Street lighting continues to be one of a city's most important and pressing concerns for various reasons. It is very important to try to ensure that adequate lighting is provided for the safety of the pedestrians and motorized and non-motorized vehicle operators and passengers.
Power line carried communications (PLC) are sometimes used for controlling and monitoring street lighting luminaires. PLC may suffer from grounding practices and various impedance mismatch problems such as those encountered when signals transit from one type of power service main to another. Impedance mismatches may result in signal attenuation in crossing the service main transition point, signal reflection resulting in increased interference on the communications signal, and also standing wave phenomena deleterious to PLC communications. If the power line should also serve inductive loads such as fans or air conditioning equipment, capacitor banks may have been installed to correct the power factor. Such capacitor installations may result in severe attenuation of high frequency signals. High frequency signals also experience high attenuation if there is an isolation transformer in the power path, or voltage equalizers such as tap changer transformers. Additional problems are the time changing nature of the PLC channel which may adversely affect its linearity and time invariance for designing signaling sets using techniques implicitly depending upon superposition. Additionally, the communications useful bandwidth of the power line is a function of many parameters including noise. According to the IEEE Standard for Broadband over Power Line Networks, Annex F, power line channels are subject to four classes of noise. They include thermal background noise that is Gaussian and colored, periodic and aperiodic impulsive noise, AM narrowband noise, and noise from other users of the power line qua a communications medium.
Another choice for communications control and monitoring is by wireless non-optical RF communication links. These links are, however, vulnerable to several problems including changing propagation environments due to construction, vehicle movements, and other time-varying communication path impairments. The wireless non-optical RF communication links are also susceptible to degradation due to changing electromagnetic noise characteristics and also potential malicious interference. Such changing environmental aspects may increase the latency of the communications transported on a mesh network, for example, decrease its usable bandwidth, and concomitantly reduce its throughput. Additionally, operational problems with wireless non-optical RF mesh networks have been reported including difficult maintenance from management complexities, antenna design and successful operation under real-world conditions. Problems include implementation and maintenance issues, protocol problems and discovered deficiencies under scaling and unanticipated interference scenarios.
An additional consideration requiring attention has to do with the nature of the light production itself. Conventional lighting is costly to operate and to maintain. It is for this reason that many city infrastructure authorities have decided to either replace or newly install street lighting that is LED-based. It is important that the individual luminaires of a street lighting installation be monitored in order to determine continued and proper functioning. One of the challenges with LED lighting is that it differs from conventional lighting in a way that may make it more difficult to assess its functional condition. This difference is in the ageing process. A conventional lamp may be considered to be in one of two states: either functional or non-functional (burned out). When a conventional lamp burns out it draws no current. An LED on the other hand becomes dimmer as it ages and there is no change in electrical current that may be directly monitored to assess the condition of the LED.
There is therefore a need to develop alternative control communication techniques and better systems and methods for assessing the condition of street lighting led-based luminaires, and reporting and subsequently locating the luminaires whose light production is below a specified threshold.
The present invention presents a method and system for controlling and monitoring street lights using optical link signaling. The optical signaling is accomplished through the free space between the street lights which does not require an FCC license for operation. The optical link signaling is accomplished by using luminaire LEDs for both area lighting and optical signaling.
In an embodiment, the street lighting system includes a plurality of street lights comprising: a luminaire, or lamp, having at least one LED; a structural member such as a pole; and a luminaire associate comprising an optical receiver and modulator. The optical receiver receives optical signaling from one or more other luminaires in the street lighting network.
In an embodiment, the modulator modulates the output of lamp to launch data into street lighting system for transport.
In another embodiment, the optical receiver and modulator enables strobing and flashing modes such as required to support emergency services.
A street lighting system comprises numerous luminaires (street lights). Each luminaire may comprise one or more LEDs that are operated to illuminate selected real estate with a typical visible light intensity of about 2 candelas per square meter.
An LED is unlike an incandescent lamp. A significant difference between incandescent lamps and LEDs is that an LED's light output is at 100 percent brightness almost immediately upon activation. Also, an LED's health is not affected by rapid cycling, i.e., being repeatedly turned on and off.
