The present invention relates to the fields of lighting devices and, more specifically, to roadway reflectors and surface lighting devices adapted to communicate with observers.
Lighting is used to illuminate roadways, bikeways, walkways, sidewalks, pathways, bridges, ramps, tunnels, curbs, parking lots, driveways, roadway barriers, drainage structures, utility structures, and many other objects. The lighting devices commonly used for illuminating roadway or other similar surfaces are overhead lights, particularly overhead street lamps. Overhead lighting devices commonly provide inefficient lighting and the majority of light emitted is absorbed by the roadway, structure, or other object and fails to efficiently illuminate the intended object(s).
Furthermore, lighting technologies such as light-emitting diodes (LEDs) offer significant advantages over incandescent, fluorescent, and high pressure sodium lamps that are often used in roadway overhead lights. These advantages include, but are not limited to, better lighting quality, longer operating life, and lower energy consumption. The majority of lighting devices used for roadways, bikeways, walkways, sidewalks, pathways, bridges, ramps, tunnels, curbs, parking lots, driveways, roadway barriers, drainage structures, utility structures, and other similar objects are often inefficient and need repair or replacement often. Although the use of LED lighting devices for overhead lighting presents significant advantages over traditional roadway lighting that uses incandescent or fluorescent lights, absorption of light may sometimes require the use of larger LEDs and/or an increased amount of LEDs to provide sufficient illumination. Therefore, there is a need for an improved and more efficient lighting system where the majority of the amount of light emitted is not absorbed.
Roadway reflectors come in several standard shapes, such as, for example rectangular or circular. Roadway reflectors have not been designed with the intent to illuminate other objects, such as roadways, bikeways, walkways, sidewalks, pathways, bridges, ramps, tunnels, curbs, parking lots, driveways, roadway barriers, drainage structures, utility structures, and other similar objects. Therefore, there is a need for an improved roadway reflector that also illuminates adjacent surfaces without emitting glare-causing light into oncoming traffic, thereby illuminating only the surfaces of the intended objects, while also emitting light that may indicate a condition of the roadway relevant to oncoming traffic.
U.S. Pat. No. 3,332,327 to Heenan, U.S. Pat. No. 3,409,344 to Balint et al., U.S. Pat. No. 3,984,175 to Suhr et al., and U.S. Pat. No. 5,061,114 to Hedgewick disclose reflective roadway markers having a shell-like housing and a reflective portion of light transmitting material carried by the housing. The marker in all of these patents may not have any light source or power generating elements and may not have sidewalls that are slanted, curved, partially slanted, or partially curved.
U.S. patent application Ser. No. 12/502,232 to Huck et al. discloses a solar powered road marker light that is self-powered and self-illuminating with relatively low energy consumption. The road marker light is installed on road dividers, markers, signs, traffic barriers, traffic control devices, etc. The road marker light may not be installed on a thoroughfare surface, such as a roadway, pathway, sidewalk, curb, or other similar surface. Further, the road marker light may only illuminate the housing of the road marker light and does not illuminate the thoroughfare surface.
U.S. patent application Ser. No. 10/829,800 to Safar discloses flashing red or yellow light in the direction of oncoming traffic so as to relay an advance warning of slowed, stopped, or all-clear traffic conditions to the oncoming traffic. However, Safar does not disclose, and the structure of the system of Safar precludes, a system that may successfully emit illuminating light that does not cause glare in oncoming vehicles while also emitting light indicating a condition of the traffic condition.
This background information is provided to reveal information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.
With the above in mind, embodiments of the present invention are related to a thoroughfare lighting device comprising a housing configured to be attached to a thoroughfare surface, having a top surface, a proximal face, a distal face, and first and second opposing sidewalls extending between the proximal and distal faces and extending downwardly from the top surface, a driver circuit, and a plurality of light-emitting diodes (LEDs) electrically coupled to the driver circuit. The plurality of LEDs may comprise a first set of LEDs configured to emit a generally white light and a second set of LEDs configured to emit colored light that is observable by an observer. The lighting device may further comprise an optic carried by the housing and positioned in optical communication with the plurality of LEDs. The color of light emitted by the second set of LEDs may be selectable to indicate a condition of the associated thoroughfare in a direction of travel of the observer to the observer. Furthermore, the first sidewall may taper in a direction of the distal face.
In some embodiments, the plurality of LEDs may be configured to selectively illuminate individual lanes of the associated thoroughfare. Furthermore, the driver circuit may be configured to operate the second set of LEDs to emit light so as to indicate a condition in a first lane of the associated thoroughfare and not indicate a condition in a second lane of the associated thoroughfare. Additionally, the driver circuit may be configured to operate the plurality of LEDs to transmit data via visible light communication to another thoroughfare lighting device.
In some embodiments, the second set of LEDs may comprise LEDs configured to emit light having a first color and LEDs configured to emit light having a second color that is difference from the first color. The second set of LEDs may be configured to emit at least one of blue light, red light, yellow light, and amber light. Furthermore, the driver circuit may be configured to operate the second set of LEDs to emit a red light to indicate a stop in traffic, a yellow or amber light to indicate a slow-down in traffic, and a blue light to indicate the presence or imminent arrival of an emergency vehicle.
In some embodiments, the lighting device may further comprise a traffic sensor electrically coupled to the driver circuit. The traffic sensor may be configured to sense a traffic pattern and generate information regarding traffic on the associated thoroughfare. Furthermore, the driver circuit may be configured to operate the plurality of LEDs responsive to the information generated by the traffic sensor. In some embodiments, the driver circuit may be configured to alternately flash the first set of LEDs and the second set of LEDs.
In some embodiments, the second sidewall may be configured to taper in the direction of the distal face. Furthermore, the optic may be a first optic and carried by the first sidewall. Additionally, the lighting device may further comprise a second optic carried by the second sidewall. The plurality of LEDs may be divided such that a portion of each of the first and second sets of LEDs are in optical communication with the first optic and another portion of each of the first and second sets of LEDs are in optical communication with the second optic.
