The present disclosure relates to exercise equipment. More particularly, the present disclosure relates to strength training equipment and to related methods.
While there are numerous exercise activities that one may participate in, exercise may be broadly broken into the categories of aerobic exercise and anaerobic exercise. Aerobic exercise generally refers to activities that substantially increase the heart rate and respiration of the exerciser for an extended period of time. This type of exercise is generally directed to enhancing cardiovascular performance. Such exercise usually includes low or moderate resistance to the movement of the individual. For example, aerobic exercise includes activities such as walking, running, jogging, swimming or bicycling for extended distances and extended periods of time.
Anaerobic exercise generally refers to exercise that strengthens skeletal muscles and usually involves the flexing or contraction of targeted muscles through significant exertion during a relatively short period of time and/or through a relatively small number of repetitions. For example, anaerobic exercise includes activities such as weight training, push-ups, sit-ups, pull-ups or a series of short sprints.
When exercising at home or in a gym, aerobic and anaerobic exercise usually involves the use of different types of equipment. For example, aerobic exercise usually involves equipment such as treadmills, ellipticals and bicycles (traditional and stationary) while anaerobic exercise often involves the use of free weights, weight stacks, or other cable and pulley resistance-type systems.
Often, individuals will plan their work-out routines to include both aerobic and anaerobic activities. For example, a person may do anaerobic exercises (e.g., weight lifting and other strength training exercises) on two or three days of the week while doing aerobic exercising (e.g., running, bicycling) on the remaining days of the week. In other instances, an individual may do both aerobic and anaerobic activities during the same day.
One of the difficulties in integrating both aerobic and anaerobic activities is the ability of an individual to efficiently and effectively track their progress. For example, many individuals use aerobic exercise equipment such as a treadmill or an elliptical machine to automatically track the calories that they've burned while using such equipment. However, it is more difficult to track or calculate such information when doing strength training exercises.
A couple of examples of equipment that has tried to combine aerobic exercising with anaerobic exercising are described in U.S. Pat. No. 5,527,245 to Dalebout et al. and U.S. Pat. No. 7,740,563 to Dalebout et al. These patents describe a resistance-type strength training apparatus combined with, in one instance, a treadmill, and in another instance an elliptical device.
In view of the foregoing, it would be desirable to provide the ability to track one's progress during exercise in a manner that is applicable to both aerobic and anaerobic activities and which is simple and effective. Additionally, it is a general desire in the industry to provide exercise equipment with new features and enhanced performance.
In one aspect of the disclosure, a strength training apparatus includes a base member and a tower structure coupled with the base member.
In one or more other aspects that may be combined with any of the aspects herein, may further include at least one arm that is pivotally coupled with the tower structure.
In one or more other aspects that may be combined with any of the aspects herein, may further include a flywheel and a cable and pulley system associated with the at least one arm, wherein displacement of at least one cable of the cable and pulley system affects rotation of the flywheel.
In one or more other aspects that may be combined with any of the aspects herein, may further include a braking mechanism associated with a flywheel and configured to apply a selected resistance to the rotation of the flywheel.
In one or more other aspects that may be combined with any of the aspects herein, may further include a braking mechanism including a magnetic braking mechanism.
In one or more other aspects that may be combined with any of the aspects herein, may further include a torque sensor associated with the flywheel.
In one or more other aspects that may be combined with any of the aspects herein, may further include a console having at least one input device and at least one output device.
In one or more other aspects that may be combined with any of the aspects herein, may further include the console in communication with the braking mechanism, wherein the at least one input device controls the amount of resistance applied to the flywheel by the braking mechanism.
In one or more other aspects that may be combined with any of the aspects herein, may further include the console in communication with the torque sensor, wherein the at least one output device provides an indication of the amount of work expended by a user upon rotation of the flywheel.
In one or more other aspects that may be combined with any of the aspects herein, may further include the at least one output device provides the indication of the amount of work expended in units of watts.
In one or more other aspects that may be combined with any of the aspects herein, may further include the strength training apparatus including a drive mechanism associated with the flywheel.
In one or more other aspects that may be combined with any of the aspects herein, may further include a clutch mechanism coupled with the flywheel by way of a drive belt.
In one or more other aspects that may be combined with any of the aspects herein, may further include the clutch mechanism enabling the rotation of the flywheel in a first rotational direction upon the displacement of the at least one cable in a first defined direction, but has no effect on the flywheel upon displacement of the at least one cable in a second defined direction, the second defined direction being the opposite of the first defined direction.
In one or more other aspects that may be combined with any of the aspects herein, may further include the drive mechanism having a drive chain coupled with the cable and pulley system, wherein the drive chain extends about a plurality of sprockets including at least one sprocket that is displaceable relative to the tower.
In one or more other aspects that may be combined with any of the aspects herein, may further include at least one biasing member coupled with the at least one displaceable sprocket.
In one or more other aspects that may be combined with any of the aspects herein, may further include an embodiment where the at least one arm includes a pair of arms, wherein the cable and pulley system includes a first pulley coupled with a first arm of the pair of arms with a first cable extending through the first pulley and a second pulley coupled with the second arm with a second cable extending through the second pulley.
In one or more other aspects that may be combined with any of the aspects herein, may further include the pair of arms maintained in a fixed angular position relative to each other.
In another aspect of the disclosure, a method of conducting strength training includes applying a force to a cable and displacing the cable in a first direction and affecting rotation of a flywheel upon displacement of the cable.
In one or more other aspects that may be combined with any of the aspects herein, may further include a resistance applied to the flywheel and the torque applied to the flywheel being measured, such as by way of a sensor.
In one or more other aspects that may be combined with any of the aspects herein, may further include calculating the work performed, in watts, based at least in part on the measured torque.
In one or more other aspects that may be combined with any of the aspects herein, may further include applying resistance to the flywheel by applying resistance using a magnetic brake.
In one or more other aspects that may be combined with any of the aspects herein, may further include the resistance applied by the magnetic brake being selectively varied.
In one or more other aspects that may be combined with any of the aspects herein, may further include applying a force to a cable including pulling the cable through a pulley, and selectively positioning the pulley at one of a variety of positions prior to pulling the cable through the pulley.
In one or more other aspects that may be combined with any of the aspects herein, may further include a method of tracking work expended during exercising including conducting an aerobic exercise activity and determining the work expended during the aerobic exercise activity and expressing the work expended in units of watts.
In one or more other aspects that may be combined with any of the aspects herein, may further include an embodiment where an anaerobic exercise activity is conducted and the work expended during the anaerobic exercise activity is determined and expressed in units of watts.
In one or more other aspects that may be combined with any of the aspects herein, may further include summing the amount of work expended during the aerobic activity and the amount of work expended during the anaerobic activity.
The accompanying drawings illustrate various embodiments of the present methods and systems and are a part of the specification. The illustrated embodiments are merely examples of the present systems and methods and do not limit the scope thereof.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
Referring to
A pair of arms 108A and 108B are pivotally coupled to the tower 104 by way of a bearing 110 or other mechanical structure. The bearing 110 enables the arms 108A and 108B to rotate about a defined axis 112 (
The apparatus 100 also includes a pair of pulleys 114A and 114B, one being pivotally coupled to the end of each arm 108A and 108B. Cables 116A and 116B extend through each pulley 114A and 114B and are coupled with handles 118A and 118B. As will be described in further detail below, the handles 118A and 118B, the cables 116A and 116B and the pulleys 114A and 114B are part of a cable/pulley system that provides resistance to an individual that is using the apparatus 100 for strength training.
