This invention relates generally to earth-boring drill bits and particularly to improved cutting structures for such bits.
In drilling bore holes in earthen formations by the rotary method, rock bits fitted with one, two, or three rolling cutters are employed. The bit is secured to the lower end of a drill string that is rotated from the surface, or the bit is rotated by downhole motors or turbines. The cutters or cones mounted on the bit roll and slide upon the bottom of the bore hole as the bit is rotated, thereby engaging and disengaging the formation material to be removed. The rolling cutters are provided with cutting elements that are forced to penetrate and gouge the bottom of the borehole by weight of the drill string. The cuttings from the bottom of the borehole are washed away by drilling fluid that is pumped down from the surface through the hollow drill string.
The earliest rolling cutter, earth boring bits had teeth machined integrally from steel, earth disintegrating cutters. These bits, typically known as “steel tooth” or “milled tooth” bits, are used for penetrating the relatively soft geological formations of the earth. The strength and fracture toughness of steel teeth enables the aggressive gouging and scraping action that is advantageous for rapid penetration of soft formations with low compressive strengths. However the same cutting structure that drills sand formations fast, slows down considerably when it encounters shales. This is due in part to the shale sticking to the bit when it cannot be readily removed by the drilling fluid because of the chisel shape of the teeth and their location on the bit.
It has been common in the arts since at least the 1930s to provide a layer of wear-resistance metallurgical material called “hardfacing” over those portions of the steel teeth exposed to the severest wear. The hardfacing typically consists of extremely hard particles, such as sintered, cast, or macrocrystalline tungsten carbide dispersed in a steel matrix. Such hardfacing materials are applied by welding a metallic matrix to the surface to be hardfaced and applying the hard particles to the matrix to form a uniform dispersion of hard particle in the matrix.
Typical milled tooth bits have their teeth milled such that the inner and outer ends and leading and trailing flanks are fairly wide flat surfaces. The flat wide surfaces normal to the direction of rotation increase the tendency for the bit to ball up when sliding in shales. Typical hardfacing deposits are welded over a steel tooth that have a shape similar to the shape of the underlying tooth.
An earth-boring bit has a bit body and at least one cantilevered bearing shaft depending inwardly and downwardly from the bit body. A cutter is mounted for rotation on each bearing shaft wherein each cutter includes a plurality of hardfaced teeth. At least some of the teeth have a leading side that has a streamlined contour. The leading side has an advance portion that leads inner and outer portions of the leading side. The advance portion has a narrow width compared to the base of the tooth.
In one embodiment, the streamlined contour is defined by making at least the leading portion of the tooth conical. The apex is rounded, and the trailing flank may be either conical or conventional in shape. Heel row teeth can be streamlined with a conical leading and inner side. The outer or gage side may remain flat.
In another embodiment, the streamlined contour is defined by providing the leading side with a leading edge. The leading edge is formed by the corner junction of inner and outer diverging sides, which may be flat. Preferably, the included angle of the corner junction is at least 90 degrees.
Also, at least one inner row may have teeth that incline in opposite directions. Each inclined tooth has a central axis that is inclined relative to an axis of rotation of the cone. Preferably, the inclined teeth alternate with each other, with half of the teeth inclining inward and the other half inclining outward.
The teeth of the various embodiments have a crest and a base. The crest may be rounded, as in the case of an apex of a conical contour, or it may be flat. Preferably, the crest is narrow compared to the base, having a width that is less than one-third the width of the base.
In manufacturing, tooth-stubs are machined on the cutter in the desired streamlined configuration. The tooth-stubs have a hardfacing on their surfaces that is a composition of carbide particles dispersed in a metallic matrix. Each tooth-stub and the hardfacing define one of the cutting elements of the cutter.