Furthermore, in some embodiments, the second sidewall may taper in the direction of the proximal face, and the optic may be a first optic and carried by the first sidewall. Additionally, the lighting device may further comprise a second optic carried by the second sidewall. The plurality of LEDs may be divided such that a portion of each of the first and second sets of LEDs are in optical communication with the first optic and another portion of each of the first and second sets of LEDs are in optical communication with the second optic.
Additionally, embodiments of the present invention are related to a thoroughfare lighting device configured to be positioned adjacent to a thoroughfare comprising a housing, the housing comprising a base member, a sidewall extending generally upwardly from the base member, a driver circuit, and a top section comprising an optic, a first set of LEDs configured to emit a generally white light, and a second set of LEDs configured to emit colored light, each of the first and second sets of LEDs being electrically coupled to the driver circuit. The lighting device may further comprise a communication device electrically coupled to the driver circuit. The first set of LEDs may be positioned so as to emit light at an angle below a plane that is parallel to a plane defined by a surface of the thoroughfare, and the second set of LEDs may be positioned so as to emit light at an angle approximately parallel to or above a plane that is parallel to the plane defined by the surface of the thoroughfare. Additionally, the color of light emitted by the second set of LEDs is selected to indicate a condition of the associated thoroughfare in a direction of travel of the observer.
The communication device may be configured to receive information related to a condition of the thoroughfare. Furthermore, the driver circuit may be configured to operate the first and second sets of LEDs responsive to the information received from the communication device. Additionally, in some embodiments, the first and second of LEDs may be configured to selectively illuminate individual lanes of the associated thoroughfare. The driver circuit may be configured to operate the second set of LEDs to emit light so as to indicate a condition in a first lane of the associated thoroughfare and not indicate a condition in a second lane of the associated thoroughfare.
In some embodiments, the communication device may be configured to receive information related to travel of an emergency vehicle including a lane of travel of the emergency vehicle; and wherein the driver circuit is configured to selectively operate the second set of LEDs to indicate the lane of travel of the emergency vehicle.
Additionally, the lighting device may further comprise a traffic sensor electrically coupled to the driver circuit. The traffic sensor may be configured to sense a traffic pattern and generate information regarding traffic on the associated thoroughfare. Furthermore, the driver circuit may be configured to operate at least one of the first and second of LEDs responsive to the information generated by the traffic sensor. Additionally, the communication device may be configured to transmit the information generated by the traffic sensor to at least one of another thoroughfare lighting device and a traffic monitoring center.
The present invention will now be described fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Those of ordinary skill in the art will realize that the following embodiments of the present invention are only illustrative and are not intended to be limiting in any way. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure. Additionally, like numbers refer to like elements throughout.
Throughout this disclosure, the present invention may be referred to as relating to luminaires, digital lighting, and light-emitting diodes (LEDs). Those skilled in the art will appreciate that this terminology is only illustrative and does not affect the scope of the invention. For instance, the present invention may just as easily relate to lasers or other digital lighting technologies. Additionally, a person of skill in the art will appreciate that the use of LEDs within this disclosure is not intended to be limited to any specific form of LED, and should be read to apply to light emitting semiconductors in general. Accordingly, skilled artisans should not view the following disclosure as limited to any particular light emitting semiconductor device, and should read the following disclosure broadly with respect to the same.
Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the following embodiments of the invention are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
In this detailed description of the present invention, a person skilled in the art should note that directional terms, such as “above,” “below,” “upper,” “lower,” and other like terms are used for the convenience of the reader in reference to the drawings. Also, a person skilled in the art should notice this description may contain other terminology to convey position, orientation, and direction without departing from the principles of the present invention. Those skilled in the art will appreciate that many variations and alterations to the descriptions contained herein are within the scope of the invention.
Referring to
According to embodiments of the present invention, as depicted, for example, in
The thoroughfare surface may be any surface to which the lighting device 100 may be attached to or carried by. The thoroughfare may be any object or structure that has a surface, particularly those that allow vehicular, air, bicycle, pedestrian, or other traffic. For example, a thoroughfare surface may be a roadway, a bikeway, a walkway, a sidewalk, a pathway, a bridge, a ramp, a tunnel, a curb, a parking lot, a driveway, a roadway barrier, a drainage structure, a utility structure, or any other similar object or structure. Those skilled in the art will appreciate that this terminology is only illustrative and does not affect the scope of the invention.
Referring to
Referring to
The first and second primary optics 120, 121 and/or the first and second secondary optics 124, 125 may interact with light emitted by the first and second light sources 127, 128 to refract, reflect, collimate, diffuse, direct, and/or otherwise redirect incident light. Accordingly, the first and second light sources 127, 128 may be disposed such that light emitted therefrom is incident upon the first and second primary optics 120, 121 and/or the first and second secondary optics 124, 125. The first and second primary optics 120, 121 and/or the first and second secondary optics 124, 125 may be formed in any shape to impart a desired refraction. In the present alternative embodiment, the first and second primary optics 120, 121 may be a first and second prismatic lens. The first and second prismatic lens may have a generally flat, but prismatic geometry. Additionally, in the present alternative embodiment, the first and second secondary optics 124, 125 have a generally flat geometry. The use of a prismatic lens advantageously allows for light that is emitted from the light source to be directed in any number of directions.
In the present alternative embodiment, the first secondary optic 124 may be carried by the housing 110 and positioned such that the first primary optic 120 is intermediate the first secondary optic 124 and the first light source 127. Additionally, the second secondary optic 125 may be carried by the housing 110 and positioned such that the second primary optic 121 is intermediate the second secondary optic 125 and the second light source 128. The first and second prismatic lenses may further include a color conversion layer which may be configured to receive a source light within a source light wavelength range from the first and/or second light source 127, 128 and to emit a converted light within a converted wavelength range. The first and second secondary optics 124, 125 may further include a color conversion layer which may be configured to receive a source light within a source light wavelength range from the first and/or second light source 127, 128 and to emit a converted light within a converted wavelength range.