As seen in
When the braking mechanism 124 is configured as a magnetic mechanism it may include an arm 126 that is pivotally coupled with the tower 104 and which contains a plurality of magnets arranged to provide a desired magnetic flux. As the arm 126 is rotated relative to tower 104 (and, thus, the flywheel 120), the magnetic flux through which the flywheel 120 rotates changes, thereby altering the amount of rotational resistance experienced by the flywheel 120.
The flywheel 120, when configured to interact with a magnetic braking mechanism, may include ferrous components, non-ferrous components, or both. In one embodiment, the flywheel 120 may include a relatively dense ferrous component to impart a desired level of rotational inertia to the flywheel 120. The flywheel 120 may also include a nonferrous component to provide increased braking resistance when used with a magnetic brake mechanism. For example, one embodiment may include a portion that is formed of cast iron (a ferrous material) to provide the desired rotational inertia with another portion formed of an aluminum material (to provide increased braking response to the magnetic mechanism). One such configuration of a flywheel, as well as an associated magnetic braking mechanism, is described by U.S. Patent Application Publication No. 2012/0088638 to Lull (application Ser. No. 13/267,719), the disclosure of which is incorporated by reference herein in its entirety.
A torque sensor 128 may be associated with the shaft 122 to determine the amount of torque applied to the flywheel 120 by a drive mechanism (discussed below). Various types of torque sensors may be utilized. One example of a torque sensor includes that which is described in U.S. Pat. No. 7,011,326 to Schroeder et al., the disclosure of which is incorporated by reference herein in its entirety. Another example of a torque sensor includes that which is described in U.S. Pat. No. 7,584,673 to Shimizu, the disclosure of which is incorporated by reference herein in its entirety.
The apparatus further includes a control panel 130 which may be located adjacent the bearing 110 or some other convenient location (e.g., on the tower 104). The control panel 130 may include various input devices 132 (e.g., buttons, switches or dials) and output devices 134 (e.g., LED lights, displays, alarms) to provide means of interaction with a user of the apparatus 100. The control panel 130 may further include connections for communication with other devices. The controller may include a processor and memory to provide various functions in controlling components of the apparatus 100 (e.g., the braking mechanism), in communicating with various components (e.g., the torque sensor) and making certain calculations as will be discussed below.
In one example, one of the input devices 132 of the control panel 130 may be used to set a desired resistance level that is to be applied to the flywheel 120 by controlling an actuating member associated with the braking mechanism 124. An output device 134 (e.g., a display) may indicate the current or selected level of resistance. An output device 134 of the control panel 130 may also provide an indication of the amount of work performed within a period of time calculated, for example, based on the torque applied to the flywheel 120 as measured by the torque sensor 128.
Referring now to
A drive chain 150 (or drive belt or cable or other appropriate structure) has a first end 152 that is coupled to the cables 116A and 116B that extend through pulleys 114A and 114B and either extend through, or adjacent to, the arms 108A and 108B. The drive chain 150 extends through several pulleys or sprockets including, for example, a first sprocket 154, the input shaft 144 (or an associated pulley or sprocket coupled therewith) and a second sprocket 156. A second end 158 of the drive chain 150 may be fixed, for example, to a frame or other component associated with the tower 104. In the embodiment shown in
Referring briefly to
Upon release of the force applied to the handle 118A, the biasing members 160 pull the second sprocket 156 back to its previous position bringing the various components (e.g., drive chain 150, cable 116A and handle 118A) back to the positions shown in
During exercise, many individuals desire to focus on anaerobic strength training, or to integrate anaerobic strength training with aerobic work-outs. One of the difficulties in mixing both aerobic and anaerobic activities is the ability of an individual to efficiently and effectively track their progress. For example, many individuals use aerobic exercise equipment such as a treadmill, an elliptical machine or a pedometer to help track the calories that they've burned while using such equipment. However, it is more difficult to track or calculate such information when doing strength training types of exercises.
The exercise apparatus provided herein provides a strength training apparatus that enables a variety of exercises while also providing the ability to track the work performed by an individual during their exercise session. By positioning the adjustable arms at different locations relative to the tower, different types of exercises may be conducted. For example, due to the adjustability of the arms/pulleys, the exercise apparatus may be used to perform exercises including, but not limited to, standing abdominal crunches, curls and other bicep exercises, lat pull-downs, chest presses, incline and decline presses, overhead presses, triceps extensions, shoulder extensions, leg extensions, leg curls, abduction and adduction exercises, and a variety of other exercises, including variations of the examples provided.
Additionally, the use of a flywheel in connection with a strength training apparatus provides a different form of resistance than in conventional strength training exercises, one that can be measured, tracked and incorporated into a planned exercise routine. The flywheel, combined with a braking mechanism such as a magnetic brake, enables considerable flexibility in setting the desired resistance during exercise. In many conventional strength training exercises, the amount of resistance provided (e.g., by free weights, weight stacks or resistance bands) is only adjustable in set increments (e.g., 5 or 10 pound increments). The use of a flywheel with a variable resistance braking mechanism enables fine tuning of the resistance over a continuous spectrum between two defined limits.
The use of a torque sensor in conjunction with the flywheel enables the calculation of work, power or energy so that, for example, a user of the apparatus may determine their performance level while using the exercise apparatus. In one particular example, the power expended during an exercise session may be expressed in watts (i.e., joules/sec (J/s) or newton meters I sec (N*m/s). A user of the machine can review the power expended during an exercise session from a display (or other output device) associated with the exercise apparatus and then compare their performance to a goal or a benchmark.
Such a way of tracking the effort expended during an anaerobic exercise routine provides more insight into the progress of the individual than just the number of repetitions completed during a given work-out session. If desired, other units may be utilized to track the energy expended by an individual during a work-out session. For example, rather than expressing the work-out performance in terms of watts (units of power), it could be expressed in terms of joules (units of work).
This information could be used with information from other work-out activities, including aerobic exercise, to consistently monitor the performance of an individual over a desired period of time. For example, rather than expressing the performance of an individual on a treadmill or an elliptical machine in terms of calories, those performances may similarly be provided in terms of watts (or another selected unit) so that all types of exercise activity may be monitored uniformly. An individual may then customize their exercise routine based, for example, on the amount of work that is to be performed regardless of whether that work occurs during an aerobic or an anaerobic activity.
One example of customizing a work-out that may be utilized in conjunction with the exercise apparatus described herein is set forth in U.S. patent application Ser. No. 13/754,361, filed on Jan. 30, 2013, which published on Aug. 1, 2013 as U.S. Patent Application Publication No. 2013/0196821 A1 (“the '821 Publication”), the disclosure of which is incorporated by reference herein in its entirety. One particular example of tracking a work-out across various exercise equipment and which may be utilized in conjunction with the exercise apparatus described herein is set forth in U.S. Pat. No. 6,746,371 to Brown et al., the disclosure of which is incorporated by reference herein in its entirety.
