(a) Field
The subject matter disclosed generally relates to strength-enhancing devices. More specifically, it relates to a glove-like apparatus for enhancing the gripping force of a user.
(b) Related Prior Art
Various types of hand-wearable apparatuses for assisting hand movements have been described for different purposes. For example, active grasp-assisting devices were described in U.S. Pat. No. 8,255,079B2 and U.S. Pat. No. 8,029,414B2. These devices require energy sources and command controls which complicate the apparatus and introduce a greater risk of failure. Other gloves, such as the one described in U.S. Pat. No. 8,601,614B2, include elastic bands or springs for training hand muscles. These gloves are designed for training only and are not suited for object handling.
Other existing devices are directed to physical therapy. These apparatuses are designed to assist the user during their movement: when the movement is initiated, the apparatus aids in pursuing the movement with minimal effort. These devices are not suited for constant object handling, for which the closed-hand position is the default position.
Furthermore, most of these apparatuses are bulky and involve some parts of the apparatus being in the palm of the hand or inner surface of the fingers, such as in U.S. Pat. No. 4,796,306A, a situation inhibiting freedom of movement or impeding the grabbing of objects by the hand and fingers.
Other existing apparatuses are designed to have the fingers flex, such as the one described in U.S. Pat. No. 4,675,914A. The apparatus described therein makes the finger bend as a whole from the metacarpophalangeal joint.
There is thus a need for a non-electrically actuated assisting device, which would leave the inner hand free and would assist users in holding heavy objects for long periods with minimal effort.
According to an aspect of the invention, there is provided an apparatus for installation on a hand having a thumb and opposable fingers, both having joints and phalanges, the apparatus comprising biasing devices, each one of the biasing devices substantially having an inversed V shape formed by a hinge, a distal end and a proximal end, wherein the biasing devices are connected together to form the apparatus, the biasing devices being spatially distributed so that each hinge covers a corresponding one of the joints and biases the distal end and proximal end toward each other for keeping the hand in a substantially closed position.
According to an embodiment, the biasing devices to be installed on one of the thumb and the opposable fingers are integrally connected.
According to an embodiment, the biasing devices to be installed on one of the thumb and the opposable fingers are distinct and connected by a ring between each one of the biasing devices, each ring being for installation one of the phalanges.
According to an embodiment, there is further provided a hand support substantially covering an outer portion of the hand, the hand support comprising anchors, wherein the most proximal ones of the biasing devices of each opposing finger are connected to the hand support via a corresponding one of the anchors.
According to an embodiment, there is further provided a thumb support substantially covering a thumb metacarpal bone, the thumb support being hingedly connected to the hand support and comprising a thumb anchor, wherein the most proximal ones of the biasing devices of the thumb is connected to the thumb support via the thumb anchor.
According to an embodiment, the biasing devices comprise torsional springs.
According to an embodiment, there is further provided an inner glove to act as a protecting layer between the biasing devices and the hand.
According to an embodiment, there is further provided an outer glove to act as a protecting layer over the biasing devices.
According to another aspect of the invention, there is provided an apparatus for assisting in gripping an object by a hand having joints and phalanges, the apparatus comprising a biasing devices, each one of the biasing devices substantially covering a corresponding one of the joints, each one of the biasing devices having a supporting base which is proximal the corresponding one of the joints and exerting a force at location distal the corresponding one of the joints, each one of the biasing devices having a pre-formed hinge on the corresponding one of the joints, wherein a force is required to open each hinge.
According to an embodiment, the biasing devices to be installed on a given finger are integrally connected.
According to an embodiment, there is further provided a ring between each one of the biasing devices, wherein the biasing devices to be installed on a given finger are distinct and connected by the ring, each ring being for installation one of the phalanges, each ring being for at least one of: providing the supporting base for one of the springs; and providing the location where the force is exerted by another one of the springs.
According to an embodiment, there is further provided a hand support substantially covering an outer portion of the hand, the hand support comprising anchors, wherein the most proximal ones of the biasing devices of each opposing finger are connected to the hand support via a corresponding one of the anchors.
According to an embodiment, there is further provided a thumb support substantially covering a thumb metacarpal bone of a thumb of the hand, the thumb support being hingedly connected to the hand support and comprising a thumb anchor, wherein the most proximal ones of the biasing devices of the thumb is connected to the thumb support via the thumb anchor.
According to an embodiment, the biasing devices are torsional springs.
According to an embodiment, there is further provided an outer glove covering the apparatus.
According to an embodiment, there is further provided an inner glove to act as a protecting layer between the biasing devices and the hand.