LEDs are quite different from incandescent lamps in many other ways. One very pronounced difference is that, unlike incandescent lamps, LEDs do not burn out but gradually dim. It is a typical metrological practice to measure an LED lifetime on what is known as the L70 standard. The L70 standard is the average hours of operation delivered by the LED prior to its output lumens falling below 70 percent of its original output. Most LEDs used in street lighting applications are expected to adhere to an L70 standard of about 10 years.
Street lighting systems may be controlled optically using inter-street lighting fixture free space optical link signaling which does not require an FCC license for operation. The optical link signaling may be accomplished by using the luminaire LEDs for both area lighting and optical signaling.
An embodiment of the lighting system is described by segmentation into parts as illustrated in
The luminaire associate 120 may include one or more optical receivers configured to optically receive signals from one or more other luminaires in the street lighting network. The luminaire associate 120 may also include a Light Emitting Diode (LED) 112, an optical receiver 122 and a modulator that modulates light output of luminaire 110 to launch or relay data into the street lighting system for transport. In some embodiments the optical receiver and modulator may enable strobing and flashing modes such as required to support emergency services.
The luminaire associate 120 may also comprise a computer and memory used to control sensors and interpret their data. This allows the luminaire associate to perform computational tasks, support communication messaging, communication protocol functions, and other functions requiring computation and data storage. Some luminaire associates may also comprise an optical receiver that is used to receive optical transmissions from optical devices other than luminaires. Some luminaire associates may further comprise a GPS receiver 124.
The optical signaling network supports several functions including controlling the street lighting system. The optical signaling network may be in the form of a mesh network. A sparsely connected mesh network is illustrated in
In some embodiments, optical signaling from other optically enabled devices in a supported infrastructure or from mobile optical emitters may establish communications with the street lighting optical communication network. This allows the supported infrastructure or mobile optical emitters to transport data through the street lighting optical communication network or to send a message, such as a command, to a particular luminaire associate.
Messages from a fixed or mobile optically enabled device 340 may be accepted by a luminaire associate comprising an optical receiver that is used to receive optical transmissions from optical devices other than luminaires. In an embodiment, the luminaire associate may send a clear-to-send signal notifying mobile optically enabled device 340 that it may begin its transmission. In one embodiment, the luminaire associate sends the clear-to-send signal based on a master timing signal broadcast through the optical signaling network. In another embodiment, the luminaire associate sends the clear-to-send signal based on time slots assigned for receiving transmissions from the optically enabled device 340. In an embodiment, the luminaire associate identifies the beginning and end of the time slots using a GPS receiver that is included within the luminaire associate.
The optical links between the lighting fixtures of the street lighting system may be a direct lighting fixture to lighting fixture path, that is, the optical receiver in a lighting fixture receives modulated light 410 directly from another lighting fixture's luminaire as illustrated in
In some street lighting systems, there may not be a direct optical path to allow for direct optical signaling from one lighting fixture to another as illustrated in
Free space optical communication links may be adversely affected by atmospheric conditions such as haze, mist, fog, sleet, snow, dust, smoke, and rain. Of these atmospheric absorbers and scatterers, fog and heavy snow are the most impactful. A collimated beam of light having a flux of Φ0 at the source will have a flux, Φ, at range R of Φ=Φ0e−σ
As for concerns regarding fog and snow and their optical attenuation, the paper “Characterization of Fog and Snow Attenuations for Free-Space Optical Propagation” by Awan et al, Journal of Communications, Vol. 4, No. 8, September 2009, pp. 533-545, informs that attenuation of 45 dB/km has been reported for dry snowfall conditions. Using data from the paper, the attenuation range of dB loss of intensity due to fog may be as presented in Table 1.
As concerns the deleterious effect of rain on free space optical links, according to “Optical Extinction by Rainfall” by David Atlas, Journal of Meteorology, Vol. 10, December 1953, pp. 486-488, the extinction coefficient, σe, per kilometer of range, for Bergeron-process rain (common rainfall production from cool clouds) is σe≈0.25·W0.63 where W is the Bergeron-process rainfall rate in mm/hr. Table 2 presents the dB loss of intensity due to Rainfall Rate and the path distance through the rain for different values of R and W.
The entries in Tables 1 and 2 show that light fog or moderate rainfall are not likely to pose significant communication problems for optical links spanning typical ranges of inter-street lighting distances.