Furthermore, the lighting device 100 may include multiple optics. The first and second primary optics 120, 121 and/or the first and second secondary optics 124, 125 may be formed of any transparent, translucent, or substantially translucent material that comports with the desired refraction including, but not limited to, glass, fluorite, and polymers, such as polycarbonate. Types of glass include, without limitation, fused quartz, soda-lime glass, lead glass, flint glass, fluoride glass, aluminosilicates, phosphate glass, borate glass, and chalcogenide glass.
Referring to
Referring now to
In the present embodiment, the first sidewall 114 may comprise a first slanted section 118. An axis of the first slanted section 118 may be skew to a longitudinal axis of the lighting device 100. The first primary optic 120 may be configured to direct light outward and in a direction away from the first sidewall 114 and/or the first slanted section 118. The light emitted may be directed so that it is angled at least one degree away from the direction of oncoming traffic. This advantageously provides enhanced illumination on the thoroughfare surface that does not have any effect on a user of the thoroughfare surface. For example, if the lighting device 100 is to be used in connection with a roadway, the lighting device may be positioned on the roadway in a manner so that light emitted from the lighting device may be directed angled away from oncoming traffic. In other words, the angle of emission of the light is configured so that a driver of a vehicle in oncoming traffic is not blinded, or otherwise affected, by the light emitted from the lighting device 100.
Although it is disclosed above that the angle of emission of the light is at least one degree away from the direction of oncoming traffic, those skilled in the art will appreciate that the angle of emission of the light may preferably be between about 10 degrees and 30 degrees away from the direction of oncoming traffic. Those skilled in the art will also appreciate that the angle of emission of light may be any angle while still accomplishing the goals, features and advantages of the present invention. Further, those skilled in the art will appreciate that the angle of emission of the light is not limited to being angled away from oncoming traffic, but angled away from any use of any thoroughfare surface.
In the embodiments of the present invention, those skilled in the art will appreciate that the embodiments may be used for different purposes. For example, the lighting device 100, as illustrated in
Although not illustrated, as an additional example of an embodiment of the present invention, those skilled in the art will appreciate that the lighting device 100 may be positioned in between lanes of a roadway with traffic traveling in the same direction. This may enable traffic to travel in the same direction on the roadway and may avoid light being emitted into oncoming vehicles or traffic, thereby lighting the roadway surface and preventing drivers from being blinded by the lighting device 100.
As yet another example of an embodiment of the present invention, those skilled in the art will appreciate that the lighting device 100 may be configured in reverse so that the lighting device 100 may be positioned on thoroughfare surfaces as described herein for traffic patterns involving traffic moving forward on the left side of a road, such as in Great Britain, South Africa, and Australia.
In still another example of an embodiment of the present invention, those skilled in the art will appreciate that the lighting device 100 may be configured to emit light to illuminate structures, such as curbs and drainage structures. The lighting device 100 may be positioned on a thoroughfare surface, such as a curb, drainage structure, or other similar object. For example, the second sidewall 115 may not contain the second primary optic 121, the second optical chamber 125, or the second light source 128.
Those skilled in the art will further appreciate that the emission of light from at or about the thoroughfare surface may allow the first and second light sources 127, 128 to be smaller luminaires than overhead lighting devices may otherwise require. The energy required to power the lighting device 100 may also be diminished in comparison to overhead lighting devices. The absorption of light emitted from overhead lighting devices may be about greater than 50 percent and about 80 percent of the light emitted. The lighting device 100 may have less than 50 percent light absorption due to the low angle at which light may be emitted from the first and second light sources 127, 128 relative to the thoroughfare surface(s). The angle at which the light may be emitted from the first and second light sources 127, 128 relative to the thoroughfare surface(s) may be about slightly less than parallel with the thoroughfare surface in a downward direction and may be upwards as much as about 90 degrees or about perpendicular from the thoroughfare surface. The light absorbed by the thoroughfare surface may be about 1 percent to about 100 percent, but those skilled in the art will appreciate that the amount of light emitted by the first and second light sources 127, 128 that is absorbed by the thoroughfare surface may preferably be between about 10 percent and 50 percent.
In the present embodiment, the second sidewall 115 may comprise a second slanted section 119. An axis of the second slanted section 119 may be skew to a longitudinal axis of the lighting device 100. The second primary optic 121 may be configured to direct light outward and in a direction away from the second sidewall 115 and/or the second slanted section 119. The light emitted may be directed so that it is angled at least one degree away from the direction of oncoming traffic.
Light emitted from the first light source 127 may be directed through the first primary optic 120 within a range from about parallel to the longitudinal axis of the lighting device 100 in the direction of the distal face to about perpendicular to the longitudinal axis of the lighting device 100. Those skilled in the art will readily appreciate that light emitted from the first light source 127 may be directed in any number of angles, directions, or combinations within the range described herein, and that the range described above is exemplary, and not meant to be limiting in any way.
Light emitted from the first light source 127 may be directed through the first primary optic 120 within a range from about parallel to a face of the first primary optic 120 in the direction of the proximal face 112 or the distal face 113 to skew from the face of the first primary optic 120 to about perpendicular to the face of the first primary optic 120.
Light emitted from the second light source 128 may be directed through the second primary optic 121 within a range from about parallel to the longitudinal axis of the lighting device 100 in the direction of the proximal face or the distal face to about perpendicular to the longitudinal axis of the lighting device 100. Those skilled in the art will readily appreciate that light emitted from the second light source 128 may be directed in any number of angles, directions, or combinations within the range described herein, and that the range described above is an exemplary configuration, and not meant to be limiting in any way.
Light emitted from the second light source 128 may be directed through the second primary optic 121 within a range from about parallel to a face of the second primary optic 121 in the direction of the proximal face 112 or the distal face 113 to skew from the face of the second primary optic 121 to about perpendicular to the face of the second primary optic 121.
Referring to
The variance of the generally vertical segments from vertical may be controlled and configured to desirously refract light. Similarly, the variance of the generally horizontal segments from horizontal may be controlled and configured to produce prismatic surfaces that desirously refract light. Accordingly, the prismatic surfaces may desirously refract light outward from the lighting device 100 and may be configured to selectively refract light within desired ranges about the lighting device 100 as described herein. Additional details relating to prismatic optics incorporated into a lighting device are provided in U.S. patent application Ser. No. 13/739,054 titled Luminaire with Prismatic Optic filed Jan. 11, 2013 which, in turn, claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/642,205 titled Luminaire with Prismatic Optic filed May 3, 2012, the entire contents of each of which are incorporated by reference.