For example, FIG. 1 of the '821 Publication illustrates a block diagram of one embodiment of an environment 100 in which the present systems and methods may be implemented. In one configuration, an exercise apparatus 102 may exchange information with a client computing device 106. The client computing device 106 may acquire the information from the apparatus 102. For example, the information may be embedded as a data exchanging module 104 that is included on or by the exercise apparatus 102. Examples of the data exchanging module 104 may include, but are not limited to, barcodes, QR codes, RF tags, etc. The module 104 may be affixed or attached to an area of the apparatus 102 or an area that is not on the apparatus 102 (e.g., a wall close to the apparatus 102). The client computing device 106 may include a data sensing module 108 that is able to sense the data exchanging module 104. For example, the sensing module 108 may provide scanning capabilities that allows the device 106 to scan the data exchanging module 104 to obtain information about the apparatus 102. For example, the data exchanging module 104 may be a barcode and the data sensing module 108 may be a barcode scanner. In another embodiment, the data exchanging module 104 and the data sensing module 108 may include near field communication (NFC) capabilities. As a result, using NFC standards, a radio communication link may be established between the apparatus 102 and the device 106. The client computing device 106 may acquire the information from the exercise apparatus 102 via the radio communication link. The apparatus 102 and the device 106 may exchange information via other methods in addition to bar codes, QR codes, and NFC technologies.
Examples of the exercise apparatus 102 may include a weight machine (e.g., a fly machine, a leg press machine, a leg curl machine, a leg extension machine, a cable lateral pull-down machine, a triceps pull-down machine, a row machine, etc.). The exercise apparatus 102 may also be a free weight, such as a dumbbell, a medicine ball, an exercise ball, a bench press, etc. In another embodiment, the exercise apparatus 102 may be a cardio machine (e.g., a treadmill, a stationary bike, a spinner bike, a stair machine, etc.).
In one embodiment, the client computing device 106 may be a smartphone, a laptop, a tablet, or any other portable computing device. In one configuration, the client computing device 106 may be any device that is able to detect, receive, and interpret the data acquired from the data exchanging module 104. To interpret the received data, the client computing device 106 may communicate with a server 112 across a network 110 connection. The network 110 connection may be a Wi-Fi, a wireless local area network (WLAN), a cellular network, and the like. The server 112 may communicate with an exercise apparatus database 114. The database 114 may be external to the server 112, or the database 114 may be built into the server 112. In one embodiment, the exercise apparatus database 114 may store information regarding the exercise apparatus 102. For example, the database 114 may store instructions that indicate how to properly use the exercise apparatus 102. The database 114 may also store videos that demonstrate how to use the apparatus 102. In one example, the client computing device 106 may acquire information from the apparatus, such as an identifier that identifies the apparatus 102. The identifier may be communicated to the server 112. The server 112 may use the identifier to locate additional information in the database 114 about the apparatus 102. The server may communicate the additional information about the apparatus 102 to the computing device 106. In one embodiment, the data exchanging module 104 may include the additional information that is stored in the database 114. As a result, when the computing device 106 acquires the information from the apparatus 102, there may be no need for the client 106 to communicate with the server 112 to acquire the additional information.
FIG. 2 of the '821 Publication is a block diagram illustrating one embodiment of a client computing device 106-a. The client computing device 106-a may be an example of the client computing device 106 illustrated in FIG. 1 of the '821 Publication. In one example, the client computing device 106-a may include a data sensing module 108-a. In one configuration, the module 108-a may include a QR code module 202, a barcode reading module 204, an NFC module 206, a profile module 208, a customized workout module 210, and a tracking module 212. Details regarding each of these modules will be described below.
In one embodiment, the QR code module 202 may sense data affixed to or by the exercise apparatus 102 that is encoded as a QR code. Similarly, the barcode reading module 204 may sense data embedded or encoded as a barcode that may be attached to or near the exercise apparatus 102. The modules 202 and 204 may sense the data by scanning the QR code or the barcode that is attached to the exercise apparatus 102. The NFC module 206 may establish a radio communication link with the exercise apparatus 102. The NFC module 206 may acquire data from the exercise apparatus 102 via the radio communication link.
In one configuration, the profile module 208 may receive and store input from a user relating to the user's profile information. Examples of profile information may include the user's age, height, weight, etc. The profile module 208 may further receive and store input from the user relating to physical fitness goals of the user. Examples of physical fitness goals may include a desired weight loss, strength conditioning goals, target heart rate goals, running/walking distance goals, specific muscle definition goals etc. The customized workout module 210 may receive the data sensed from the modules, 202, 204, and/or 206. The workout module 210 may also receive information stored by the profile module 208. In one embodiment, the workout module 210 may generate a customized workout routine for the user to perform with the exercise apparatus 102 in order to progress towards achieving the physical fitness goals stored in the profile module.
As an example, the client computing device 106-a may receive data relating to the exercise apparatus 102. The data may indicate the name of the apparatus 102, the functions of the exercise apparatus 102, instructions on how to properly use the exercise apparatus 102, the muscle group focused on by the exercise apparatus 102, the health benefits of using the apparatus 102, video or other multimedia data that demonstrate how to use the apparatus 102, etc. The data may be received directly from the data exchange module 104 affixed to the apparatus 102 and/or from the server 112 that obtains the data from the database 114 and communicates the data to the client computing device 106. The customized workout module 210 may analyze the received data about the exercise apparatus 102 together with the information stored by the profile module 208. Based on this analysis, the customized workout module 210 may generate a workout routine for the user to perform with the exercise apparatus 102. The generated workout routine may be focused on helping the user accomplish one or more physical fitness goals stored by the profile module 208. For example, the user may specify a physical fitness goal of bench pressing 200 lbs. The profile module 208 may also include information that indicates that the user is currently able to bench 160 lbs. The user may then approach a chest fly machine with the client computing device 106-a. A barcode may be affixed on a portion of the machine. The computing device 106-a may scan the barcode and obtain data about the machine. As stated above, the data may be acquired from the scan of the barcode and/or from the server 112. For example, the client 106-a may scan the barcode and retrieve the identity of the machine (in this example, a chest fly machine). The identity may be transmitted to the server 112. The server 112 may use the received identity to search the database 114 for data about the machine. The server 112 may then communicate the data back to the client computing device 106-a.
The data (either obtained directly from the exercise apparatus 102 and/or from the server 112) may indicate that the chest fly machine focuses on certain chest muscles. The data may also include a video demonstration that illustrates how to properly use the chest fly machine. The customized workout module 210 may generate a workout routine (e.g., number of repetitions, sets, and the weight resistance) for the user to follow when using the chest fly machine. The routine may be generated based on an analysis of the information stored by the profile module 208 as well as the data acquired from the exercise apparatus (directly and/or indirectly from the server 112). The workout routine may be customized for the user to assist the user to accomplish the physical fitness goal(s) included in the profile module. As a result, the workout routine, if followed by the user, may assist the user to accomplish the goal of bench pressing 200 lbs.
In one example, the profile module 208 may not include physical fitness goal information that relates to a certain exercise apparatus 102. For instance, the sensing module 108-a may acquire information relating to a treadmill by scanning a barcode, QR code, etc. The customized workout module 210 may analyze the profile module 208 and discover that the user has not entered a goal that may be accomplished by using the treadmill. In one configuration, the customized module 210 may query the user as to whether the user would like to enter a physical fitness goal that may be achieved by using the treadmill. For example, the module 210 may display the following query “Do you want to set a goal to run 3 miles in 30 minutes?” If the user selects this goal, the workout module 210 may continue to generate a customized workout routine for the user to assist the user to complete this goal. Instead of selecting a goal generated by the customized workout module 210, the user may provide his/her own goal as it relates to the treadmill. Once the goal is provided, the module 210 may generate a customized workout routine.