Link interference can arise due to modulated light from non-neighboring light fixtures or signaling energy incidentally received from other optical signaling links. Additionally, received optical energy from non-optical signaling links such as vehicle headlamp reflections falling on a light fixture's optical receiving aperture can create interference. Interference may also result from physical blockages of the optical path such as by birds, bats, or insect swarms. Amelioration of these interference problems may be done through careful alignment techniques of the apertures for a lighting fixture optical receiver, signaling design to militate non-optical signaling optical energy, and physical design to discourage intermittent obstructions by animals.
Interfering light may be reduced by polarization techniques as light that is reflected off of a surface interface will tend to be polarized, with the direction of polarization (the way the electric field vectors point) being parallel to the plane of the surface interface.
In one embodiment, the optical receiving aperture (
Optical links are beneficial for at least two additional reasons. The first of these is that the optical link is less likely to undergo degradation as the infrastructure changes by expansion or modification. RF communications, especially in the changing dielectric canyons of a large built up urban area, or by traffic patterns that insinuate multipath in the RF signaling, may tend to become unstable in performance. Also, there is the additional, problem of interference from electrical noise processes and cross-talk from other communication system RF links and even from the RF links in the RF-based streetlight communications system. This interference is far more likely and much more difficult to ameliorate than similar problems in an optical-link based streetlight communication system.
The second of these additional reasons is that, the optical link is used to assess the condition of a street light's luminaire. Measurements of the received output of the nearest or nearby street light luminaire by the optical receiver of a nearest neighbor luminaire associate allows a health assessment of the nearest or nearby street light's luminaire and an assessment of the atmospheric conditions, e.g., the presence of rain or fog.
The light output of a neighboring street light luminaire may be monitored periodically, on demand, and/or in a differential fashion using previous data as a reference and reporting by sending only the delta value (or change from the last reported measurement) if the delta value exceeds a preset magnitude. Reporting delta values can lead to ambiguity that needs to be resolved. For example, if a standard continuous report were initiated from each luminaire associate of a street light fixture of the light received from a neighboring street light luminaire, it might not be possible to differentiate between failure of the neighboring street light luminaire or a rain condition. In order to resolve this ambiguity, the street light luminaire associate's optical receiver could save its measurement of the received light and compare it to a measurement made later on, after atmospheric conditions had time to change.
Implementation of optical signaling techniques may vary the optical output of the luminaire to a street lighting fixture. Accordingly, to provide signaling for data to be transmitted, it may necessary to ensure that the output variations will not be distracting or, at best, not noticeable by human observers. As lighting conditions change, sometimes rapidly, one embodiment envisions signaling that is differential in nature and not based on fixed levels of light intensity.
Psycho-visual studies have shown that at 2 candelas per square meter, which is a typical illumination intensity provided by street lighting, a human observer does not detect changes of −20 dBs in light intensity and therefore signaling can be accomplished with an intensity change of at least one percent.
The optical decoder of the optical signaling is likely to function as a photon counter with a decision threshold. The model for this type of optical signaling and symbol decision making is based on Poisson statistics and, for a non-photon starved environment, the Poisson counts are usually approximated by normal distributions.
The energy accorded a signaling bit may also be varied. The symbol photon integration time may be set to reduce the probability of error below a desired threshold.
Robust signaling embodiments may be of additional aid in the design and implementation of optical transmitter and receiver links. Robust embodiments may employ techniques such as clock recovery, absence of a DC component, Manchester Coding and/or Differential Manchester Encoding, the latter combining data and clock to form a self-synchronizing data sequence.
In an embodiment, the optical signaling network comprises optical links that employ a protocol for handling the acceptance, transport, and delivery of messages and controls throughout the network. The protocol rules may specify a means of error control, message handling and accounting procedures, rules for dealing with transmission delays, and policies respecting retransmissions and scalability issues. The protocol rules may be fixed, software alterable, or software defined. With a software defined network, the network might, for example, be initially based on call and response polling or be a mesh with decentralized control. A software definition of the network may allow the network to be scaled more easily and the timing may be modified as appropriate from, for example, a master-slave implementation to a plesiochronous paradigm. A software-defined or software alterable dynamic network configuration may also be efficient for handling trouble shooting issues. For example, if a query does not get an answer before a timer for a particular monitor expires, it might be possible to temporarily alter the network to an ad hoc form and flood the lighting network with diagnostic messages.
