None.
1. Field of the Invention
The present invention is for a street cleaning device, and, more particularly, pertains to a street sweeper with vacuumized dust control.
2. Description of the Prior Art
Prior art street sweeper devices are often built on and about custom chassis not generally suited for economy of speed or having attributes geared toward desirable roadability qualities. Often such street sweepers include rotary sweeper brooms placed between the front wheel assemblies and special rear wheel drive or axle assemblies beneath a configured framework in an area often otherwise reserved for drive shafts and other framework members in conventional chassis, such as used for conventional trucks. Street sweepers utilizing truck chassis are also used for mounting of street sweeper components and are utilized for greater roadability and transport speed suitable for highway use. Some arrangements, such as rotary broom placement between the front wheel and rear wheel assemblies, are often limited, necessitating the use of smaller rotary brooms the dimensions of which are restricted by the available distance between the roadway and the chassis of the conventional truck. In the alternative, rotary sweeper brooms of larger size and better suitability can be located behind the rear axle at the rear portion of the truck chassis, as the upper region of the rotary broom is not generally limited by the chassis. Commonly, water is utilized to attempt to control dust in either configuration around and about the general area surrounding the street sweeper. The use of water is not always economical, water may not be readily available for dust control, large water flow may be required for effective dust control, thereby necessitating frequent refilling stops due to limited tank capacity, and the use of water at higher speeds may not be effective. Clearly, what is needed is a street sweeper having a method of road sweeper dust control which is not entirely dependent on the use of water and which can utilize a rotary broom located to the rearward of the rear street sweeper axle, such as is provided by the present invention.
The general purpose of the present invention is to provide a street sweeper with vacuumized dust control.
According to one embodiment of the present invention, there is provided a street sweeper with vacuumized dust control which mounts and secures to a chassis of a truck. A hopper, a conveyor mechanism, a conveyor housing, a rotary broom and a vacuumized chamber are arranged and mounted to the chassis of the truck. The rotary broom is located at the rear portion of the truck chassis adjacent to the lower end of the conveyor and conveyor housing and rearward of the rear street sweeper axle. Also located at, about and near the lower end of the conveyor and conveyor housing is a rotary broom shroud forming a rotary broom chamber capable of being vacuumized which surrounds the greater portion of the rotary broom. Components comprising the bottom edge of the rotary broom chamber and other components are in close proximity to and in intimate contact with the roadway. The upper end of the conveyor mechanism and the surrounding upper end of the conveyor housing sealingly connect to the upper region of the hopper. The hopper includes a fan air source and a filter for filtration of dust drawn into the hopper through the conveyor housing and for filtration of dust created by objects being deposited into the confines of and striking the sides or lower regions of the hopper. The fan is ducted to the rotary broom chamber by the interceding and sealingly connected conveyor housing. Rotary action of the fan creates a low pressure area or vacuum within the confines of the hopper which is ducted through the conveyor housing to provide an extended region of low pressure at the rotary broom chamber located about the rotary broom. Dust and other airborne materials of light weight which are dislodged or made to be airborne by action of the rotary broom are vacuumed and transferred by vacuum forces into the interior of the hopper where the airflow containing the dust is forced through the filter and where the lightweight materials either fall to the lower regions of the hopper or are made to come into contact with the filter. Airflow created by the fan also assists in urging lightweight debris, such as leaves, small paper items, and the like onto the conveyor for deposition in the hopper. Some dust or debris when not under the influence of vacuum air can be deposited on the conveyor by direct action of the rotary broom for subsequent deposition in the hopper. Heavier swept debris is deposited on the conveyor in a conventional manner and deposited into the hopper. Additionally, a transversely mounted water tank is also included for conventional use or for use in combination for dust control with the vacuum function if desired.
One significant aspect and feature of the present invention is a street sweeper with vacuumized dust control.
Another significant aspect and feature of the present invention is a street sweeper including components for vacuumized dust control which mounts on a truck chassis.
Still another significant aspect and feature of the present invention is a street sweeper which transports to sweeping locations at common highway speeds.
Another significant aspect and feature of the present invention is a rotary broom and rotary broom chamber located to the rearward of the street sweeper rear axle.
Yet another significant aspect and feature of the present invention is a street sweeper having a conveyor mechanism and a conveyor housing surrounding the conveyor mechanism.
A further significant aspect and feature of the present invention is a street sweeper where the conveyor housing sealingly aligns to a hopper receiver duct on the upper region of a hopper.
A still further significant aspect and feature of the present invention is a street sweeper where the conveyor housing aligns with and communicates with a rotary broom chamber surrounding a rotary broom.