The tracking module 212 may track the progress of the user while the user is using the exercise apparatus 102. For example, the tracking module 212 may be a camera or other tracking device that is capable of monitoring the movement of the user. The tracking module 212 may also track the progress of the user towards completing the goals specified in the profile module 208. For example, the profile module 208 may include a goal to lose 20 lbs. The tracking module 212 may track the weight of the user to allow the user to see his/her progress towards achieving the goal of losing 20 pounds. In one example, the user may manually enter his/her weight into the tracking module 212. In another embodiment, the tracking module 212 may track the progress of the user by receiving automatic updates via email, SMS messages, and the like that include the current state of the user. For example, the user may visit a website and record his/her weight on the website. The website may communicate with the tracking module 212 to provide the updated weight of the user.
FIG. 3 of the '821 Publication is a block diagram illustrating one embodiment of a profile module 208-a. The profile module 208-a may be an example of the profile module 208 illustrated in FIG. 2 of the '821 Publication. In one configuration, the profile module 208-a may include a personal information module 302 and a goal information module 304.
In one embodiment, the personal information module 302 may include personal information about the user, such as, but not limited to, the user's age, height, weight, resting heart rate, and any other biometric information. The goal information module 304 may include physical fitness goals provided by the user. For example, the goal information module 304 may store a weight loss goal, a strength conditioning goal, a cardio goal, and the like. In one example, the user may manually input information to the modules 302, 304 via interfaces provided by the client computing device 106. In another embodiment, the user may provide the information to the modules 302, 304 remotely by interfacing with a website and inputting the information. The information may then be transmitted from the website to the client computing device 106 and stored as part of the modules 302, 304.
FIG. 4 of the '821 Publication is a block diagram illustrating one embodiment of a customized workout module 210-a. The module 210-a may be an example of the customized workout module 210 of FIG. 2 of the '821 Publication. In one embodiment, the module 210-a may include a profile analysis module 402, an exercise apparatus analysis module 404, a workout generation module 406, and a demonstration generation module 408.
In one configuration, the profile analysis module 402 may analyze information provided by the profile module 208. The information provided by the profile module 208 may include the physical fitness goals entered by the user. The workout generation module 404 may generate a customized workout routine for the user with relation to the exercise apparatus 102. For example, the exercise apparatus 102 may be a dumbbell. The profile analysis module 402 may determine that the user has set a goal to be able to do 10 repetitions of a bicep curl using a 50 pound dumbbell. The profile analysis module 402 may further determine from the information provided by the profile module 208 that the user has previously performed curls using 25 lb dumbbells. The exercise apparatus analysis module 404 may analyze data about the apparatus. The data may be received by scanning a barcode, QR code, etc. that may be affixed to the apparatus. The profile analysis module 402 may determine from the specific muscles focused on by the exercise apparatus.
The workout generation module 406 may generate a schedule of workouts for dumbbells of various weights that will gradually build up the user's bicep muscles to eventually reach the user's goal of performing 10 repetitions of a bicep curl using a 50 lb dumbbell. For example, the generation module 406 may suggest the user begin by performing 3 sets of 10 repetitions using 25 lb dumbbells. The generated workout may instruct the user to perform this workout four times a week. The generation module 406 may generate a workout that specifies that each week the weight of the dumbbell should be increased by 5 lbs. As a result, based on the goals provided by the user, the generation module 404 may generate a customized workout for a particular exercise apparatus 102 to assist the user to achieve his/her goals.
The demonstration generation module 408 may generate and/or provide a demonstration of how to use the exercise apparatus 102. For example, the generation module 408 may generate and/or provide a video that the user may view on the client computing device 106 to learn how to properly use the exercise apparatus 102. The demonstration generation module 408 may also generate and/or provide a text document that the user may read that includes instructions on how to use the exercise apparatus 102.
FIG. 5 of the '821 Publication is a block diagram illustrating one embodiment of an exercise apparatus 102-a and a tracking module 212-a. In one example, the exercise apparatus 102-a may be an example of the exercise apparatus 102 illustrated in FIG. 1 of the '821 Publication. The tracking module 212-a may be an example of the tracking module 212 illustrated in FIG. 2 of the '821 Publication.
In one embodiment, the exercise apparatus 102-a may include a monitoring apparatus 502-a-1. The monitoring apparatus 502-a-1 may monitor the user while the user is using the exercising apparatus 102-a. For example, the monitoring apparatus 502-a-1 may be a camera installed or connected to the exercise apparatus 102-a. The apparatus 502-a-1 may also be a magnetic strip attached to the exercise apparatus 102-a that detects movement of the apparatus 102 (e.g., a dumbbell). The monitoring apparatus 502-a-1 may record the actions of the user while the user is performing exercises using the exercising apparatus 102-a. The recorded actions may be transmitted to the tracking module 212-a.
The tracking module 212-a may also include a monitoring apparatus 502-a-2 to record the actions of the user while the user is engaged with a particular exercise apparatus. The apparatus 502-a-2 may be a camera, or other tracking device to record the activity of the user. The tracking module 212-a may further include a workout history module 504 and a goal monitoring module 506. The workout history module 504 may store information regarding past workouts performed by the user. For example, the monitoring apparatuses 502-a-1 and/or 502-a-2 may monitor a user running on a treadmill for 30 minutes. At the conclusion of the 30 minutes, the monitoring apparatus 502 may communicate the information to the workout history module 504. If the user is using a weight machine, the monitoring apparatus 502 may detect the number of repetitions as well as the weight used during the repetitions. As a result, the workout history module 504 may include a log that documents the past workout activity of the user with various exercise machines.
In one embodiment, the goal monitoring module 506 may monitor the goals specified by the user. The module 506 may track the progress of the user with respect to achieving the goals. For example, the goal monitoring module 506 may communicate with the workout history module 504 to determine whether the user has satisfied a particular goal. The monitoring module 506 may generate a transmit goal update message to the user (e.g., via email, SMS text, etc.) that indicate to the user the user's progress in completing a goal. The module 506 may also send a goal completed message to the user when it is determined that a physical fitness goal has been accomplished.
FIG. 9 of the '821 Publication depicts a block diagram of a computer system 910 suitable for implementing the present systems and methods. The computer system 910 may be an example of the client computing device 106 of FIG. 1 of the '821 Publication. Computer system 910 includes a bus 912 which interconnects major subsystems of computer system 910, such as a central processor 914, a system memory 917 (typically RAM, but which may also include ROM, flash RAM, or the like), an input/output controller 918, an external audio device, such as a speaker system 920 via an audio output interface 922, an external device, such as a display screen 924 via display adapter 926, serial ports 928 and 930, a keyboard 932 (interfaced with a keyboard controller 933), multiple USB devices 992 (interfaced with a USB controller 991), a storage interface 934, a floppy disk unit 937 operative to receive a floppy disk 938, a host bus adapter (HBA) interface card 935A operative to connect with a Fibre Channel network 990, a host bus adapter (HBA) interface card 935B operative to connect to a SCSI bus 939, and an optical disk drive 940 operative to receive an optical disk 942. Also included are a mouse 946 (or other point-and-click device, coupled to bus 912 via serial port 928), a modem 947(coupled to bus 912 via serial port 930), and a network interface 948(coupled directly to bus 912).