There are virtually an unlimited number of protocol candidates from which to select a communications protocol. In one embodiment, towards the simplistic extreme, messages might be handled as datagrams with best delivery attempts and then, on delivery failure, discarded. In another embodiment, towards the more complicated extreme, messages might be handled with strict accountability, attempting retries, and re-routing of messages until delivery confirmation or notification to a system manager of non-delivery.
In an embodiment, a street lighting system may consider a hybrid of protocols. For most functions, the system may be reinitialized every evening and can therefore accommodate some message loss and some message errors and therefore allow the system to function adequately with a protocol that functions according to best delivery goals.
In another embodiment, some systems will handle and haul communications for other infrastructure systems. These messages may require a higher standard of care ensuring delivery or notification of non-delivery. When the streetlight optical signaling network is handling these messages, it may invoke a packet-handling protocol with strict accountability for assuring delivery and initiating retransmissions as required.
An exemplary technical effect of the methods and systems described herein includes: (a) generating a melt pool based on the build parameters of the component; (b) detecting an optical signal generated by the melt pool to measure the size or the temperature of the melt pool; and (c) modifying the build parameters in real-time based on the size or the temperature of the melt pool to achieve a desired physical property of the component.
Some embodiments involve the use of one or more electronic or computing devices. Such devices typically include a processor or controller, such as, without limitation, a general purpose central processing unit (CPU), a graphics processing unit (GPU), a microcontroller, a field programmable gate array (FPGA), a reduced instruction set computer (RISC) processor, an application specific integrated circuit (ASIC), a programmable logic circuit (PLC), and/or any other circuit or processor capable of executing the functions described herein.
The methods described herein may be encoded as executable instructions embodied in a computer readable medium, including, without limitation, a storage device, and/or a memory device. Such instructions, when executed by a processor, cause the processor to perform at least a portion of the methods described herein. The above examples are exemplary only, and thus are not intended to limit in any way the definition and/or meaning of the term processor.
Exemplary embodiments for enhancing the build parameters for making additive manufactured components are described above in detail. The apparatus, systems, and methods are not limited to the specific embodiments described herein, but rather, operations of the methods and components of the systems may be utilized independently and separately from other operations or components described herein. For example, the systems, methods, and apparatus described herein may have other industrial or consumer applications and are not limited to practice with electronic components as described herein. Rather, one or more embodiments may be implemented and utilized in connection with other industries.
Although specific features of various embodiments of the invention may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the invention, any feature of a drawing may be referenced or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the invention, including the best mode, and to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