Referring to
Each cutter 21 has a shell surface including a gage surface 25. Heel row teeth 29 are the outermost teeth and are located at the junction of the conical surface of cutter 21 and gage surface 25. As shown in
In the embodiment shown in
In the embodiment of
The underlying support metal or tooth-stub 31 is formed in this partially conical shape. Hardfacing 33 is applied over tooth-stub 31, typically, in a generally uniform thickness. The leading side of conical inner portion 37 has no flat areas that might impede the flow of viscous shale and drilling mud.
Referring again to
Referring to
Referring to
Referring to
Sides 63, 65 are the inner and outer portions, respectively, of the leading side of tooth 61. Sides 63, 65 join each other at a corner junction 71. Corner junction 71 is the advance portion of tooth 61 because it leads all the remaining portions. Corner 71 is defined by the intersection of the diverging inner and outer sides 63, 65. In this embodiment the included angle 73 of corner junction 71 is 90°. Consequently, each inner and outer side 63, 65 is oriented 45° relative to the direction of rotation. Outer and inner sides 63, 65, although shown to be flat, could be concave or convex to some extent. The width of corner 71 is very small compared to the width of base 62 from corner to the other corner.
In the embodiment of
The same row contains a number of outward inclined teeth 97. Each outward inclined tooth 97 has a central axis 99 that inclines also, but in an opposite direction from axis 95. Each axis 99 is located equidistant between the inner and outer sides of outward inclined tooth 97. The amount of inclination relative to a line that is perpendicular to the rotational axis may vary.
Preferably, each inward inclined tooth 93 alternates with one of the outward inclined teeth 97. This results in a clearance between teeth 93, 97 that is parallel to the direction of rotation to facilitate the flow of sticky shales through teeth 93, 97 of the row. Teeth 93, 97 are shown schematically, and could be conventional. Alternately, they could have streamlined contours, similar to any of the embodiments above. Although teeth 93, 97 are shown schematically to have a base and a crest that are about the same width, the crest could be much smaller than the width of the base. As in the other embodiments, the crest could have a width less than one-third the width of the base of each tooth 93 and 97.
The invention has significant advantages. Streamlined teeth as described facilitate better cuttings removal while maintaining an aggressive cutting structure. The particular shape for the teeth can vary depending on each drilling application. Not all of the inner teeth need to be the same shape. The shape of the heel row teeth can differ as well. Shapes other than conical or pyramidal are feasible.
While the invention has been shown in only a few of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1547842 | Stoody et al. | Jul 1925 | A |
2294544 | Garfield | Sep 1942 | A |
3938599 | Horn | Feb 1976 | A |
4262761 | Crow | Apr 1981 | A |
4726432 | Scott et al. | Feb 1988 | A |
4836307 | Keshavan et al. | Jun 1989 | A |
4944774 | Keshavan et al. | Jul 1990 | A |
5131480 | Lockstedt et al. | Jul 1992 | A |
5152194 | Keshavan et al. | Oct 1992 | A |
5421423 | Huffstutler | Jun 1995 | A |
5492186 | Overstreet et al. | Feb 1996 | A |
5516053 | Hannu | May 1996 | A |
5579856 | Bird | Dec 1996 | A |
5582258 | Tibbitts et al. | Dec 1996 | A |
5592995 | Scott et al. | Jan 1997 | A |
5663512 | Schader et al. | Sep 1997 | A |
5758733 | Scott et al. | Jun 1998 | A |
5791423 | Overstreet et al. | Aug 1998 | A |
5921330 | Sue et al. | Jul 1999 | A |
5963775 | Fang | Oct 1999 | A |
5979575 | Overstreet et al. | Nov 1999 | A |
6045750 | Drake et al. | Apr 2000 | A |
6206115 | Overstreet et al. | Mar 2001 | B1 |
6234261 | Evans et al. | May 2001 | B1 |
6782959 | Minikus et al. | Aug 2004 | B2 |
20030217868 | Witman et al. | Nov 2003 | A1 |
20040045743 | Lockstedt et al. | Mar 2004 | A1 |
20040084223 | Richman | May 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040159469 A1 | Aug 2004 | US |