Bus 912 allows data communication between central processor 914 and system memory 917, which may include read-only memory (ROM) or flash memory (neither shown), and random access memory (RAM) (not shown), as previously noted. The RAM is generally the main memory into which the operating system and application programs are loaded. The ROM or flash memory can contain, among other code, the Basic Input-Output system (BIOS) which controls basic hardware operation such as the interaction with peripheral components or devices. For example, the data sensing module 108-b to implement the present systems and methods may be stored within the system memory 917. Applications resident with computer system 910 are generally stored on and accessed via a non-transitory computer readable medium, such as a hard disk drive (e.g., fixed disk 944), an optical drive (e.g., optical drive 940), a floppy disk unit 937, or other storage medium. Additionally, applications can be in the form of electronic signals modulated in accordance with the application and data communication technology when accessed via network modem 947 or interface 948.
In one configuration, when the portable device retrieves information about an exercise machine, the portable device may also access physical fitness goals for the user. The user may have previously entered the goals or, upon retrieving information about an exercise machine, the portable device may query the user to select or enter physical fitness goals. Upon accessing the goals, the information about the exercise machine may be analyzed to determine whether the exercise machine may assist the user to accomplish one or more of the goals. If the machine cannot help the user accomplish the provided goals, the user may be queried as to whether he/she would like to select (or provide) a goal that this particular exercise machine may help the user accomplish. If the machine is able to assist the user in completing a goal, a customized workout routine may be generated and displayed to the user. The workout routine may provide instructions to the user relating to the number of repetitions, sets, the amount of weight, the amount of time, speed, incline, resistance, etc., that the user should perform to accomplish a goal using the exercise machine.
This application is a continuation of U.S. application Ser. No. 15/472,954, filed on Mar. 29, 2017, now U.S. Pat. No. 10,279,212, which is a continuation of U.S. application Ser. No. 15/019,088, filed on Feb. 9, 2016, now U.S. Pat. No. 9,616,276, which is a continuation of U.S. application Ser. No. 14/213,793, filed on Mar. 14, 2014, now U.S. Pat. No. 9,254,409, which claims priority to U.S. Provisional Patent Application No. 61/786,007, filed on Mar. 14, 2013. Each of the aforementioned applications is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3123646 | Easton | Mar 1964 | A |
3579339 | Chang | May 1971 | A |
3926430 | Good, Jr. | Dec 1975 | A |
4023795 | Pauls | May 1977 | A |
4300760 | Bobroff | Nov 1981 | A |
4413821 | Centafanti | Nov 1983 | A |
4533136 | Smith et al. | Aug 1985 | A |
D286311 | Martinell et al. | Oct 1986 | S |
4681318 | Lay | Jul 1987 | A |
4684126 | Dalebout et al. | Aug 1987 | A |
4705028 | Melby | Nov 1987 | A |
4725057 | Shifferaw | Feb 1988 | A |
4728102 | Pauls | Mar 1988 | A |
4750736 | Watterson | Jun 1988 | A |
4796881 | Watterson | Jan 1989 | A |
4813667 | Watterson | Mar 1989 | A |
4830371 | Lay | May 1989 | A |
4844451 | Bersonnet et al. | Jul 1989 | A |
4850585 | Dalebout | Jul 1989 | A |
D304849 | Watterson | Nov 1989 | S |
4880225 | Lucas et al. | Nov 1989 | A |
4883272 | Lay | Nov 1989 | A |
D306468 | Watterson | Mar 1990 | S |
D306891 | Watterson | Mar 1990 | S |
4913396 | Dalebout et al. | Apr 1990 | A |
D307614 | Bingham et al. | May 1990 | S |
D307615 | Bingham et al. | May 1990 | S |
4921242 | Watterson | May 1990 | A |
4932650 | Bingham et al. | Jun 1990 | A |
D309167 | Griffin | Jul 1990 | S |
D309485 | Bingham et al. | Jul 1990 | S |
4938478 | Lay | Jul 1990 | A |
D310253 | Bersonnet et al. | Aug 1990 | S |
4955599 | Bersonnet et al. | Sep 1990 | A |
4968028 | Wehrell | Nov 1990 | A |
4971316 | Dalebout et al. | Nov 1990 | A |
D313055 | Watterson | Dec 1990 | S |
4974832 | Dalebout | Dec 1990 | A |
4979737 | Kock | Dec 1990 | A |
4981294 | Dalebout et al. | Jan 1991 | A |
5000442 | Dalebout et al. | Jan 1991 | A |
D315765 | Measom et al. | Mar 1991 | S |
4998725 | Watterson et al. | Mar 1991 | A |
5000443 | Dalebout et al. | Mar 1991 | A |
5000444 | Dalebout et al. | Mar 1991 | A |
D316124 | Dalebout et al. | Apr 1991 | S |
5013033 | Watterson et al. | May 1991 | A |
5014980 | Bersonnet et al. | May 1991 | A |
5016871 | Dalebout et al. | May 1991 | A |
D318085 | Jacobson et al. | Jul 1991 | S |
D318086 | Bingham et al. | Jul 1991 | S |
D318699 | Jacobson et al. | Jul 1991 | S |
5029801 | Dalebout et al. | Jul 1991 | A |
5034576 | Dalebout et al. | Jul 1991 | A |
5039091 | Johnson | Aug 1991 | A |
5058881 | Measom | Oct 1991 | A |
5058882 | Dalebout et al. | Oct 1991 | A |
D321388 | Dalebout | Nov 1991 | S |
5062626 | Dalebout et al. | Nov 1991 | A |
5062627 | Bingham | Nov 1991 | A |
5062632 | Dalebout et al. | Nov 1991 | A |