A still further significant aspect and feature of the present invention is a street sweeper where a rotary broom chamber surrounding a rotary broom is in close proximity to and/or in intimate contact with the roadway.
Yet another significant aspect and feature of the present invention is a street sweeper having a rotary broom chamber including road following skids and attached positionable planar side plates.
A still further significant aspect and feature of the present invention is a street sweeper where an area of low pressure is presented around and about the area of contact of a rotary broom with the roadway whereby dislodged road dust and other light debris is carried by vacuum forces via a conveyor housing to a hopper for filtration.
A still further significant aspect and feature of the present invention is a rotary broom rotating against the path of intended sweeping to forwardly and upwardly project dirt and debris into the lower end of a conveyor mechanism for transport of the dirt and debris along the conveyor mechanism for subsequent deposit in a hopper.
Having thus described embodiments of the present invention and enumerated several significant aspects and features thereof, it is the principal object of the present invention to provide a street sweeper which features, in part, vacuumized dust control.
Other objects of the present invention and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, in which like reference numerals designate like parts throughout the figures thereof and wherein:
The hopper 14 secures to the truck chassis 13 via a scissors jack assembly 24 which mounts to the truck chassis 13 via a scissors jack mounting frame 25. An air source consisting of a powered fan 26 having an exhaust port 28 and which is open to and which communicates through a filter 30 with the interior of the hopper 14 is attached to a hopper top panel 32. A plenum 34, also shown in
The conveyor housing 18 and the conveyor mechanism 16, which is powered, are co-located, with the conveyor mechanism 16 being surrounded by the conveyor housing 18. An upper powered conveyor drive roller 52 mounts transversely across the upper region of the conveyor housing 18, and a lower powered conveyor drive roller 54 mounts transversely across the lower region of the conveyor housing 18. The conveyor mechanism 16 utilizes a cleated belt 56 or other suitable device to move debris deposited thereupon by action of the rotary broom 20, which rotates against the sweeping path into the confines of the hopper 14. The upper end of the conveyor mechanism 16 aligns to and extends along, through and beyond the angled channel 42 of the hopper rear panel 44 in order that debris can be off-loaded from the conveyor into the hopper 14. The lower end of the conveyor mechanism 16 extends downwardly and outwardly from the lower region of the conveyor housing 18 to juxtapose the rotary broom 20. The conveyor housing 18 extends for the most along and surrounds the upper portion of the conveyor mechanism 16 but terminates short of the lower end of the conveyor mechanism 16, thereby exposing the cleated belt 56 within the rotary broom chamber 22 to allow debris to be loaded on the cleated belt 56. The conveyor housing 18 and contained conveyor mechanism 16 are positionable according to the mode of operation of the invention. A transversely mounted geometrically configured water tank 58 (partially shown) extending over the top of the conveyor mechanism 16 and conveyor housing 18 is included to provide for a water supply, which may be connected to spray nozzles located appropriately about the truck chassis or other desired regions if the use of water is desired. The rotary broom 20 is supported at opposing ends by like and opposing pivotal broom support arms 60 and 60a (FIG. 3). The drag shoe 62 and the opposing drag shoe 62a (
Frameworks 21 and 21a mount to the chassis 13 of the truck 12 via a mounting structure 66 mounted transversely to the chassis 13. Frameworks 21 and 21a extend rearwardly and then downwardly to terminate near the rearward and outward edges of the rotary broom 20. A rear bumper 68 extends, as do other structural members, transversely between the ends of the framework 21 and the opposing corresponding framework 21a. Framework 70 in the form of a box tube or other suitable structure secures in longitudinal orientation to and along the inner surface of the framework 21 and to other members as required, as does another opposing framework 70a to the inner surface of the framework 21a. Opposing frameworks 70 and 70a are for the most incorporated for support of the conveyor housing 18, as later described in detail. A forward axle 15 and a rear axle 17 mount to the chassis 13 of the truck 12.
