2014, 5 pgs.
ActiveVideo Networks Inc., Examination Report No. 1, AU2011258972, Jul. 21, 2014, 3 pgs.
Brockmann, Office Action, U.S. Appl. No. 12/443,571, Nov. 5, 2014, 26 pgs.
ActiveVideo, http://www.activevideo.com/, as printed out in year 2012, 1 pg.
ActiveVideo Networks Inc., International Preliminary Report on Patentability, PCT/US2013/020769, Jul. 24, 2014, 6 pgs.
ActiveVideo Networks Inc., International Search Report and Written Opinion, PCT/US2014/030773, Jul. 25, 2014, 8 pgs.
ActiveVideo Networks Inc., International Search Report and Written Opinion, PCT/US2014/041416, Aug. 27, 2014, 8 pgs.
ActiveVideo Networks Inc., Extended EP Search Rpt, Application No. 13168509.1, 10 pgs.
ActiveVideo Networks Inc., Extended EP Search Rpt, Application No. 13168376-5, 8 pgs.
ActiveVideo Networks Inc., Extended EP Search Rpt, Application No. 12767642-7, 12 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Rules 70(2) and 70a(2), EP10841764.3, Jun. 6, 2014, 1 pg.
ActiveVideo Networks Inc., Communication Pursuant to Article 94(3) EPC, EP08713106.6-1908, Jun. 25, 2014, 5 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Article 94(3) EPC, EP08713106.6-2223, May 10, 2011, 7 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Article 94(3) EPC, EP09713486.0, Apr. 14, 2014, 6 pgS.
ActiveVideo Networks Inc., Examination Report No. 1, AU2011258972, Apr. 4, 2013, 5 pgs.
ActiveVideo Networks Inc., Examination Report No. 1, AU2010339376, Apr. 30, 2014, 4 pgs.
ActiveVideo Networks Inc., Examination Report, App. No. EP11749946.7, Oct. 8, 2013, 6 pgs.
ActiveVideo Networks Inc., Summons to attend oral-proceeding, Application No. EP09820936-4, Aug. 19, 2014, 4 pgs.
ActiveVideo Networks Inc., International Searching Authority, International Search Report—International application No. PCT/US2010/027724, dated Oct. 28, 2010, together with the Written Opinion of the International Searching Authority, 7 pages.
Adams, Jerry, NTZ Nachrichtechnische Zeitschrift. vol. 40, No. 7, Jul. 1987, Berlin DE pp. 534-536; Jerry Adams: ‘Glasfasernetz für Breitbanddienste in London’, 5 pgs. No English Translation Found, fiber-optic network for broadband services in London.
Avinity Systems B.V., Communication pursuant to Article 94(3) EPC, EP 07834561.8, Jan. 31, 2014, 10 pgs.
Avinity Systems B.V., Communication pursuant to Article 94(3) EPC, EP 07834561.8, Apr. 8, 2010, 5 pgs.
Avinity Systems B.V., International Preliminary Report on Patentability, PCT/NL2007/000245, Mar. 31, 2009, 12 pgs.
Avinity Systems B.V., International Search Report and Written Opinion, PCT/NL2007/000245, Feb. 19, 2009, 18 pgs.
Avinity Systems B.V., Notice of Grounds of Rejection for Patent, JP 2009-530298, Sep. 3, 2013, 4 pgs.
Avinity Systems B.V., Notice of Grounds of Rejection for Patent, JP 2009-530298, Sep. 25, 2012, 6 pgs.
Bird et al., “Customer Access to Broadband Services,” ISSLS 86—The International Symposium on Subrscriber Loops and Services Sep. 29, 1986, Tokyo, JP 6 pgs.
Brockmann, Final Office Action, U.S. Appl. No. 13/668,004, Jul. 16, 2014, 20 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/686,548, Mar. 10, 2014, 11 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/668,004, Dec. 23, 2013, 9 pgs.
Brockmann, Final Office Action, U.S. Appl. No. 13/438,617, Oct. 3, 2014, 19 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/438,617, May 12, 2014, 17 pgs.
Brockmann, Final Office Action, U.S. Appl. No. 12/443,571, Mar. 7, 2014, 21 pgs.
Brockmann, Office Action, U.S. Appl. No. 12/443,571, Jun. 5, 2013, 18 pgs.
Chang, Shih-Fu, et al., “Manipulation and Compositing of MC-DOT Compressed Video,” IEEE Journal on Selected Areas of Communications, Jan. 1995, vol. 13, No. 1, 11 pgs. Best Copy Available.
Dahlby, Office Action, U.S. Appl. No. 12/651,203, Jun. 5, 2014, 18 pgs.