According to an embodiment, there is further provided an outer glove to act as a protecting layer over the biasing devices.
According to another aspect of the invention, there is provided an apparatus for assisting in gripping an object by a hand, the apparatus comprising: a hand support for covering a portion of a surface of the hand; a torsional spring having a proximal end and a distal end, the proximal end being fixed and located on the hand support; a ring having an attachment for receiving the distal end of the torsional spring, the attachment being located at a distal location on a phalanx of the hand, the torsional spring applying a torque at the attachment to have the phalanx flex inwardly with respect to the hand support.
According to an embodiment, the torsional spring comprises a spring coil being located on a joint proximal the phalanx.
According to an embodiment, there is further provided a pad under the ring to mitigate the discomfort of the ring.
Further features and advantages of the present disclosure will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
The existing devices mentioned above fail to address finger movement one phalanx at a time and therefore fail to provide a useful solution for object handling and gripping.
The apparatus described herein is used to assist gripping and holding objects in the hand. Holding is to be performed with minimal effort, the user's force being rather needed for releasing the object being held.
Each one of the five fingers has a proximal phalanx. The thumb has a proximal phalanx 40a, for which limited movement is possible. Each one of the other fingers has a proximal phalanx 40b. The proximal phalanges (40a, 40b) are joined to the metacarpal bones (20a, 20b) at the metacarpophalangeal joint (30a, 30b). This articulation forms a hinge around which the proximal phalanges (40a, 40b) can rotate or pivot, either in flexion (the hand is closing) or in extension (the hand is opening).
The fingers have an intermediate phalanx 60 which is distal relative the proximal phalanx 40b. The proximal interphalangeal joint 50b joins these phalanges and forms a hinge around which the intermediate phalanx 60 can pivot during flexion or extension. The thumb does not have any intermediate phalanx.
All fingers, including the thumb, have a distal phalanx (90a, 90b). The thumb's distal phalanx 90a is joined to the thumb's proximal phalanx 40a by the thumb's interphalangeal joint 50a, which forms a hinge around which the distal phalanx can pivot.
The four other fingers which are opposing the thumb have a distal phalanx 90b which can pivot around the hinge formed by the distal interphalangeal joint 70, which joins the distal and intermediate phalanges together. Adduction and abduction of fingers need not be considered since these movements do not involve significant forces during gripping.
During a gripping movement, all fingers, or at least most fingers, flex. This movement involves the pivot of each phalanx around the most proximal joint to which they are attached. Fingers have three joints, except the thumb which only has two. However, the thumb metacarpal bone 20a can move with respect to the wrist 15 to improve the adaptability of the movement, while that of the other fingers cannot.
Moreover, each finger has a fingertip (80a, 80b) and the distal end thereof. For pinching or precision gripping, the thumb's fingertip 80a can be put in opposition with the fingertip 80b of any other opposing finger.
Furthermore, the hand extends from the wrist 15. The wrist also acts as a hinge around which the hand can pivot during a flexion/extension movement. Furthermore, the wrist also forms a hinge enabling lateral flexion/extension of the hand relative to the wrist.
Now referring back to
The surface of the hand of the user is covered with a hand support 182. The hand support is shaped so as to cover the surface of the hand and has a proximal end close to the wrist, as shown in
The hand support 182 acts as a main support for the most proximal springs 100, which extend from the hand support 182 to the proximal phalanx ring (110a, 110b). To act as a proper support, the hand support 182 must be firmly held in place on the hand of the user. For example, the hand support 182 may extend laterally on the sides of the hand to reach at least in part the palm of the hand. Surrounding the hand, at least partially, aids in providing a good support. According to another embodiment, the hand support 182 may not need to surround the hand if the hand support 182 is a part of a glove (as described below), which itself covers the whole hand of the user.
As a general matter, to assist the user in gripping, a torque needs to be applied to the fingers, and more specifically, to the bones making up the fingers. Referring now to
Since the gripping movement involves a pivot of the proximal phalanx (40a, 40b) relative to the metacarpophalangeal joint (30a, 30b), a proper assisting device needs to force the proximal phalanx (40a, 40b) relative to the metacarpophalangeal joint (30a, 30b). To do so, a force must be applied at a (preferably distal) location on the proximal phalanx (40a, 40b) or on a range of locations thereon to create a torque. This torque-generating force is applied at the proximal phalanx ring (110a, 110b) location. Therefore, for the thumb, the proximal phalanx ring 110a must be located on the proximal phalanx and preferably extend up to the interphalangeal joint 50a, and ensure that the torque is exerted at a location proximal the interphalangeal joint 50a. The torque-generating force is exerted by the spring 100 which has its distal end connected to the proximal phalanx ring (110a, 110b). This spring 100 has a proximal end which is connected to the hand support 182 (or 183) which acts as a support. The spring 100 is connected to both the proximal phalanx ring 110b and the hand support 182 by spring anchors (170a, 170b). The spring anchor (170a, 170b) is any type of attachment which can hold an end of the spring 100, such as a hook. A small depression or pocket in which the extremity of the spring is held may also work as an alternative for the attachment.