Opposing pivotal broom support arms 60 and 60a and opposing pivotal drag shoe support arms 64 and 64a, respectively, are positionally pivoted by opposed sets of lifting/lowering cylinders, bell cranks and cables to position the rotary broom 20 and opposing drag shoes 62 and 62a, respectively. Respectively, broom lift/lower cylinders 72 and 72a attach separately to bell cranks 74 and 74a, and cables 76 and 76a attach between bell cranks 74 and 74a and the pivotal broom support arms 60 and 60a to control the vertical position of the rotary broom 20. Respectively, drag shoe lift/lower cylinders 78 and 78a attach separately to bell cranks 80 and 80a, and cables 82 and 82a attach between bell cranks 80 and 80a and the pivotal drag shoe support arms 64 and 64a to control the vertical position of the drag shoes 62 and 62a. Drag shoes 62 and 62a in part comprise the rotary broom chamber 22 in concert with other components described herein. A bracket 69 (
Additionally shown in
A large transversely extending flexible seal 110 of suitable rubber, plastic or the like comprises, in part, the shroud 27 forming the rotary broom chamber 22. The forward edge 112 of the flexible seal 110 secures in transverse fashion to the lower portion of the conveyor housing 18, and the rearward edge 114 secures in transverse fashion to the underside of the fixed panel 100a, thereby utilizing the rear portion of the fixed panel 100a to comprise, in part, the shroud 27 forming the rotary broom chamber 22. The large flexible seal 110 also includes outwardly facing edges 116 and 116a which align interfacingly and in perpendicular fashion in close proximity or having intimate contact with the non-flexible panels 96, 96a, 90 and 90a, respectively, to comprise, in part, the shroud 27 forming the rotary broom chamber 22. Also extending outwardly from the lower region of the conveyor housing 18 are flexible panels 118, 118a, 120, 120a, 122 and 122a which align interfacingly and sealingly in close proximity or having intimate contact with non-flexible panels 96 and 96a, respectively, to comprise, in part, the shroud 27 forming the rotary broom chamber 22. Also extending outwardly from the lower and forward region of the conveyor housing 18 are transversely mounted flexible slotted panels 124 and 126 which act as a double seal against and to the roadway and which comprise, in part, the shroud 27 forming the rotary broom chamber 22. Transversely mounted flexible panels 128 and 130 at the upper region of the conveyor housing 18 assist flexible side seals 39 and 39a and flexible seal 38 to seal the upper end of the conveyor housing 18 to the receiver duct 36 and the areas adjacent to the receiver duct 36 to ensure a sealed and a flexible coupled connection of the upper region of the conveyor housing 18 to the interior of the hopper 14.
The conveyor housing 18 aligns transversely and indirectly between the frameworks 21 and 21a and aligns directly between the frameworks 70 and 70a and extends vertically therebetween in angular alignment and can be positioned as required with respect to the vertical and horizontal by the conveyor/conveyor housing mount assemblies 84 and 84a which utilize hydraulics to provide such movement. Other components which can influence the position of the conveyor housing 18 include opposing vertically oriented C-channels 132 and 132a, as also viewed in
The conveyor/conveyor housing mount assemblies 84 and 84a feature major components including geometrically configured pivot bars 138 and 138a, rollered arm assemblies 140 and 140a, arms 142 and 142a, and actuating cylinders 144 and 144a. The conveyor/conveyor housing mount assemblies 84 and 84a are transversely connected by a box tube 146 and a tube 148 and actuated and positioned in part by a hydraulic actuating cylinder 150, all shown in FIG. 8. The bottom ends of the pivot bars 138 and 138a engage and can pivot about pivot pins 152 and 152a which are mounted through and extend inwardly from frameworks 70 and 70a. Yoke-like brackets 154 and 154a, being opposing substantially V-shaped members, opposingly attach to the opposing vertically oriented sides of the pivot bars 138 and 138a to serve as pivotal mounting structures for the rollered arm assemblies 140 and 140a which attach between the opposing V-shaped members of the yoke-like brackets 154 and 154a by pivot pins 156 and 156a. One end of the actuating cylinders 144 and 144a pivotally attach by pivot pins 160 and 160a to brackets 158 and 158a which attach to and extend upwardly from the lower region of the pivot bars 138 and 138a. The other ends of the actuating cylinders 144 and 144a pivotally secure in suitable fashion to the rollered arm assemblies 140 and 140a to hydraulically pivot the rollered arm assemblies 140 and 140a about the pivot pins 156 and 156a. Rollered arm assemblies 140 and 140a include rollers 162 and 162a which can be urged by hydraulic action into contact with the lower edges of the arms 142 and 142a to influence the substantially vertical position of the conveyor housing 18 and contained conveyor mechanism 16 as required. The upper ends of the pivot bars 138 and 138a pivotally attach via bearing assemblies 164 and 164a to the forward ends of the arms 142 and 142a. The rearward ends of the arms 142 and 142a incorporate bearinged mount fixtures 166 and 166a which pivotally secure the arms 142 and 142a to pivot pins 169 and 169a extending from the opposing sides of the conveyor housing 18. Opposing lifting lugs 168 and 168a are secured to the vertical sides of the conveyor housing 18. A hydraulic motor 170 shown on the near side of the conveyor housing 18 powers the conveyor mechanism 16. Other components associated with the conveyor/conveyor housing mount assemblies 84 and 84a are shown in and described in relation to FIG. 8.