Dahlby, Final Office Action, U.S. Appl. No. 12/651,203, Feb. 4, 2013, 18 pgs.
Dahlby, Office Action, U.S. Appl. No. 12/651,203, Aug. 16, 2012, 18 pgs.
Dukes, Stephen D., “Photonics for cable television system design, Migrating to regional hubs and passive networks,” Communications Engineering and Design, May 1992, 4 pgs.
Ellis, et al., “INDAX: An Operation Interactive Cabletext System”, IEEE Journal on Selected Areas in Communications, vol. sac-1, No. 2, Feb. 1983, pp. 285-294.
European Patent Office, Supplementary European Search Report, Application No. EP 09 70 8211, dated Jan. 5, 2011, 6 pgs.
Frezza, W., “The Broadband Solution—Metropolitan CATV Networks,” Proceedings of Videotex '84, Apr. 1984, 15 pgs.
Gecsei, J., “Topology of Videotex Networks,” The Architecture of Videotex Systems, Chapter 6, 1983 by Prentice-Hall, Inc.
Gobl, et al., “ARIDEM—a multi-service broadband access demonstrator,” Ericsson Review No. 3, 1996, 7 pgs.
Gordon, Notice of Allowance, U.S. Appl. No. 12/008,697, Mar. 20, 2014, 10 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/008,722, Mar. 30, 2012, 16 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/035,236, Jun. 11, 2014, 14 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/035,236, Jul. 22, 2013, 7 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/035,236, Sep. 20, 2011, 8 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/035,236, Sep. 21, 2012, 9 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/008,697, Mar. 6, 2012, 48 pgs.
Gordon, Office Action, U.S. Appl. No. 12/035,236, Mar. 13, 2013, 9 pgs.
Gordon, Office Action, U.S. Appl. No. 12/035,236, Mar. 22, 2011, 8 pgs.
Gordon, Office Action, U.S. Appl. No. 12/035,236, Mar. 28, 2012, 8 pgs.
Gordon, Office Action, U.S. Appl. No. 12/035,236, Dec. 16, 2013, 11 pgs.
Gordon, Office Action, U.S. Appl. No. 12/008,697, Aug. 1, 2013, 43 pgs.
Gordon, Office Action, U.S. Appl. No. 12/008,697, Aug. 4, 2011, 39 pgs.
Gordon, Office Action, U.S. Appl. No. 12/008,722, Oct. 11, 2011, 16 pgs.
Handley et al, “TCP Congestion Window Validation,” RFC 2861, Jun. 2000, Network Working Group, 22 pgs.
Henry et al. “Multidimensional Icons” ACM Transactions on Graphics, vol. 9, No. 1 Jan. 1990, 5 pgs.
Insight advertisement, “In two years this is going to be the most watched program on TV” On touch VCR programming, published not later than 2000, 10 pgs.
Isensee et al., “Focus Highlight for World Wide Web Frames,” Nov. 1, 1997, IBM Technical Disclosure Bulletin, vol. 40, No. 11, pp. 89-90.
ICTV, Inc., International Search Report/Written Opinion, PCT/US2008/000400, Jul. 14, 2009, 10 pgs.
ICTV, Inc., International Search Report/Written Opinion, PCT/US2008/000450, Jan. 26, 2009, 9 pgs.
Kato, Y., et al., “A Coding Control algorithm for Motion Picture Coding Accomplishing Optimal Assignment of Coding Distortion to Time and Space Domains,” Electronics and Communications in Japan, Part 1, vol. 72, No. 9, 1989, 11 pgs.
Koenen, Rob,“MPEG-4 Overview—Overview of the MPEG-4 Standard” Internet Citation, Mar. 2001 (2001-03), http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm, May 9, 2002, 74 pgs.
Konaka, M. et al., “Development of Sleeper Cabin Cold Storage Type Cooling System,” SAE International, The Engineering Society for Advancing Mobility Land Sea Air and Space, SAE 2000 World Congress, Detroit, Michigan, Mar. 6-9,2000, 7 pgs.
Le Gall, Didier, “MPEG: A Video Compression Standard for Multimedia Applications”, Communication of the ACM, vol. 34, No. 4, Apr. 1991, New York, NY, 13 pgs.
Langenberg, E, et al. “Integrating Entertainment and Voice on the Cable Network,” SCTE, Conference on Emerging Technologies, Jan. 6-7, 1993, New Orleans, Louisiana, 9 pgs.
Large, D., “Tapped Fiber vs. Fiber-Reinforced Coaxial CATV Systems”, IEEE LCS Magazine, Feb. 1990, 7 pgs. Best Copy Available.