5062633 | Engel et al. | Nov 1991 | A |
5067710 | Watterson et al. | Nov 1991 | A |
5072929 | Peterson et al. | Dec 1991 | A |
D323009 | Dalebout et al. | Jan 1992 | S |
D323198 | Dalebout et al. | Jan 1992 | S |
D323199 | Dalebout et al. | Jan 1992 | S |
D323863 | Watterson | Feb 1992 | S |
5088729 | Dalebout | Feb 1992 | A |
5090694 | Pauls et al. | Feb 1992 | A |
5102380 | Jacobson et al. | Apr 1992 | A |
5104120 | Watterson et al. | Apr 1992 | A |
5108093 | Watterson | Apr 1992 | A |
D326491 | Dalebout | May 1992 | S |
5122105 | Engel et al. | Jun 1992 | A |
5135216 | Bingham et al. | Aug 1992 | A |
5135458 | Huang | Aug 1992 | A |
5147265 | Pauls et al. | Sep 1992 | A |
5149084 | Dalebout et al. | Sep 1992 | A |
5149312 | Croft et al. | Sep 1992 | A |
5158520 | Lemke | Oct 1992 | A |
5171196 | Lynch | Dec 1992 | A |
D332347 | Raadt et al. | Jan 1993 | S |
5190505 | Dalebout et al. | Mar 1993 | A |
5192255 | Dalebout et al. | Mar 1993 | A |
5195937 | Engel et al. | Mar 1993 | A |
5203826 | Dalebout | Apr 1993 | A |
D335511 | Engel et al. | May 1993 | S |
D335905 | Cutter et al. | May 1993 | S |
D336498 | Engel et al. | Jun 1993 | S |
5217487 | Engel et al. | Jun 1993 | A |
D337361 | Engel et al. | Jul 1993 | S |
D337666 | Peterson et al. | Jul 1993 | S |
D337799 | Cutter et al. | Jul 1993 | S |
5226866 | Engel et al. | Jul 1993 | A |
5242339 | Thornton | Sep 1993 | A |
5244446 | Engel et al. | Sep 1993 | A |
5247853 | Dalebout | Sep 1993 | A |
5259611 | Dalebout et al. | Nov 1993 | A |
D342106 | Campbell et al. | Dec 1993 | S |
5279528 | Dalebout et al. | Jan 1994 | A |
D344112 | Smith | Feb 1994 | S |
D344557 | Ashby | Feb 1994 | S |
5282776 | Dalebout | Feb 1994 | A |
5286243 | Lapcevic | Feb 1994 | A |
5295931 | Dreibelbis et al. | Mar 1994 | A |
5302161 | Loubert et al. | Apr 1994 | A |
D347251 | Dreibelbis et al. | May 1994 | S |
5316534 | Dalebout et al. | May 1994 | A |
D348493 | Ashby | Jul 1994 | S |
D348494 | Ashby | Jul 1994 | S |
5328164 | Soga | Jul 1994 | A |
D349931 | Bostic et al. | Aug 1994 | S |
5336142 | Dalebout et al. | Aug 1994 | A |
5344376 | Bostic et al. | Sep 1994 | A |
D351202 | Bingham | Oct 1994 | S |
D351435 | Peterson et al. | Oct 1994 | S |
D351633 | Bingham | Oct 1994 | S |
5354252 | Habing | Oct 1994 | A |
D352534 | Dreibelbis et al. | Nov 1994 | S |
D352536 | Byrd et al. | Nov 1994 | S |
D353422 | Bostic et al. | Dec 1994 | S |
5372559 | Dalebout et al. | Dec 1994 | A |
5374228 | Buisman et al. | Dec 1994 | A |
5382221 | Hsu et al. | Jan 1995 | A |
5385520 | Lepine et al. | Jan 1995 | A |
5387168 | Bostic | Feb 1995 | A |
5393690 | Fu et al. | Feb 1995 | A |
D356128 | Smith et al. | Mar 1995 | S |
5409435 | Daniels | Apr 1995 | A |
5429563 | Engel et al. | Jul 1995 | A |
5431612 | Holden | Jul 1995 | A |
D360915 | Bostic et al. | Aug 1995 | S |
5468205 | McFall et al. | Nov 1995 | A |
5484358 | Wang et al. | Jan 1996 | A |
5489249 | Brewer et al. | Feb 1996 | A |
5492517 | Bostic et al. | Feb 1996 | A |
D367689 | Wilkinson et al. | Mar 1996 | S |
5511740 | Loubert et al. | Apr 1996 | A |
5512025 | Dalebout et al. | Apr 1996 | A |
D370949 | Furner | Jun 1996 | S |
D371176 | Furner | Jun 1996 | S |
5527245 | Dalebout et al. | Jun 1996 | A |
5529553 | Finlayson | Jun 1996 | A |
5540429 | Dalebout et al. | Jul 1996 | A |
5549533 | Olson et al. | Aug 1996 | A |
5554085 | Dalebout | Sep 1996 | A |
5569128 | Dalebout | Oct 1996 | A |
5588938 | Schnider et al. | Dec 1996 | A |
5591105 | Dalebout et al. | Jan 1997 | A |
5591106 | Dalebout et al. | Jan 1997 | A |
5595556 | Dalebout et al. | Jan 1997 | A |
5607375 | Dalebout | Mar 1997 | A |
5611539 | Watterson | Mar 1997 | A |
5622527 | Watterson et al. | Apr 1997 | A |
5626538 | Dalebout et al. | May 1997 | A |
5626540 | Hall | May 1997 | A |
5626542 | Dalebout et al. | May 1997 | A |
D380024 | Novak et al. | Jun 1997 | S |
5637059 | Dalebout | Jun 1997 | A |
D380509 | Wilkinson et al. | Jul 1997 | S |
5643153 | Nylen et al. | Jul 1997 | A |
5645509 | Brewer et al. | Jul 1997 | A |
D384118 | Deblauw | Sep 1997 | S |
5662557 | Watterson et al. | Sep 1997 | A |
5667461 | Hall | Sep 1997 | A |
5669857 | Watterson et al. | Sep 1997 | A |
5672140 | Watterson et al. | Sep 1997 | A |
5674156 | Watterson et al. | Oct 1997 | A |
5674453 | Watterson et al. | Oct 1997 | A |
5676624 | Watterson et al. | Oct 1997 | A |
5683331 | Dalebout | Nov 1997 | A |
5683332 | Watterson et al. | Nov 1997 | A |
D387825 | Fleck et al. | Dec 1997 | S |
5695433 | Buisman | Dec 1997 | A |
5695434 | Dalebout et al. | Dec 1997 | A |
5695435 | Dalebout et al. | Dec 1997 | A |
5702325 | Watterson et al. | Dec 1997 | A |
5704879 | Watterson et al. | Jan 1998 | A |
5718657 | Dalebout et al. | Feb 1998 | A |
5720200 | Anderson et al. | Feb 1998 | A |
5720698 | Dalebout et al. | Feb 1998 | A |
D392006 | Dalebout et al. | Mar 1998 | S |
5722922 | Watterson et al. | Mar 1998 | A |
5733229 | Dalebout et al. | Mar 1998 | A |
5743833 | Watterson et al. | Apr 1998 | A |
5762584 | Daniels | Jun 1998 | A |
5762587 | Dalebout et al. | Jun 1998 | A |
5772560 | Watterson et al. | Jun 1998 | A |
5810698 | Hullett et al. | Sep 1998 | A |
5827155 | Jensen | Oct 1998 | A |