According to an embodiment, all (or many) springs 100 covering one of the fingers constitute a unique spring 100. The spring anchors (170a, 170b) on a given ring form, in combination, a long two-ended pocket, or tunnel, through which the elongated parts of the spring 100 are passed. The springs 100 of
According to another embodiment, springs 100 for a given finger constitute a unique spring which is held on top of the finger by the glove 510 surrounding the hand (described further below) and no spring anchor (170a, 170b) is required. The torque is applied on a continuous range of locations on the finger by the elongated part of the spring 100 which leans on parts the phalanxes.
The spring 100 which connects the hand support 182 to the proximal phalanx ring (110a, 110b) must be supported by its most proximal spring anchor 170a, i.e., the anchors of the hand support 182, at a location which will enable an effective torque to be applied at the distal end of the proximal phalanx (40a, 40b). To this end, the most proximal spring anchor 170a is located proximal the metacarpophalangeal joint (30a, 30b) so that the circular portion of the torsion spring 100, i.e., the part which forms the hinge, is located approximately on the metacarpophalangeal joint (30a, 30b). For this reason, each proximal spring anchor 170a provided on the hand support 182 is located slightly proximal the metacarpophalangeal joint (30a, 30b) of the corresponding finger. This is shown in
The same applies to the finger cap (150a, 150b), which is installed on the fingertip (80a, 80b). The finger cap (150a, 150b) is provided at the distal end of the distal phalanx (90a, 90b). It provides a location at which a torque-generating force may be applied with respect to the previous joint (proximal the fingertip), i.e., either the interphalangeal joint 50a for the thumb or the distal interphalangeal joint 70 for the other fingers. The finger cap (150a, 150b) comprises a distal spring anchor 170b where the spring 100 is held and where it applies the force. This spring 100 is supported by a more proximal spring anchor 170a located on the ring slightly proximal the previous joint.
According to an embodiment, the rings (110a, 110b, 120) need to be rigid to ensure that the distal spring anchor 170b of the previous (more proximal) spring 100 and the proximal spring anchor 170a of the next (more distal) spring 100, which lie on the same ring, are fixed in relation with the other one. According to an embodiment, the ring encircles the whole circumference of the finger. According to an embodiment, the ring does not encircle the whole circumference of the finger, rather a substantial portion thereof. According to another embodiment, the rings (110a, 110b, 120) are rather made of fabric (or a similar woven or non-woven material) and the spring anchors are one-ended pockets, or two-ended pockets (tunnel), or fabric hooks, etc., so the rings need not be rigid.
According to an embodiment, the apparatus 5 comprises a wrist support 180. The wrist support 180 is a solid piece of material that is installed on the forearm of the user. According to an embodiment, the wrist support completely surrounds the forearm. According to another embodiment, the wrist support 180 surrounds only a portion of the forearm, or includes two or more separate subportions which are firmly held together by fasteners.