The preceding figures have best shown and described the structure of the street sweeper 10 in the sweep mode. Hydraulic operating power is provided by one or more truck mounted hydraulic pumps, filters and coolers and appropriately routed by hydraulic controls (not shown) for operation of hydraulically operated components, such as, but not limited to, the fan 26, the hydraulic drive motor assembly 61, the gutter broom assemblies 65 and 65a, the broom lift/lower cylinders 72, 72a, the drag shoe lift/lower cylinders 78, 78a, the actuating cylinders 144, 144a and 150, and the hydraulic motor 170. During the sweep mode, the deflection mode, the transit mode or the dump mode various components are positioned or operated or are not operated to meet the need of that particular mode of operation, as described in detail herein.
During the sweep mode, gutter broom assemblies 65 and 65a are powered and utilized to sweep and direct debris to the center of the travel path of the truck 12 and into the path of the forwardly advancing rotary broom 20. The rotary broom 20 sweepingly directs debris forwardly and upwardly to be deposited on the lower receiving end of conveyor mechanism 16 for conveyance to the hopper 14 which is surrounded by the conveyor housing 18. During the sweep mode, the rotary broom 20 is positioned vertically by action of the broom lift/lower cylinders 72 and 72a, bell cranks 74 and 74a, cables 76 and 76a, and pivotal broom support arms 60 and. 60a for suitable and appropriate sweeping contact with the roadway. Suitable cable tension can be maintained to limit downward gravitational movement of the rotary broom 20 to control rotary broom force, as desired. The nonflexible panels 98 and 98a attached to the pivotal broom support arms 60 and 60a correspondingly position along the slots 92 and 92a in the fixed nonflexible panels 90 and 90a and along nonflexible panels 96 and 96a to maintain vacuumized integrity of the rotary broom chamber 22. Drag shoes 62 and 62a are positioned vertically by action of the drag shoe lift/lower cylinders 78 and 78a, bell cranks 80 and 80a, cables 82 and 82a, and pivotal drag shoe support arms 64 and 64a for suitable and appropriate sliding contact with the roadway. Suitable cable tension can be maintained to limit downward gravitational movement of the drag shoes 62 and 62a, as desired. Nonflexible panels 96 and 96a attached to the drag shoes 62 and 62a correspondingly position along the fixed nonflexible panels 90 and 90a and nonflexible panels 98 and 98a to maintain vacuumized integrity of the rotary broom chamber 22. During the sweep mode, the conveyor housing 18 containing the conveyor mechanism 16 is supported, as previously described in relation to
In the sweep mode the fan 26 is utilized to create a region of low pressure, or vacuum, which communicates through the conveyor housing 18 with the vacuumized chamber 22 surrounding the rotary broom 20 to maintain an area of low pressure or vacuum in the rotary broom chamber 22. Air containing dust particles, as shown by dark arrows (FIG. 1), is drawn through the areas of increasingly lower pressures from the vacuumized chamber 22, through the conveyor housing 18, through the hopper 14 and thence into and through the filter 30 and fan 26 for filtration, and then exiting the exhaust port 28 as filtered clean air, as shown by a light arrow.
Various modifications can be made to the present invention without departing from the apparent scope hereof.
Number | Name | Date | Kind |
---|---|---|---|
1610119 | Butler | Dec 1926 | A |
3008542 | Steele | Oct 1959 | A |
3186021 | Krier et al. | Jun 1965 | A |
3604051 | Wendel et al. | Sep 1971 | A |
3639940 | Carlson et al. | Feb 1972 | A |
3756416 | Wood | Sep 1973 | A |
3792569 | Carlson et al. | Feb 1974 | A |
3881215 | Krier et al. | May 1975 | A |
3926596 | Coleman | Dec 1975 | A |
4007026 | Groh | Feb 1977 | A |
4017281 | Johnstone | Apr 1977 | A |
4578840 | Pausch | Apr 1986 | A |
4660248 | Young | Apr 1987 | A |
4754521 | Zoni | Jul 1988 | A |
4759781 | Olson | Jul 1988 | A |
4884313 | Zoni | Dec 1989 | A |
5006136 | Wetter | Apr 1991 | A |
6192542 | Frederick et al. | Feb 2001 | B1 |
6195836 | Vanderlinden | Mar 2001 | B1 |
6195837 | Vanderlinden | Mar 2001 | B1 |
20040020003 | Strauser | Feb 2004 | A1 |
20040040104 | Joynt et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
12 56 241 | Dec 1967 | DE |
12 56 242 | Dec 1967 | DE |
0453177 | Nov 1991 | EP |
03 069071 | Aug 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040045111 A1 | Mar 2004 | US |