5830113 | Coody et al. | Nov 1998 | A |
5830114 | Halfen et al. | Nov 1998 | A |
5860893 | Watterson et al. | Jan 1999 | A |
5860894 | Dalebout et al. | Jan 1999 | A |
5899834 | Dalebout et al. | May 1999 | A |
5921892 | Essi-Ferno | Jul 1999 | A |
D412953 | Armstrong | Aug 1999 | S |
D413948 | Dalebout | Sep 1999 | S |
5951441 | Dalebout | Sep 1999 | A |
5951448 | Bolland | Sep 1999 | A |
D416596 | Armstrong | Nov 1999 | S |
6003166 | Hald et al. | Dec 1999 | A |
6019710 | Dalebout et al. | Feb 2000 | A |
6027429 | Daniels | Feb 2000 | A |
6030320 | Stearns et al. | Feb 2000 | A |
6030321 | Fuentes | Feb 2000 | A |
6033347 | Dalebout et al. | Mar 2000 | A |
D425940 | Halfen et al. | May 2000 | S |
6059692 | Hickman | May 2000 | A |
D428949 | Simonson | Aug 2000 | S |
6113519 | Goto | Sep 2000 | A |
6123646 | Colassi | Sep 2000 | A |
6123649 | Lee et al. | Sep 2000 | A |
6171217 | Cutler | Jan 2001 | B1 |
6171219 | Simonson | Jan 2001 | B1 |
6174267 | Dalebout | Jan 2001 | B1 |
6193631 | Hickman | Feb 2001 | B1 |
6228003 | Hald et al. | May 2001 | B1 |
6238323 | Simonson | May 2001 | B1 |
6251052 | Simonson | Jun 2001 | B1 |
6261022 | Dalebout et al. | Jul 2001 | B1 |
6280362 | Dalebout et al. | Aug 2001 | B1 |
6296594 | Simonson | Oct 2001 | B1 |
D450872 | Dalebout et al. | Nov 2001 | S |
6312363 | Watterson et al. | Nov 2001 | B1 |
D452338 | Dalebout et al. | Dec 2001 | S |
D453543 | Cutler | Feb 2002 | S |
D453948 | Cutler | Feb 2002 | S |
6350218 | Dalebout et al. | Feb 2002 | B1 |
D457580 | Webber | May 2002 | S |
6387020 | Simonson | May 2002 | B1 |
6413191 | Harris et al. | Jul 2002 | B1 |
6422980 | Simonson | Jul 2002 | B1 |
6436008 | Skowronski et al. | Aug 2002 | B1 |
6447424 | Ashby et al. | Sep 2002 | B1 |
6454679 | Radow | Sep 2002 | B1 |
6458060 | Watterson et al. | Oct 2002 | B1 |
6458061 | Simonson | Oct 2002 | B2 |
6471622 | Hammer et al. | Oct 2002 | B1 |
6488612 | Sechrest | Dec 2002 | B2 |
6491610 | Henn | Dec 2002 | B1 |
6506142 | Itoh | Jan 2003 | B2 |
6527678 | Wang | Mar 2003 | B1 |
6547698 | Inagawa | Apr 2003 | B2 |
6563225 | Soga et al. | May 2003 | B2 |
6599223 | Wang | Jul 2003 | B2 |
6601016 | Brown et al. | Jul 2003 | B1 |
6623140 | Watterson | Sep 2003 | B2 |
6626799 | Watterson et al. | Sep 2003 | B2 |
6652424 | Dalebout | Nov 2003 | B2 |
6669607 | Slawinski | Dec 2003 | B2 |
6685607 | Olson | Feb 2004 | B1 |
6695581 | Wasson et al. | Feb 2004 | B2 |
6699159 | Rouse | Mar 2004 | B2 |
6701271 | Greene et al. | Mar 2004 | B2 |
6702719 | Brown et al. | Mar 2004 | B1 |
6712740 | Simonson | Mar 2004 | B2 |
6719667 | Wong | Apr 2004 | B2 |
6730002 | Hald et al. | May 2004 | B2 |
6743153 | Watterson et al. | Jun 2004 | B2 |
6746371 | Brown et al. | Jun 2004 | B1 |
6749537 | Hickman | Jun 2004 | B1 |
6761667 | Cutler et al. | Jul 2004 | B1 |
6770015 | Simonson | Aug 2004 | B2 |
6783482 | Oglesby | Aug 2004 | B2 |
6786852 | Watterson et al. | Sep 2004 | B2 |
6796925 | Martinez | Sep 2004 | B2 |
6808472 | Hickman | Oct 2004 | B1 |
6811520 | Wu | Nov 2004 | B2 |
6821230 | Dalebout et al. | Nov 2004 | B2 |
6830540 | Watterson | Dec 2004 | B2 |
6837830 | Eldridge | Jan 2005 | B2 |
6857993 | Yeh | Feb 2005 | B2 |
6863641 | Brown et al. | Mar 2005 | B1 |
6866613 | Brown et al. | Mar 2005 | B1 |
6875160 | Watterson et al. | Apr 2005 | B2 |
6878101 | Colley | Apr 2005 | B2 |
D507311 | Butler et al. | Jul 2005 | S |
6918858 | Watterson et al. | Jul 2005 | B2 |
6921351 | Hickman et al. | Jul 2005 | B1 |
6958032 | Smith | Oct 2005 | B1 |
D511190 | Panatta | Nov 2005 | S |
D512113 | Carter | Nov 2005 | S |
6974404 | Watterson et al. | Dec 2005 | B1 |
6997852 | Watterson et al. | Feb 2006 | B2 |
7011326 | Schroeder et al. | Mar 2006 | B1 |
7025713 | Dalebout | Apr 2006 | B2 |
D520085 | Willardson et al. | May 2006 | S |
7044897 | Myers et al. | May 2006 | B2 |
7052442 | Watterson | May 2006 | B2 |
7060006 | Watterson et al. | Jun 2006 | B1 |
7060008 | Watterson et al. | Jun 2006 | B2 |
7070539 | Brown et al. | Jul 2006 | B2 |
7070542 | Reyes | Jul 2006 | B2 |
7097588 | Watterson | Aug 2006 | B2 |
D527776 | Willardson et al. | Sep 2006 | S |
7112168 | Dalebout et al. | Sep 2006 | B2 |
7125369 | Endelman | Oct 2006 | B2 |
7128693 | Brown et al. | Oct 2006 | B2 |
7132939 | Tyndall | Nov 2006 | B2 |
7153240 | Wu et al. | Dec 2006 | B1 |
7166062 | Watterson et al. | Jan 2007 | B1 |
7166064 | Watterson et al. | Jan 2007 | B2 |
7169087 | Ercanbrack et al. | Jan 2007 | B2 |
7169093 | Simonson et al. | Jan 2007 | B2 |
7172536 | Liu | Feb 2007 | B2 |
7192387 | Mendel | Mar 2007 | B2 |
7192388 | Dalebout et al. | Mar 2007 | B2 |
7226402 | Joya | Jun 2007 | B1 |
7250022 | Dalebout | Jul 2007 | B2 |
D552193 | Husted et al. | Oct 2007 | S |
7282016 | Simonson | Oct 2007 | B2 |
7285075 | Cutler et al. | Oct 2007 | B2 |
7311640 | Baatz | Dec 2007 | B2 |
7344481 | Watterson et al. | Mar 2008 | B2 |
7364538 | Aucamp | Apr 2008 | B2 |
7377882 | Watterson | May 2008 | B2 |
7381161 | Ellis | Jun 2008 | B2 |
7425188 | Ercanbrack | Sep 2008 | B2 |
7429236 | Dalebout et al. | Sep 2008 | B2 |
7452311 | Barnes | Nov 2008 | B2 |
7455622 | Watterson et al. | Nov 2008 | B2 |
7470219 | Larson | Dec 2008 | B2 |
7482050 | Olson | Jan 2009 | B2 |