This application is a non-provisional of and claims the benefit of U.S. Provisional Patent Application Ser. Nos. 61/907,069, 61/907,078, 61/907,090, 61/907,114, 61/907,133, 61/907,150, 61/907,168, 61/907,188 and 61/907,210 filed on Nov. 21, 2013, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4704610 | Smith et al. | Nov 1987 | A |
4878754 | Homma et al. | Nov 1989 | A |
5014052 | Obeck | May 1991 | A |
5028129 | Smith | Jul 1991 | A |
5199044 | Takeuchi et al. | Mar 1993 | A |
5243185 | Blackwood | Sep 1993 | A |
5345232 | Robertson | Sep 1994 | A |
5519692 | Hershey et al. | May 1996 | A |
5519725 | Hershey et al. | May 1996 | A |
5526357 | Jandrell | Jun 1996 | A |
5557261 | Barbour | Sep 1996 | A |
5563728 | Allen | Oct 1996 | A |
5563906 | Hershey et al. | Oct 1996 | A |
5568507 | Hershey et al. | Oct 1996 | A |
5568508 | Hershey | Oct 1996 | A |
5568509 | Hershey et al. | Oct 1996 | A |
5568522 | Hershey et al. | Oct 1996 | A |
5682100 | Rossi et al. | Oct 1997 | A |
5761238 | Ross et al. | Jun 1998 | A |
5822099 | Takamatsu | Oct 1998 | A |
5844949 | Hershey et al. | Dec 1998 | A |
5852243 | Chang et al. | Dec 1998 | A |
5903594 | Saulnier et al. | May 1999 | A |
6011508 | Perreault et al. | Jan 2000 | A |
6101214 | Hershey et al. | Aug 2000 | A |
6122084 | Britz | Sep 2000 | A |
6288632 | Hoctor et al. | Sep 2001 | B1 |
6308134 | Croyle et al. | Oct 2001 | B1 |
6346875 | Puckette et al. | Feb 2002 | B1 |
6424250 | Puckette, IV et al. | Jul 2002 | B1 |
6430210 | McGrath et al. | Aug 2002 | B1 |
6433976 | Phillips | Aug 2002 | B1 |
6459998 | Hoffman | Oct 2002 | B1 |
6504634 | Chan | Jan 2003 | B1 |
6522243 | Saulnier et al. | Feb 2003 | B1 |
6659715 | Kuesters et al. | Dec 2003 | B2 |
6693556 | Jones et al. | Feb 2004 | B1 |
6717660 | Bernardo | Apr 2004 | B1 |
6943668 | Gaus, Jr. et al. | Sep 2005 | B2 |
7175082 | Hoshina | Feb 2007 | B2 |
7248149 | Bachelder et al. | Jul 2007 | B2 |
7294977 | Eusterbrock et al. | Nov 2007 | B1 |
7418346 | Breed et al. | Aug 2008 | B2 |
7460787 | Damink et al. | Dec 2008 | B2 |
7580705 | Kumar | Aug 2009 | B2 |
7629899 | Breed | Dec 2009 | B2 |
7646330 | Karr | Jan 2010 | B2 |
7817063 | Hawkins et al. | Oct 2010 | B2 |
7834555 | Cleland et al. | Nov 2010 | B2 |
7855376 | Cantin et al. | Dec 2010 | B2 |
7876864 | Conrad et al. | Jan 2011 | B2 |
7899621 | Breed et al. | Mar 2011 | B2 |
7912645 | Breed et al. | Mar 2011 | B2 |
7983685 | Silverstrim et al. | Jul 2011 | B2 |
7983836 | Breed | Jul 2011 | B2 |
8092032 | Pearse | Jan 2012 | B2 |
8138690 | Chemel et al. | Mar 2012 | B2 |
8140276 | Walters et al. | Mar 2012 | B2 |
8227995 | Damink et al. | Jul 2012 | B2 |
8232745 | Chemel et al. | Jul 2012 | B2 |
8244260 | Silverstrim et al. | Aug 2012 | B2 |
8260537 | Breed | Sep 2012 | B2 |
8274373 | Nysen | Sep 2012 | B2 |
8339069 | Chemel et al. | Dec 2012 | B2 |
8368321 | Chemel et al. | Feb 2013 | B2 |
8373362 | Chemel et al. | Feb 2013 | B2 |
8384312 | Tsai | Feb 2013 | B2 |
8436748 | Mimeault et al. | May 2013 | B2 |
8441214 | Anderson | May 2013 | B2 |
8442403 | Weaver | May 2013 | B2 |
8442785 | Walters et al. | May 2013 | B2 |
8456325 | Sikora | Jun 2013 | B1 |
8475002 | Maxik et al. | Jul 2013 | B2 |
8641241 | Farmer | Feb 2014 | B2 |
8840569 | Flaction et al. | Sep 2014 | B2 |
8842009 | Jones | Sep 2014 | B2 |
8947296 | Raz et al. | Feb 2015 | B2 |
9192026 | Marquardt et al. | Nov 2015 | B2 |