Referring to
Referring again to
The first and second light sources 127, 128 may include any device capable of emitting light. The first and second light sources 127, 128 may, for example and without limitation, include incandescent lights, halogens, fluorescents (including compact-fluorescents), high-intensity discharges, light emitting semiconductors, such as light-emitting diodes (LEDs), lasers, and any other light-emitting device known in the art. In some embodiments of the present invention, the first and second light sources 127, 128 are each an LED package. In some further embodiments, the LED package may include a plurality of LEDs and a circuit board.
Additionally, in some embodiments, where the LED package includes a plurality of LEDs, the LED package may include a first set of LEDs that emit light within a wavelength range corresponding to a first color, and a second set of LEDs that emit light within a wavelength range corresponding to a second color. The first set of LEDs may be configured to emit light that is intended primarily to illuminate. As such, the first set of LEDs may emit light that is generally white in color. The second set of LEDs may be configured to emit light that is intended primarily to communicate with an observer. More specifically, the second set of LEDs may be configured to emit light having a color that may be interpreted by an observer to have an indication of something to the observer.
In the present embodiment of a thoroughfare lighting device, the second set of LEDs may be configured to emit light that communicates a status of the condition of the thoroughfare in the direction of travel an observer may be anticipated to be traveling. For example, the second set of LEDs may be configured to emit a red light, which is commonly understood to indicate that the observer should be prepared to stop at some distance ahead on the thoroughfare. In another example, the second set of LEDs may be configured to emit a yellow or amber light, which is commonly understood to indicate that the observer should be prepared to slow at some distance ahead on the thoroughfare. In another example, the second set of LEDs may be configured to emit a blue light, which is commonly understood to indicate the presence or imminent arrival of an emergency vehicle.
Moreover, where the lighting device 100 or a system of lighting devices 100 is configured to selectively illuminate two or more lanes having the same direction of travel individually, the individual lane in which an emergency vehicle is currently travelling or is anticipated to travel in may have a blue light shown thereon, so as to indicate to an observer that they should avoid occupying that lane, and if already so occupying, to vacate that lane.
It is contemplated and included with the scope of the invention that the LED package may comprise any number of sets of LEDs, including sets of one, with each set being configured to emit light within wavelength ranges corresponding alternatively to a color intended primarily for illumination or to a color that conveys meaning to an observer, including three or more sets. Furthermore, it is contemplated and included within the scope of the invention that any color of light, and any LED capable of emitting light of such a color, may be included in the LED package, and that information apart from that related to the condition of thoroughfare may be communicated by the colored LEDs of the LED package.
Additionally, it is contemplated and included within the scope of the invention that the various sets of LEDs may be operated in such a manner so as to catch the attention of an observer and/or communication additional meaning to an observer. For example, the sets of LEDs may be flashed. Moreover, two or more sets of LEDs of differing colors may be alternately flashed. Additionally, sets of LEDs that emit colored light may be operated concurrently with LEDs configured to primarily emit illuminating light, or alternately.
Additionally, in another embodiment, the microcontroller 142 may operate the LEDs so as to communicate via visible light communication. More specifically, the microcontroller 142 may alternately turn on and off the LEDs of the LED package so as to communicate information to a receiving device complying with visible light communication standards. The LEDs may be turned on and off at a frequency such that it is imperceptible to an observer, thus preventing any potential flicker. The light emitted by the LEDs may be sensed by an optical sensor associated with an observer. For example, the observer may be a driver operating an automobile having a computerized device that includes an optical sensor, the automobile travelling in the direction of travel of the thoroughfare. When the microcontroller 142 operates the LEDs to communicate via visible light communication, the optical sensor may transmit the visible light signal observed, which may then be interpreted by the computerized device of the automobile to convey meaning, such as information regarding that status of the condition of the thoroughfare upon which the automobile is travelling. The computerized device of the automobile may then communicate the interpreted information to the driver by any suitable means, including utilizing an audio system of the automobile to produce an audio signal that the driver may understand, such as a warning sound or speech. Additionally, if the automobile includes a visual display device, the interpreted information may be presented on the display device.
Furthermore, those skilled in the art will readily appreciate that additional embodiments with different configurations, including opposite configurations, are described herein, and the configurations above are exemplary, and not meant to be limiting in any way.
Although it is preferable for the light from the first and second light sources 127, 128 to be emitted in a generally outward direction along adjoining surfaces, i.e., in a direction opposite the opposing sidewall and perpendicular to the face of the first and second primary optics 120, 121, those skilled in the art will appreciate that the light may shine outwardly from the first and second light sources 127, 128 in any direction through various openings and optics. This may advantageously allow for the lighting device 100 according to embodiments of the present invention to provide various lighting effects that may be desirable to a user.
Referring now to
The driver circuit 141 may be electrically coupled to the power generating element 131, the first and second light sources 127, 128, the circuitry 140, the microcontroller 142, and/or the battery 145. The battery 145 may be electrically coupled to the power generating element 131, the photovoltaic device 132, the circuitry 140, the driver circuit 141, the microcontroller 142, the communication device 143, and/or the traffic sensor 144. Those skilled in the art will recognize that any of these components may be electrically coupled to each other in any combination known in the art. The power generating element 131 and/or the photovoltaic device 132 may produce electrical power that may be stored by the battery 145. The first and second light sources 127, 128 and/or the microcontroller 142 may operate using electrical power that may be drawn from the circuitry 140, the driver circuit 141, and/or the battery 145. Additionally, the external power source may be electrically coupled to the power generating element 131, the photovoltaic device 132, the circuitry 140, the driver circuit 141, the microcontroller 142, the communication device 143, and/or the traffic sensor 144, and the battery 145. For example and without limitation, the external power source may be an electrical line provided below the thoroughfare surface or through the ground and may be electrically coupled to the driver circuit 141 through the post 117.