Mesiya, M.F, “A Passive Optical/Coax Hybrid Network Architecture for Delivery of CATV, Telephony and Data Services,” 1993 NCTA Technical Papers, 7 pgs.
“MSDL Specification Version 1.1” International Organisation for Standardisation Organisation Internationale EE Normalisation, ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Autdio, N1246, MPEG96/Mar. 1996, 101 pgs.
Noguchi, Yoshihiro, et al., “MPEG Video Compositing in the Compressed Domain,” IEEE International Symposium on Circuits and Systems, vol. 2, May 1, 1996, 4 pgs.
Regis, Notice of Allowance U.S. Appl. No. 13/273,803, Sep. 2, 2014, 8 pgs.
Regis, Notice of Allowance U.S. Appl. No. 13/273,803, May 14, 2014, 8 pgs.
Regis, Final Office Action U.S. Appl. No. 13/273,803, Oct. 11, 2013, 23 pgs.
Regis, Office Action U.S. Appl. No. 13/273,803, Mar. 27, 2013, 32 pgs.
Richardson, Ian E.G., “H.264 and MPEG-4 Video Compression, Video Coding for Next-Genertion Multimedia,” Johm Wiley & Sons, US, 2003, ISBN: 0-470-84837-5, pp. 103-105, 149-152, and 164.
Rose, K., “Design of a Switched Broad-Band Communications Network for Interactive Services,” IEEE Transactions on Communications, vol. com-23, No. 1, Jan. 1975, 7 pgs.
Saadawi, Tarek N., “Distributed Switching for Data Transmission over Two-Way CATV”, IEEE Journal on Selected Areas in Communications, vol. Sac-3, No. 2, Mar. 1985, 7 pgs.
Schrock, “Proposal for a Hub Controlled Cable Television System Using Optical Fiber,” IEEE Transactions on Cable Television, vol. CATV-4, No. 2, Apr. 1979, 8 pgs.
Sigmon, Notice of Allowance, U.S. Appl. No. 13/311,203, Sep. 22, 2014, 5 pgs.
Sigmon, Notice of Allowance, U.S. Appl. No. 13/311,203, Feb. 27, 2014, 14 pgs.
Sigmon, Final Office Action, U.S. Appl. No. 13/311,203, Sep. 13, 2013, 20 pgs.
Sigmon, Office Action, U.S. Appl. No. 13/311,203, May 10, 2013, 21 pgs.
Smith, Brian C., et al., “Algorithms for Manipulating Compressed Images,” IEEE Computer Graphics and Applications, vol. 13, No. 5, Sep. 1, 1993, 9 pgs.
Smith, J. et al., “Transcoding Internet Content for Heterogeneous Client Devices” Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Monterey, CA, USA May 31-Jun. 3, 1998, New York, NY, USA, IEEE, US, May 31, 1998, 4 pgs, new ways to watch TV interactively with moving objects in digital.
Stoll, G. et al., “GMF4iTV: Neue Wege zur-Interaktivitaet Mit Bewegten Objekten Beim Digitalen Fernsehen,” Fkt Fernseh Und Kinotechnik, Fachverlag Schiele & Schon GmbH, Berlin, DE, vol. 60, No. 4, Jan. 1, 2006, ISSN: 1430-9947, 9 pgs. No English Translation Found.
Tamitani et al., “An Encoder/Decoder Chip Set for the MPEG Video Standard,” 1992 IEEE International Conference on Acoustics, vol. 5, Mar. 1992, San Francisco, CA, 4 pgs.
Terry, Jack, “Alternative Technologies and Delivery Systems for Broadband ISDN Access”, IEEE Communications Magazine, Aug. 1992, 7 pgs.
Thompson, Jack, “DTMF-TV, The Most Economical Approach to Interactive TV,” GNOSTECH Incorporated, NCF'95 Session T-38-C, 8 pgs.
Thompson, John W. Jr., “The Awakening 3.0: PCs, TSBs, or DTMF-TV—Which Telecomputer Architecture is Right for the Next Generations's Public Network?,” GNOSTECH Incorporated, 1995 The National Academy of Sciences, downloaded from the Unpredictable Certainty: White Papers, http://www.nap.edu/catalog/6062.html, pp. 546-552.
Tobagi, Fouad A., “Multiaccess Protocols in Packet Communication Systems,” IEEE Transactions on Communications, vol. Com-28, No. 4, Apr. 1980, 21 pgs.
Toms, N., “An Integrated Network Using Fiber Optics (Info) for the Distribution of Video, Data, and Telephone in Rural Areas,” IEEE Transactions on Communication, vol. Com-26, No. 7, Jul. 1978, 9 pgs.