9192029 | Marquardt et al. | Nov 2015 | B2 |
20020141882 | Ingistov et al. | Oct 2002 | A1 |
20050017647 | Huang | Jan 2005 | A1 |
20050047864 | Yamada et al. | Mar 2005 | A1 |
20050104745 | Bachelder et al. | May 2005 | A1 |
20050187701 | Baney | Aug 2005 | A1 |
20070063875 | Hoffberg | Mar 2007 | A1 |
20070201540 | Berkman | Aug 2007 | A1 |
20070229250 | Recker et al. | Oct 2007 | A1 |
20080037241 | Von Der Brelie | Feb 2008 | A1 |
20080072766 | Kobylarz | Mar 2008 | A1 |
20080122642 | Radtke et al. | May 2008 | A1 |
20080150757 | Hutchison | Jun 2008 | A1 |
20080238720 | Lee | Oct 2008 | A1 |
20090002982 | Hu et al. | Jan 2009 | A1 |
20090033504 | Tsai et al. | Feb 2009 | A1 |
20090034258 | Tsai et al. | Feb 2009 | A1 |
20090066540 | Marinakis et al. | Mar 2009 | A1 |
20090120299 | Rahn et al. | May 2009 | A1 |
20090128328 | Fan | May 2009 | A1 |
20090158739 | Messmer | Jun 2009 | A1 |
20090164174 | Bears et al. | Jun 2009 | A1 |
20090167508 | Fadell et al. | Jul 2009 | A1 |
20090214198 | Takahashi et al. | Aug 2009 | A1 |
20090268453 | Pearse | Oct 2009 | A1 |
20090297156 | Nakagawa et al. | Dec 2009 | A1 |
20100013608 | Petrisor et al. | Jan 2010 | A1 |
20100029268 | Myer et al. | Feb 2010 | A1 |
20100115093 | Rice | May 2010 | A1 |
20100295473 | Chemel et al. | Nov 2010 | A1 |
20100295474 | Chemel et al. | Nov 2010 | A1 |
20100295475 | Chemel et al. | Nov 2010 | A1 |
20100295482 | Chemel et al. | Nov 2010 | A1 |
20100295943 | Cha et al. | Nov 2010 | A1 |
20100296285 | Chemel et al. | Nov 2010 | A1 |
20100301768 | Chemel et al. | Dec 2010 | A1 |
20100301770 | Chemel et al. | Dec 2010 | A1 |
20100301771 | Chemel et al. | Dec 2010 | A1 |
20100301773 | Chemel et al. | Dec 2010 | A1 |
20100301774 | Chemel et al. | Dec 2010 | A1 |
20100301834 | Chemel et al. | Dec 2010 | A1 |
20100302779 | Chemel et al. | Dec 2010 | A1 |
20100308736 | Hung | Dec 2010 | A1 |
20100309209 | Hodgins et al. | Dec 2010 | A1 |
20110001436 | Chemel et al. | Jan 2011 | A1 |
20110001438 | Chemel et al. | Jan 2011 | A1 |
20110001626 | Yip et al. | Jan 2011 | A1 |
20110043035 | Yamada et al. | Feb 2011 | A1 |
20110069960 | Knapp et al. | Mar 2011 | A1 |
20110095867 | Ahmad | Apr 2011 | A1 |
20110115384 | Chatelus | May 2011 | A1 |
20110140950 | Andersson | Jun 2011 | A1 |
20110156900 | Toda | Jun 2011 | A1 |
20110215736 | Horbst et al. | Sep 2011 | A1 |
20110227584 | Beck | Sep 2011 | A1 |
20110288658 | Walters et al. | Nov 2011 | A1 |
20120053888 | Staehlin et al. | Mar 2012 | A1 |
20120062123 | Jarrell et al. | Mar 2012 | A1 |
20120086560 | Ilyes et al. | Apr 2012 | A1 |
20120086561 | Ilyes et al. | Apr 2012 | A1 |
20120126721 | Kuenzler et al. | May 2012 | A1 |
20120136485 | Weber et al. | May 2012 | A1 |
20120140748 | Carruthers | Jun 2012 | A1 |
20120154239 | Bar-Sade et al. | Jun 2012 | A1 |
20120163826 | Schenk et al. | Jun 2012 | A1 |
20120209505 | Breed et al. | Aug 2012 | A1 |
20120218101 | Ford | Aug 2012 | A1 |
20120230696 | Pederson et al. | Sep 2012 | A1 |
20120245880 | Nabrotzky | Sep 2012 | A1 |
20120256777 | Smith et al. | Oct 2012 | A1 |
20120262304 | Cripps | Oct 2012 | A1 |
20120280825 | Sakakihara | Nov 2012 | A1 |
20120286673 | Holland et al. | Nov 2012 | A1 |
20120299721 | Jones | Nov 2012 | A1 |
20120299755 | Jones | Nov 2012 | A1 |
20120308239 | Sheth et al. | Dec 2012 | A1 |
20120309293 | Kummetz et al. | Dec 2012 | A1 |
20120321321 | Riesebosch | Dec 2012 | A1 |
20120323474 | Breed et al. | Dec 2012 | A1 |
20130044488 | Hreish | Feb 2013 | A1 |
20130057158 | Josefowicz et al. | Mar 2013 | A1 |
20130063281 | Malaska | Mar 2013 | A1 |