The traffic sensor 144 may generate data regarding traffic in the environment that may be surrounding the lighting device 100. The communication device 143 may transmit the data generated by the traffic sensor 144 across a network. The communication device 143 may be a wireless communication device. The communication device 143 may be a radio device, a computer network device, a visible light device, an acoustic device, or any other device known in the art that provides wireless communication. Those skilled in the art will appreciate that a communication device 143 being incorporated into the lighting device 100 advantageously allows for the lighting device 100 to be remotely operated and/or monitored, if so desired by a user. Those skilled in the art will further appreciate that the communication device 143 also advantageously allows for the lighting device 100 to communicate data through a remote connection, such as the network, if so desired by a user. Additional details relating to communication devices incorporated into a lighting device are provided in U.S. patent application Ser. No. 12/145,634 titled Configurable Environmental Condition Sensing Luminaire System and Associated Methods filed on Feb. 23, 2012, which, in turn, claims the benefit of U.S. Provisional Patent Application Ser. No. 61/486,316 titled Motion Detecting Security Light and Associated Methods filed on May 15, 2011, as well as U.S. Provisional Patent Application Ser. No. 61/486,314 titled Wireless Lighting Device and Associated Methods filed on May 15, 2011, and U.S. Provisional Patent Application Ser. No. 61/486,322 titled Variable Load Power Supply filed on May 15, 2011, the entire contents of each of which are incorporated by reference.
Where the lighting device 100 includes a traffic sensor 144, the lighting device may operate 100 either the first or second light sources 127, 128 so as to communicate information regarding the data generated by the traffic sensor 144 to an observer as described hereinabove. For example, where the traffic sensor 144 generates data indicating a level of traffic resulting in a slow-down in travel along the thoroughfare, either of the first and second light sources 127, 128 may be operated to emit a yellow or amber light, warning observers travelling on the thoroughfare of the slow-down. More information regarding the determination of traffic patterns may be found in U.S. patent application Ser. No. 13/465,921 incorporated by reference hereinabove.
Furthermore, in some embodiments, where the lighting device 100 includes a communication device 143, the microcontroller 142 may be configured to operate either of the first and second light sources 127, 128 to emit a colored light configured to communicate meaning to an observer responsive to information received by the communication device 143. For example, the communication device 143 may receive information indicating a slow-down on the thoroughfare ahead of the lighting device 100 in the direction of travel. Upon receiving such information, the microcontroller 142 may operate at least one of the first and second light sources 127, 128 to emit yellow or amber colored light as described hereinabove. Similarly, where the communication device 143 receives information indicating a stop on the thoroughfare ahead of the lighting device 100 in the direction of travel, the microcontroller 142 may operate at least one of the first and second light sources 127, 128 to emit red colored light as described hereinabove. Additionally, where the communication device 143 receives information indicating the presence of an emergency vehicle or the anticipated arrival of such, the microcontroller 142 may operate at least one of the first and second light sources 127, 128 to emit blue colored light as described hereinabove. Furthermore, where there is a network of lighting devices 100 along a thoroughfare having two or more lanes in a direction of travel, each of the lighting devices 100 may receive information causing each of the microcontrollers 142 to operate at least one of the first and second light source 127, 128 so as to emit blue light onto the lane in which an emergency vehicle is anticipated to be travelling, as described hereinabove.
In another embodiment of the lighting device 100 that includes a traffic sensor 144, it is contemplated that the microcontroller may be configured to transmit a signal to a traffic monitoring location, such as a typical Department of Transportation monitoring center, to carry out various operations. For example, the traffic data that is sensed by the traffic sensor 144 may be communicated to the DOT monitoring center to operate warning signs that may be a long distance away, i.e., a warning sign signaling motorists that there is heavy traffic five miles ahead, or a warning sign that suggests alternate routes to motorists based on information received from the traffic sensors. Further, those skilled in the art will appreciate that the information collected by the traffic sensors can be readily stored, and that this information can then be used to perform various traffic studies, thereby eliminating the need for manual labor to install various traffic signals and to monitor traffic patterns.
Referring to
The first and second opposing sidewalls 114, 115 may be curved, slanted, partially curved, and/or partially slanted. For example, the first sidewall 114 may extend straight from the proximal face 112 toward the distal face 113, then taper in a direction toward the second sidewall 115, then reverse direction at the same angle to extend directly straight again toward the distal face 113.
The reflective member 150 may be positioned on the proximal face 112 and/or the distal face 113. As perhaps best illustrated in
Continuing to refer to
Referring again to
Additionally, and without limitation, the housing 110 and components of the housing 110, including the top surface 111, the proximal face 112, the distal face 113, the first and second opposing sidewalls 114, 115, the bottom member 116, and/or the post 117 may be provided by a material having a thermal conductivity=150 Watts per meter-Kelvin, a material having a thermal conductivity=200 Watts per meter-Kelvin, an aluminum, an aluminum alloy, a magnesium alloy, a metal loaded plastics material, a carbon loaded plastics material, a thermally conducting ceramic material, an aluminum silicon carbide material, a plastic, and/or other similar materials known in the art. Furthermore, the material may be any material that allows the dissipation of heat.
The lighting device 100 may further include a tilting mechanism. The tilting mechanism may be positioned within the housing 110 or the post 117 and may be electrically coupled to the ambient light sensor 130, the power generating element 131, the photovoltaic device 132, the circuitry 140, the driver circuit 141, the microcontroller 142, the communication device 143, the traffic sensor 144, and/or the battery 145.
In another embodiment of the invention, the lighting device 100 may include a housing 110. The housing 110 may include a top surface 111, a proximal face 112, a first sidewall 114, a first optical chamber 122, a photovoltaic device 132, a top inner surface 133, a photovoltaic device chamber 134, and a reflective member 150. The first optical chamber 122 may include the first secondary optic 124, the reflective layer 126, and the first light source 127. Although not illustrated, the housing may further include a distal face 113, a second sidewall 115, and a second optical chamber 123. The second optical chamber 123 may include the second secondary optic 125, the reflective layer 126, and the second light source 128.