Trott, A., et al.“An Enhanced Cost Effective Line Shuffle Scrambling System with Secure Conditional Access Authorization,” 1993 NCTA Technical Papers, 11 pgs.
Jurgen—Two-way applications for cable television systems in the '70s, IEEE Spectrum, Nov. 1971, 16 pgs.
va Beek, P., “Delay-Constrained Rate Adaptation for Robust Video Transmission over Home Networks,” Image Processing, 2005, ICIP 2005, IEEE International Conference, Sep. 2005, vol. 2, No. 11, 4 pgs.
Van der Star, Jack A. M., “Video on Demand Without Compression: A Review of the Business Model, Regulations and Future Implication,” Proceedings of PTC'93, 15th Annual Conference, 12 pgs.
Welzenbach et al., “The Application of Optical Systems for Cable TV,” AEG-Telefunken, Backnang, Federal Republic of Germany, ISSLS Sep. 15-19, 1980, Proceedings IEEE Cat. No. 80 CH1565-1, 7 pgs.
Yum, TS P., “Hierarchical Distribution of Video with Dynamic Port Allocation,” IEEE Transactions on Communications, vol. 39, No. 8, Aug. 1, 1991, XP000264287, 7 pgs.
ActiveVideo Networks, Inc., International Preliminary Report on Patentablity, PCT/US2013/036182, Oct. 14, 2014, 9 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Rule 94(3), EP08713106-6, Jun. 25, 2014, 5 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Rule 94(3), EP09713486.0, Apr. 14, 2014, 6 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Rules 70(2) and 70a(2), EP11833486.1, Apr. 24, 2014, 1 pg.
ActiveVideo Networks Inc., Communication Pursuant to Rules 161(2) & 162 EPC, EP13775121.0, Jan. 20, 2015, 3 pgs.
ActiveVideo Networks, Inc., International Search Report and Written Opinion, PCT/US2014/041430, Oct. 9, 2014, 9 pgs.
Active Video Networks, Notice of Reasons for Rejection, JP2012-547318, Sep. 26, 2014, 7 pgs.
ActiveVideo Networks Inc., Certificate of Patent JP5675765, Jan. 9, 2015, 3 pgs.
Avinity Systems B. V., Final Office Action, JP-2009-530298, Oct. 7, 2014, 8 pgs.
Brockmann, Notice of Allowance, U.S. Appl. No. 13/445,104, Dec. 24, 2014, 14 pgs.
Brockmann, Final Office Action, U.S. Appl. No. 13/686,548, Sep. 24, 2014, 13 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/686,548, Jan. 5, 2015, 12 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/911,948, Dec. 26, 2014, 12 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/911,948, Jan. 29, 2015, 11 pgs.
Dahlby, Office Action, U.S. Appl. No. 12/651,203, Dec. 3, 2014, 19 pgs.
Gordon, Notice of Allowance, U.S. Appl. No. 12/008,697, Dec. 8, 2014, 10 pgs.
Gordon, Office Action, U.S. Appl. No. 12/008,722, Nov. 28, 2014, 18 pgs.
Regis, Notice of Allowance, U.S. Appl. No. 13/273,803, Nov. 18, 2014, 9 pgs.
Sigmon, Notice of Allowance, U.S. Appl. No. 13/311,203, Dec. 19, 2014, 5 pgs.
TAG Networks Inc, Decision to Grant a Patent, JP 2008-506474, Oct. 4, 2013, 5 pgs.
ActiveVideo Networks Inc., Decision to refuse a European patent application (Art. 97(2) EPC, EP09820936.4, Feb. 20, 2015, 4 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Article 94(3) EPC, 10754084.1, Feb. 10, 2015, 12 pgs.
ActiveVideo Networks Inc., Communication under Rule 71(3) EPC, Intention to Grant, EP08713106.6, Feb. 19, 2015, 12 pgs.
ActiveVideo Networks Inc., Notice for Reasons for Rejection, JP2014-100460, Jan. 15, 2015, 6 pgs.
ActiveVideo Networks Inc., Notice for Rejection, JP2013-509016, Dec. 24, 2014 (Received Jan. 14, 2015), 11 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/668,004, Feb. 26, 2015, 17 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/737,097, Mar. 16, 2015, 18 pgs.
Craig, Decision on Appeal—Reversed—, U.S. Appl. No. 11/178,177, Feb. 25, 2015, 7 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,177, Mar. 5, 2015, 7 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,181, Feb. 13, 2015, 8 pgs.
Related Publications (1)
Number Date Country
20120204217 A1 Aug 2012 US
Provisional Applications (1)
Number Date Country
61393262 Oct 2010 US