The wrist support 180 has a proximal end (not shown) which does not reach the elbow, since covering the elbow would render this joint inoperable. The wrist support 180 further comprises a distal end which is located approximately at the wrist, as shown in
According to an embodiment, the hand support 182 and the wrist support 180 are free to move relative to the other one: they are separate and unconnected. According to another embodiment, they form a unique and integral piece: the wrist movement is thereby prevented. According to another embodiment, a biasing device is provided between these two parts to provide a negative feedback when a pivotal movement is initiated. More specifically, a spring 100, which can be a torsional spring as elsewhere on the apparatus, is provided between the hand support 182 and the wrist support 180. If a pressure is applied on the hand which would have the consequence of bending the wrist, the spring 100 can absorb the shock and compensate the external force that is applied. Doing so prevents the wrist from undergoing severe bending which could hurt the person performing the heavy work. Contrarily to the other springs which are preloaded to apply a torque on the fingers when they are at rest, the spring 100 supporting the hand-wrist articulation is not pre-loaded or pre-deformed. It stays in a comfortable position when at rest (essentially in a straight position), and absorbs mechanical energy when it is being bent, such as when a shock is undergone by the whole hand relative to the wrist. Since this spring is in equilibrium when approximately straight, it can absorb energy when it is bent it either directions, so it can protect the hand in both flexion and extension at the same time (as shown in
According to an embodiment, the hand support 182 comprises a mobile part, namely the thumb metacarpal bone support 183 (aka thumb support). Although it is possible to have a unique hand support 182 covering the whole surface of the hand, it has the disadvantage to prevent the movement of the thumb metacarpal bone 20a. This bone is nonetheless solicited during some types of grabbing movement, especially if the thumb's fingertip 80a needs to reach a specific location. For this reason, a rigid plate covering the thumb metacarpal bone 20a together with the palm is not preferred. The thumb metacarpal bone support 183 may be made of the same material as the hand support 182. It is rigid in order to provide adequate support to the spring 100 which acts on the thumb. The thumb metacarpal bone support 183 is mechanically connected to the hand support 182 by a hinge or other type of mechanical connector that can allow some movement. For example, the border between the hand support 182 and the thumb metacarpal bone support 183 may be approximately located along the axis which separates the thumb metacarpal bone 20a and the finger metacarpal bone 20b of the index. A hinge provided roughly along that axis, as shown in
According to an embodiment, the apparatus 5 is provided in a glove 500 as shown in
Furthermore, the use of the outer glove 510 is advantageous in that it protects the surroundings (e.g., the objects being manipulated, the arms of the person, or other people) to be scratched, hurt or otherwise damaged by some parts of the apparatus 5 (e.g., springs).
According to another embodiment, there is provided an inner glove 530. The thumb in
According to an embodiment, the outer glove 530 comprises apertures or protuberances to leave space for the circular portion of the torsion springs which extend away from the finger joints (this configuration is not shown).
It will be understood that while the current description and accompanying drawings are about a torsion spring which has a circular winding for applying a torque (as in a scarf pin), other types of biasing devices can be used. The requirement is that the biasing device is placed substantially above a joint and provides a torque between both sides of that joint, as if the finger was being bitten on both sides of the joint by an inversed V-shaped biasing device.
According to an embodiment, springs 100 are provided only above interphalangeal joints.
According to an embodiment, the apparatus 5 comprises rings for only some of the fingers instead of all five fingers. For example, if the apparatus 5 is to be used in specific tasks which only require the thumb and index to pinch something, then the apparatus may comprise rings for only the thumb and the finger. The glove 500 may be adapted consequently. For other tasks, the little finger and/or the ring finger and/or the middle finger may be left without any ring (110b or 120) or finger cap 150b thereon. For other tasks, the thumb might not be needed, so it may be left without any ring 110a or finger cap 150a.
According to an embodiment, some or all of the fingers have their distal phalanges free from rings 120 and finger caps (150a, 150b).
While preferred embodiments have been described above and illustrated in the accompanying drawings, it will be evident to those skilled in the art that modifications may be made without departing from this disclosure. Such modifications are considered as possible variants comprised in the scope of the disclosure.
This application claims priority from U.S. provisional patent application 62/160,905, filed on May 13, 2015.
Number | Name | Date | Kind |
---|---|---|---|
1235199 | Gavin | Jul 1917 | A |
4675914 | Mitchell | Jun 1987 | A |
4765320 | Lindemann | Aug 1988 | A |
4796306 | Mitchel | Jan 1989 | A |
4949711 | Gyovai | Aug 1990 | A |
5476439 | Robinson | Dec 1995 | A |
6081928 | Bourne | Jul 2000 | A |
6941580 | Kolcio et al. | Sep 2005 | B2 |
7712153 | Aams, Jr. | May 2010 | B2 |
8029414 | Ingvast et al. | Oct 2011 | B2 |
8255079 | Linn et al. | Aug 2012 | B2 |
8312567 | Valle | Nov 2012 | B1 |
8601614 | Scaff | Dec 2013 | B2 |
8956561 | Lin et al. | Feb 2015 | B2 |
20030195093 | White | Oct 2003 | A1 |
20050054487 | Rogers | Mar 2005 | A1 |
20100234182 | Hoffman | Sep 2010 | A1 |
20120204319 | Gambordella | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
101870100 | Oct 2010 | CN |
201630291 | Nov 2010 | CN |
202601009 | Dec 2012 | CN |
203575684 | May 2014 | CN |
203762340 | Aug 2014 | CN |
203814656 | Sep 2014 | CN |
203861525 | Oct 2014 | CN |
2006043179 | Feb 2006 | JP |
2014114534 | Jun 2014 | JP |
1020140082177 | Dec 2012 | KR |
1020140051022 | Apr 2014 | KR |
WO 9501141 | Jan 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20160332817 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
62160905 | May 2015 | US |