The proximal face 112 may be positioned on the reflective member 150. The top surface 111 may include the photovoltaic device chamber 134. The photovoltaic device 132 may be positioned in the photovoltaic chamber 134. Additionally, the photovoltaic device 132 may be tiltable within the photovoltaic device chamber 134. For example, a proximal end of the photovoltaic device 132 may tilt in a downward direction, thereby causing the distal end of the photovoltaic device 132 to tilt in an upward direction. As an additional example, the proximal end of the photovoltaic device 132 may tilt in an upward direction, thereby causing the distal end of the photovoltaic device 132 to tilt in a downward direction. The photovoltaic device 132 may tilt so that the optimal amount of solar energy may be obtained. The lighting device 100 may further include a tilting mechanism. The tilting mechanism may be electrically coupled to the photovoltaic device 132 and may produce the desired tilt in the photovoltaic device 132. Those skilled in the art will appreciate that the embodiments of the present invention may include a photovoltaic device 132 that is stationary or that tilts in any number of directions.
The top inner surface 133 of the photovoltaic device chamber 134 may be positioned above the photovoltaic device 132. In order to maintain a fluid seal between the top inner surface 133 and the environment external to the lighting device 100, the top inner surface 133 may further include a sealing member. The sealing member may include any device or material that can provide a fluid seal as described above. For example, and without limitation, the top inner surface 133 may include the sealing member that may form a fluid seal between the top inner surface 133 and the top surface 111 of the housing 110. The top inner surface 133 may be formed of any transparent, translucent, or substantially translucent material that comports with the desired refraction including, but not limited to, glass, fluorite, and polymers, such as polycarbonate. Types of glass include, without limitation, fused quartz, soda-lime glass, lead glass, flint glass, fluoride glass, aluminosilicates, phosphate glass, borate glass, and chalcogenide glass.
Referring now to
The top section 930 may comprise an optic 932, a first set of LEDs 934, and a second set of LEDs 936. The first set of LEDs 934 may be configured to emit a generally white light, and the second set of LEDs 936 be configured to emit colored light. In some embodiments, the second set of LEDs 936 may be configured to emit light in a variety of colors. In some embodiments, each of the first and second sets of LEDs 934, 936 may configured to emit light at an angle above or below a plane parallel to a plane defined by the thoroughfare surface. In some embodiments, the first set of LEDs 934 may be configured to emit light at an angle below a plane parallel to a plane defined by the thoroughfare surface, and the second set of LEDs 936 may be configured to emit light approximately parallel to or at an angle above the plane defined by the thoroughfare surface. More specifically, the first set of LEDs 934 may be positioned so as to emit light generally in the direction of the thoroughfare surface and the second set of LEDs 936 may be configured to emit light in a direction so as to be visible by occupants of vehicles travelling along the thoroughfare surface. Additionally, the optic 932 may be configured to cause light emitted by the first and second sets of LEDs 934, 936 to be emitted by the lighting device 900 in desired directions. Furthermore, each of the first and second sets of LEDs 934, 936 may be configured to selectively illuminate individual lanes of the thoroughfare.
The lighting device 900 may further comprise a driver circuit (not shown) configured to control the operation of each of the first and second sets of LEDs 934, 936 and a communication device (not shown) that may be electrically coupled to the driver circuit. The driver circuit may be configured to operate the first set of LEDs 934 so as to illuminate the thoroughfare surface and the second set of LEDs 936 to emit a colored light indicating a condition of the thoroughfare in a direction of travel of the observer. Moreover, in some embodiments, the communication device may be configured to receive information related to a condition of the thoroughfare, as described hereinabove, and the driver circuit may be configured to operate the first and second sets of LEDs responsive to the information received from the communication device. In some embodiments, the driver circuit may be configured to operate the second set of LEDs 936 to indicate a condition of a first lane of the thoroughfare but not indicate a condition of a second lane of the thoroughfare. The condition indicated by the lighting device 900 may be any condition as described hereinabove.
In some embodiments, the lighting device 900 may further comprise a traffic sensor (not shown). The traffic sensor may be electrically coupled to the driver circuit and configured to sense a traffic pattern and generate information regarding traffic on an associated thoroughfare. Furthermore, the driver circuit may be configured to operate at least one of the first and second sets of LEDs 934, 936 responsive to the information generated by the traffic sensor.
Additionally, the light source may emit light at a greater or lesser angle than parallel to a plane defined by the thoroughfare surface. The thoroughfare may be any object or structure that has a surface, particularly those that allow vehicular, air, bicycle, pedestrian, or other traffic. For example, a thoroughfare surface may be a roadway, a bikeway, a walkway, a sidewalk, a pathway, a bridge, a ramp, a tunnel, a curb, a parking lot, a driveway, a roadway barrier, a drainage structure, a utility structure, or any other similar object or structure. Those skilled in the art will appreciate that this terminology is only illustrative and does not affect the scope of the invention.
Some of the illustrative aspects of the present invention may be advantageous in solving the problems herein described and other problems not discussed which are discoverable by a skilled artisan.
While the above description contains much specificity, these should not be construed as limitations on the scope of any embodiment, but as exemplifications of the presented embodiments thereof. Many other ramifications and variations are possible within the teachings of the various embodiments. While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best or only mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. Additionally, the term “and” should be construed to include the term “or” if possible as the term “and” is not for purposes of limitation. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents, and not by the examples given.
This application is a continuation and claims benefit under 35 U.C.S. §120 of U.S. patent application Ser. No. 14/275,480 titled Street Lighting Device for Communicating with Observers and Associated Methods filed May 12, 2014, which in turn claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/823,013 titled Street Lighting Device for Communicating with Observers and Associated Methods filed May 14, 2013, and is a continuation-in-part and claims benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 13/839,131 titled Low-Angle Thoroughfare Surface Lighting Device filed on Mar. 15, 2013, the content of each of which is incorporated by reference herein in their entireties except to the extent disclosures therein are inconsistent with disclosure herein.