20130076523 | Kwan et al. | Mar 2013 | A1 |
20130101003 | Vedantham et al. | Apr 2013 | A1 |
20130140995 | Jones | Jun 2013 | A1 |
20130144490 | Lord et al. | Jun 2013 | A1 |
20130169468 | Johnson et al. | Jul 2013 | A1 |
20130172012 | Zudrell-Koch | Jul 2013 | A1 |
20130181636 | Agrawal | Jul 2013 | A1 |
20130214697 | Archenhold | Aug 2013 | A1 |
20130221858 | Silberstein | Aug 2013 | A1 |
20130229116 | Van Zeijl et al. | Sep 2013 | A1 |
20130257284 | VanWagoner et al. | Oct 2013 | A1 |
20130293117 | Verfuerth | Nov 2013 | A1 |
20130330172 | Scipio et al. | Dec 2013 | A1 |
20130346229 | Martin et al. | Dec 2013 | A1 |
20140055439 | Lee et al. | Feb 2014 | A1 |
20140085055 | Lee et al. | Mar 2014 | A1 |
20140124007 | Scipio et al. | May 2014 | A1 |
20140125250 | Wilbur | May 2014 | A1 |
20140175982 | Yao et al. | Jun 2014 | A1 |
20140191858 | Morgan et al. | Jul 2014 | A1 |
20150023668 | Spaulding et al. | Jan 2015 | A1 |
20150173159 | Lin et al. | Jun 2015 | A1 |
20150319825 | Destine et al. | Nov 2015 | A1 |
20160094088 | Bjorn et al. | Mar 2016 | A1 |
20160095182 | Bjorn et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1437270 | Jul 2004 | EP |
2131630 | Dec 2009 | EP |
2521426 | Nov 2012 | EP |
2403357 | Dec 2004 | GB |
05205193 | Aug 1993 | JP |
2005248607 | Sep 2005 | JP |
2009025209 | Feb 2009 | JP |
2009103497 | May 2009 | JP |
1020060008967 | Jan 2006 | KR |
1020060102552 | Sep 2006 | KR |
100986279 | Oct 2010 | KR |
2005029437 | Mar 2005 | WO |
2009148466 | Dec 2009 | WO |
2010079388 | Jul 2010 | WO |
2011142516 | Nov 2011 | WO |
2012090142 | Jul 2012 | WO |
2012140152 | Oct 2012 | WO |
2013160791 | Oct 2013 | WO |
Entry |
---|
U.S. Appl. No. 14/543,892, filed Nov. 18, 2014, Hershey et al. |
U.S. Appl. No. 14/546,982, filed Nov. 18, 2014, Hershey et al. |
U.S. Appl. No. 14/546,954, filed Nov. 18, 2014, Hershey et al. |
U.S. Appl. No. 14/484,300, filed Sep. 12, 2014, Hartman et al. |
U.S. Appl. No. 14/546,486, filed Nov. 18, 2014, Hartman et al. |
U.S. Appl. No. 14/546,408, filed Nov. 18, 2014, Hartman et al. |
U.S. Appl. No. 14/546,256, filed Nov. 18, 2014, Barnett et al. |
U.S. Appl. No. 14/546,856, filed Nov. 18, 2014, Hartman et al. |
Atlas, “Optical Extinction by Rainfall”, Journal of Meteorology, vol. No. 10, pp. 486-488, Dec. 1953. |
Noe et al., “Global Positioning System, A Navigation Algorithm for the Low-Cost GPS Receiver”, The Institute of Navigation, vol. No. 1, pp. 166-172, 1980. |
Proakis, “Spread Spectrum Signals for Digital Communication,” in Digital Communications, for an overview of DS theory, pp. 1-27, 1983. |
Hershey et al., “Random and Pseudorandom Sequences,” Data Transportation and Protection, pp. 259-310, 1986. |
“Millimeter Wave Propagation: Spectrum Management Implications” published by the FCC as Bulletin No. 70, Jul. 1997. |
Pang et al., “LED Traffic Light as a Communications Device”, Proceedings of the International Conference on Intelligent Transportation Systems, pp. 788-793, 1999. |
Mimbela et al., “A Summary of Vehicle Detection and Surveillance Technologies Used in Intelligent Transportation Systems”, Southwest Technology Development Institute, pp. 1-211, Nov. 30, 2000. |
Bullimore, “Controlling Traffic With Radio”, IEEE Review, vol. No. 47, Issue No. 1, pp. 40-44, Jan. 2001. |
Chao-Qun et al., “Application of Low-voltage Power Line Communication in a City Street Lamp Long-distance Intelligent Monitoring System”, Research and Developments, 2006. |
Cho et al., “Street Lighting Control Based on LonWorks Power Line Communication”, Power Line Communications and Its Applications, pp. 396-398, Apr. 2008. |