Number | Name | Date | Kind |
---|---|---|---|
3332327 | Heenan | Jul 1967 | A |
3409344 | Balint et al. | Nov 1968 | A |
3984175 | Suhr et al. | Oct 1976 | A |
4668120 | Roberts | May 1987 | A |
5057908 | Weber | Oct 1991 | A |
5061114 | Hedgewick | Oct 1991 | A |
5449244 | Sandino | Sep 1995 | A |
5523878 | Wallace et al. | Jun 1996 | A |
5704701 | Kavanagh et al. | Jan 1998 | A |
5963192 | Wong et al. | Oct 1999 | A |
5997150 | Anderson | Dec 1999 | A |
6140646 | Busta et al. | Oct 2000 | A |
6149283 | Conway et al. | Nov 2000 | A |
6150774 | Mueller et al. | Nov 2000 | A |
6250774 | Begemann et al. | Jun 2001 | B1 |
6341876 | Moss et al. | Jan 2002 | B1 |
6356700 | Strobl | Mar 2002 | B1 |
6561656 | Kojima et al. | May 2003 | B1 |
6594090 | Kruschwitz et al. | Jul 2003 | B2 |
6598996 | Lodhie | Jul 2003 | B1 |
6601984 | Yamamoto et al. | Aug 2003 | B2 |
6624845 | Lloyd et al. | Sep 2003 | B2 |
6676279 | Hubbell et al. | Jan 2004 | B1 |
6705744 | Hubbell et al. | Mar 2004 | B2 |
6707611 | Gardiner et al. | Mar 2004 | B2 |
6733135 | Dho | May 2004 | B2 |
6767111 | Lai | Jul 2004 | B1 |
6774916 | Pettitt et al. | Aug 2004 | B2 |
6811258 | Grant | Nov 2004 | B1 |
6817735 | Shimizu et al. | Nov 2004 | B2 |
6870523 | Ben-David et al. | Mar 2005 | B1 |
6871982 | Holman et al. | Mar 2005 | B2 |
6906852 | Russell | Jun 2005 | B1 |
6967761 | Starkweather et al. | Nov 2005 | B2 |
6974713 | Patel et al. | Dec 2005 | B2 |
6987464 | Pearson | Jan 2006 | B2 |
7014336 | Ducharme et al. | Mar 2006 | B1 |
7042623 | Huibers et al. | May 2006 | B1 |
7070281 | Kato | Jul 2006 | B2 |
7072096 | Holman et al. | Jul 2006 | B2 |
7075707 | Rapaport et al. | Jul 2006 | B1 |
7083304 | Rhoads et al. | Aug 2006 | B2 |
7093956 | Miller et al. | Aug 2006 | B2 |
7095056 | Vitta et al. | Aug 2006 | B2 |
7178941 | Roberge et al. | Feb 2007 | B2 |
7184201 | Duncan | Feb 2007 | B2 |
7246923 | Conner | Jul 2007 | B2 |
7255469 | Wheatley et al. | Aug 2007 | B2 |
7261453 | Morejon et al. | Aug 2007 | B2 |
7274307 | Povey | Sep 2007 | B2 |
7289090 | Morgan | Oct 2007 | B2 |
7300177 | Conner | Nov 2007 | B2 |
7303291 | Ikeda et al. | Dec 2007 | B2 |
7325956 | Morejon et al. | Feb 2008 | B2 |
7342658 | Kowarz et al. | Mar 2008 | B2 |
7344279 | Mueller et al. | Mar 2008 | B2 |
7349095 | Kurosaki | Mar 2008 | B2 |
7353859 | Stevanovic et al. | Apr 2008 | B2 |
7382091 | Chen | Jun 2008 | B2 |
7382632 | Alo et al. | Jun 2008 | B2 |
7400439 | Holman | Jul 2008 | B2 |
7427146 | Conner | Sep 2008 | B2 |
7429983 | Islam | Sep 2008 | B2 |
7434946 | Huibers | Oct 2008 | B2 |
7438443 | Tatsuno et al. | Oct 2008 | B2 |
7476016 | Kurihara | Jan 2009 | B2 |
7520642 | Holman et al. | Apr 2009 | B2 |
7530708 | Park | May 2009 | B2 |
7537347 | Dewald | May 2009 | B2 |
7540616 | Conner | Jun 2009 | B2 |
7545569 | Cassarly | Jun 2009 | B2 |
7556406 | Petroski et al. | Jul 2009 | B2 |
7598686 | Lys et al. | Oct 2009 | B2 |
7605971 | Ishii et al. | Oct 2009 | B2 |
7626755 | Furuya et al. | Dec 2009 | B2 |
7628508 | Kita et al. | Dec 2009 | B2 |
7677736 | Kasazumi et al. | Mar 2010 | B2 |
7684007 | Hull et al. | Mar 2010 | B2 |
7703943 | Li et al. | Apr 2010 | B2 |
7709811 | Conner | May 2010 | B2 |
7719766 | Grasser et al. | May 2010 | B2 |
7731383 | Myer | Jun 2010 | B2 |
7759854 | Miller et al. | Jul 2010 | B2 |
7766490 | Harbers et al. | Aug 2010 | B2 |
7777166 | Roberts | Aug 2010 | B2 |
7819556 | Heffington et al. | Oct 2010 | B2 |
7828453 | Tran et al. | Nov 2010 | B2 |
7828465 | Roberge et al. | Nov 2010 | B2 |
7832878 | Brukilacchio et al. | Nov 2010 | B2 |
7834867 | Sprague et al. | Nov 2010 | B2 |
7835056 | Doucet et al. | Nov 2010 | B2 |
7845823 | Mueller et al. | Dec 2010 | B2 |
7850321 | Wang et al. | Dec 2010 | B2 |
7850335 | Hsu et al. | Dec 2010 | B2 |
7863829 | Sayers et al. | Jan 2011 | B2 |
7889430 | El-Ghoroury et al. | Feb 2011 | B2 |
7909479 | Rooymans | Mar 2011 | B2 |
7928565 | Brunschwiler et al. | Apr 2011 | B2 |
7942537 | Krijn et al. | May 2011 | B2 |
7959320 | Mueller et al. | Jun 2011 | B2 |
7972030 | Li | Jul 2011 | B2 |
7976205 | Grotsch et al. | Jul 2011 | B2 |
8016443 | Falicoff et al. | Sep 2011 | B2 |
8021021 | Paolini | Sep 2011 | B2 |
8047660 | Penn et al. | Nov 2011 | B2 |
8061857 | Liu et al. | Nov 2011 | B2 |
8061869 | Lo et al. | Nov 2011 | B2 |
8070302 | Hatanaka et al. | Dec 2011 | B2 |
8070324 | Kornitz et al. | Dec 2011 | B2 |
8083364 | Allen | Dec 2011 | B2 |
8096668 | Abu-Ageel | Jan 2012 | B2 |
8096685 | Lu et al. | Jan 2012 | B2 |
8100552 | Spero | Jan 2012 | B2 |
8118456 | Reed et al. | Feb 2012 | B2 |
8130099 | Steinel et al. | Mar 2012 | B2 |
8136969 | Burkett et al. | Mar 2012 | B2 |
8143811 | Shloush et al. | Mar 2012 | B2 |
8246194 | Lai | Aug 2012 | B2 |
8297783 | Kim | Oct 2012 | B2 |
8308318 | Maxik et al. | Nov 2012 | B2 |
8322889 | Petroski | Dec 2012 | B2 |
8331099 | Geissler et al. | Dec 2012 | B2 |
8337029 | Li | Dec 2012 | B2 |
8337063 | Nagasawa et al. | Dec 2012 | B2 |
8427590 | Raring et al. | Apr 2013 | B2 |
8475002 | Maxik et al. | Jul 2013 | B2 |
8491153 | Maxik et al. | Jul 2013 | B2 |
8531126 | Kaihotsu et al. | Sep 2013 | B2 |
8616736 | Pan | Dec 2013 | B2 |
8662672 | Hikmet et al. | Mar 2014 | B2 |
8678787 | Hirata et al. | Mar 2014 | B2 |
8733949 | Chong et al. | May 2014 | B2 |
8770773 | Yoshida | Jul 2014 | B2 |
8774142 | Rajagopal | Jul 2014 | B2 |
8819313 | Walther | Aug 2014 | B1 |
8899775 | Maxik et al. | Dec 2014 | B2 |
9158009 | Yoshida et al. | Oct 2015 | B2 |
9255670 | Oostdyk et al. | Feb 2016 | B2 |
20040052076 | Mueller et al. | Mar 2004 | A1 |
20050238425 | Safar | Oct 2005 | A1 |
20050265023 | Scholl | Dec 2005 | A1 |
20060002108 | Ouderkirk et al. | Jan 2006 | A1 |
20060002110 | Dowling et al. | Jan 2006 | A1 |
20060056169 | Lodhie et al. | Mar 2006 | A1 |
20060103777 | Ko et al. | May 2006 | A1 |
20060164005 | Sun | Jul 2006 | A1 |
20060285193 | Kimura et al. | Dec 2006 | A1 |
20070013871 | Marshall et al. | Jan 2007 | A1 |
20070081339 | Chung et al. | Apr 2007 | A1 |
20070188847 | McDonald et al. | Aug 2007 | A1 |
20070241340 | Pan | Oct 2007 | A1 |
20080043464 | Ashdown | Feb 2008 | A1 |
20080055065 | Feldmeier | Mar 2008 | A1 |
20080143973 | Wu | Jun 2008 | A1 |
20080198572 | Medendorp | Aug 2008 | A1 |
20080232084 | Kon | Sep 2008 | A1 |
20080303695 | Meshkin | Dec 2008 | A1 |
20090059099 | Linkov et al. | Mar 2009 | A1 |
20090059585 | Chen et al. | Mar 2009 | A1 |
20090128781 | Li | May 2009 | A1 |
20100039704 | Hayashi et al. | Feb 2010 | A1 |
20100098488 | Huck et al. | Apr 2010 | A1 |
20100103389 | McVea et al. | Apr 2010 | A1 |
20100202129 | Abu-Ageel | Aug 2010 | A1 |
20100321641 | Van Der Lubbe | Dec 2010 | A1 |
20120218774 | Livingston | Aug 2012 | A1 |
20120285667 | Maxik et al. | Nov 2012 | A1 |
20130294071 | Boomgaarden et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
202005013164 | Nov 2005 | DE |
102005059362 | Sep 2006 | DE |
2410240 | Jan 2012 | EP |
WO 2005072279 | Aug 2005 | WO |
WO 2007069185 | Jun 2007 | WO |
WO 2008019481 | Feb 2008 | WO |
WO 2009040703 | Apr 2009 | WO |
Entry |
---|
Arthur P. Fraas, Heat Exchanger Design, 1989, p. 60, John Wiley & Sons, Inc., Canada. |
H. A El-Shaikh, S. V. Garimella, “Enhancement of Air Jet Impingement Heat Transfer using Pin-Fin Heat Sinks”, D IEEE Transactions on Components and Packaging Technology, Jun. 2000, vol. 23, No. 2. |
J. Y. San, C. H. Huang, M. H, Shu, “Impingement cooling of a confined circular air jet”, In t. J. Heat Mass Transf. , 1997. pp. 1355-1364, vol. 40. |
N. T. Obot, W. J. Douglas, A S. Mujumdar, “Effect of Semi-confinement on Impingement Heat Transfer”, Proc. 7th Int. Heat Transf. Conf., 1982, pp. 1355-1364. vol. 3. |
S. A Solovitz, L. D. Stevanovic, R. A Beaupre, “Microchannels Take Heatsinks to the Next Level”, Power Electronics Technology, Nov. 2006. |
Yongmann M. Chung, Kai H. Luo, “Unsteady Heat Transfer Analysis of an Impinging Jet”, Journal of Heat Transfer—Transactions of the ASME, Dec. 2002, pp. 1039-1048, vol. 124, No. 6. |
Number | Date | Country | |
---|---|---|---|
20160153621 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
61823013 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14275480 | May 2014 | US |
Child | 14959664 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13839131 | Mar 2013 | US |
Child | 14275480 | US |