Awan et al., “Characterization of Fog and Snow Attenuations for Free-Space Optical Propagation”, Journal of Communications, vol. No. 4, Issue No. 8, pp. 533-545, Sep. 2009. |
Rich, “Light Monitoring System Keeps Glendale, Ariz., Out of the Dark”, Government Technology, Oct. 24, 2011. |
“Monitoring and Evaluation Protocol for the Field Performance of LED Street Lighting Technologies”, Light Savers Accelerating Advanced Outdoor Lighting, Prepared by Toronto Atmospheric Fund in Partnership with Ontario Municipal Street Lighting Focus Group and Ontario Power Authority, pp. 1-32, 2011. |
Qian et. al., “Based on PLC and GPRS, ZigBee street lamp wireless control system”, Electronic Design Engineering, vol. No. 20, Issue No. 3, Feb. 2012. |
Stevens et al., “White Paper—The Benefits of 60 GHz Unlicensed Wireless Communications” as captured by Wayback machine, SUB10 systems.com, pp. 1-10, May 7, 2012. |
“Wireless Control and Communication System for LED Luminaires and Other Devices”, San Francisco Public Utilities Commission Power Enterprise, pp. 1-15, Jun. 7, 2012. |
Zotos et al., “Case study of a dimmable outdoor lighting system with intelligent management and remote control”, Telecommunications and Multimedia (TEMU), 2012 International Conference on, pp. 43-48, Jul. 30-Aug. 1, 2012. |
Caillet et al., “LonMark, the open Smart Streetlight Platform”, Lonmark International, pp. 1-16, Feb. 2013. |
After Newtown: A new use for a weapons-detecting radar?, University of Michigan, Apr. 1, 2013. |
Lee et al., “Distributed dimming control for LED lighting”, Optics Express, vol. No. 21, Issue No. S6, pp. 1-16, Nov. 2013. |
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066954 dated Feb. 26, 2015. |
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066922 dated Feb. 26, 2015. |
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066957 dated Mar. 5, 2015. |
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066917 dated Mar. 5, 2015. |
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066337 dated Mar. 6, 2015. |
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066948 dated Mar. 9, 2015. |
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066942 dated Mar. 20, 2015. |
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2014/066927 dated Feb. 27, 2015. |
US Non-Final Office Action issued in connection with related U.S. Appl. No. 14/484,300 on Dec. 4, 2015. |
US Non-Final Office Action issued in connection with related U.S. Appl. No. 14/546,256 on Dec. 30, 2015. |
US Non-Final Office Action issued in connection with related U.S. Appl. No. 14/546,982 on Feb. 1, 2016. |
US Non-Final Office Action issued in connection with related U.S. Appl. No. 14/546,954 on Apr. 20, 2016. |
US Non-Final Office Action issued in connection with related U.S. Appl. No. 14/543,892 on May 9, 2016. |
Final Office Action issued in connection with related U.S. Appl. No. 14/546,256 on Jun. 2, 2016. |
Notice of Allowance Office Action issued in connection with related U.S. Appl. No. 14/543,892 on Aug. 26, 2016. |
Notice of Allowance Office Action issued in connection with related U.S. Appl. No. 14/546,954 on Sep. 16, 2016. |
Number | Date | Country | |
---|---|---|---|
20150147064 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61907090 | Nov 2013 | US | |
61907078 | Nov 2013 | US | |
61907069 | Nov 2013 | US | |
61907114 | Nov 2013 | US | |
61907133 | Nov 2013 | US | |
61907150 | Nov 2013 | US | |
61907168 | Nov 2013 | US | |
61907188 | Nov 2013 | US | |
61907210 | Nov 2013 | US |