D588655 | Utykanski | Mar 2009 | S |
7510509 | Hickman | Mar 2009 | B2 |
7524272 | Burck et al. | Apr 2009 | B2 |
7537546 | Watterson et al. | May 2009 | B2 |
7537549 | Nelson et al. | May 2009 | B2 |
7537552 | Dalebout et al. | May 2009 | B2 |
7540828 | Watterson et al. | Jun 2009 | B2 |
7549947 | Hickman et al. | Jun 2009 | B2 |
7556590 | Watterson et al. | Jul 2009 | B2 |
7563203 | Dalebout et al. | Jul 2009 | B2 |
7575536 | Hickman | Aug 2009 | B1 |
7575537 | Ellis | Aug 2009 | B2 |
7578771 | Towley, III et al. | Aug 2009 | B1 |
7584673 | Shimizu | Sep 2009 | B2 |
7601105 | Gipson, III et al. | Oct 2009 | B1 |
7604572 | Stanford | Oct 2009 | B2 |
7604573 | Dalebout et al. | Oct 2009 | B2 |
D604373 | Dalebout et al. | Nov 2009 | S |
7618350 | Dalebout et al. | Nov 2009 | B2 |
7618357 | Dalebout | Nov 2009 | B2 |
7625315 | Hickman | Dec 2009 | B2 |
7625321 | Simonson et al. | Dec 2009 | B2 |
7628730 | Watterson et al. | Dec 2009 | B1 |
7628737 | Kowallis et al. | Dec 2009 | B2 |
7637847 | Hickman | Dec 2009 | B1 |
7641597 | Schmidt | Jan 2010 | B2 |
7645212 | Ashby et al. | Jan 2010 | B2 |
7645213 | Watterson | Jan 2010 | B2 |
7658698 | Pacheco et al. | Feb 2010 | B2 |
7674205 | Dalebout et al. | Mar 2010 | B2 |
7713171 | Hickman | May 2010 | B1 |
7713172 | Watterson et al. | May 2010 | B2 |
7713180 | Wickens | May 2010 | B2 |
7717828 | Simonson et al. | May 2010 | B2 |
7736279 | Dalebout et al. | Jun 2010 | B2 |
7740563 | Dalebout et al. | Jun 2010 | B2 |
7749144 | Hammer | Jul 2010 | B2 |
7766797 | Dalebout | Aug 2010 | B2 |
7771320 | Riley | Aug 2010 | B2 |
7771329 | Dalebout et al. | Aug 2010 | B2 |
7775940 | Dalebout et al. | Aug 2010 | B2 |
7789800 | Watterson et al. | Sep 2010 | B1 |
7798946 | Dalebout et al. | Sep 2010 | B2 |
7806589 | Tashman | Oct 2010 | B2 |
7815548 | Barre | Oct 2010 | B2 |
7815550 | Watterson et al. | Oct 2010 | B2 |
7857731 | Hickman et al. | Dec 2010 | B2 |
7862475 | Watterson | Jan 2011 | B2 |
7862478 | Watterson et al. | Jan 2011 | B2 |
7862483 | Hendrickson et al. | Jan 2011 | B2 |
7862489 | Savsek | Jan 2011 | B2 |
7887470 | Chen | Feb 2011 | B2 |
D633581 | Thulin | Mar 2011 | S |
D635207 | Dalebout et al. | Mar 2011 | S |
7901324 | Kodama | Mar 2011 | B2 |
7901330 | Dalebout et al. | Mar 2011 | B2 |
7909740 | Dalebout et al. | Mar 2011 | B2 |
7942793 | Mills et al. | May 2011 | B2 |
7980996 | Hickman | Jul 2011 | B2 |
7981000 | Watterson et al. | Jul 2011 | B2 |
7985164 | Ashby | Jul 2011 | B2 |
8007409 | Ellis | Aug 2011 | B2 |
8029415 | Ashby et al. | Oct 2011 | B2 |
8029425 | Bronston et al. | Oct 2011 | B2 |
8033960 | Dalebout et al. | Oct 2011 | B1 |
D650451 | Olson et al. | Dec 2011 | S |
8070657 | Loach | Dec 2011 | B2 |
8075453 | Wilkinson | Dec 2011 | B1 |
D652877 | Dalebout et al. | Jan 2012 | S |
8096926 | Batca | Jan 2012 | B1 |
8152702 | Pacheco | Apr 2012 | B2 |
8157708 | Daly | Apr 2012 | B2 |
D659775 | Olson et al. | May 2012 | S |
D659777 | Watterson et al. | May 2012 | S |
D660383 | Watterson et al. | May 2012 | S |
D664613 | Dalebout et al. | Jul 2012 | S |
8251874 | Ashby et al. | Aug 2012 | B2 |
8257232 | Albert | Sep 2012 | B2 |
8298123 | Hickman | Oct 2012 | B2 |
8298125 | Colledge et al. | Oct 2012 | B2 |
D671177 | Sip | Nov 2012 | S |
D671178 | Sip | Nov 2012 | S |
8308618 | Bayerlein | Nov 2012 | B2 |
D673626 | Olson et al. | Jan 2013 | S |
8398529 | Ellis et al. | Mar 2013 | B2 |
8500607 | Vittone et al. | Aug 2013 | B2 |
8517899 | Zhou | Aug 2013 | B2 |
8550964 | Ish, III et al. | Oct 2013 | B2 |
8608624 | Shabodyash | Dec 2013 | B2 |
8690735 | Watterson et al. | Apr 2014 | B2 |
D707763 | Cutler | Jun 2014 | S |
8740753 | Olson et al. | Jun 2014 | B2 |
8747285 | Hof | Jun 2014 | B2 |
8758201 | Ashby et al. | Jun 2014 | B2 |
8764609 | Elahmadie | Jul 2014 | B1 |
8771153 | Dalebout et al. | Jul 2014 | B2 |
8784270 | Watterson | Jul 2014 | B2 |
8784275 | Mikan | Jul 2014 | B2 |
8784278 | Flake | Jul 2014 | B2 |
8808148 | Watterson | Aug 2014 | B2 |
8808152 | Midgett | Aug 2014 | B1 |
8814762 | Butler | Aug 2014 | B2 |
D712493 | Ercanbrack et al. | Sep 2014 | S |
8840075 | Olson | Sep 2014 | B2 |
8845493 | Watterson et al. | Sep 2014 | B2 |
8870726 | Watterson et al. | Oct 2014 | B2 |
8876668 | Hendrickson et al. | Nov 2014 | B2 |
8894549 | Colledge | Nov 2014 | B2 |
8894555 | Olson | Nov 2014 | B2 |
8911330 | Watterson et al. | Dec 2014 | B2 |
8920288 | Dalebout | Dec 2014 | B2 |
8920347 | Bayerlein | Dec 2014 | B2 |
8979709 | Toback | Mar 2015 | B2 |
8986165 | Ashby | Mar 2015 | B2 |
8992364 | Law et al. | Mar 2015 | B2 |
8992387 | Watterson et al. | Mar 2015 | B2 |
D726476 | Ercanbrack | Apr 2015 | S |
9011291 | Birrell | Apr 2015 | B2 |
9028368 | Ashby et al. | May 2015 | B2 |
9028370 | Watterson | May 2015 | B2 |
9039578 | Dalebout | May 2015 | B2 |
D731011 | Buchanan | Jun 2015 | S |
9044635 | Lull | Jun 2015 | B2 |
9072930 | Ashby et al. | Jul 2015 | B2 |
9119983 | Rhea | Sep 2015 | B2 |
9119988 | Murray | Sep 2015 | B2 |
9123317 | Watterson et al. | Sep 2015 | B2 |
9126071 | Smith | Sep 2015 | B2 |
9126072 | Watterson | Sep 2015 | B2 |
9138615 | Olson et al. | Sep 2015 | B2 |
9142139 | Watterson et al. | Sep 2015 | B2 |
9144703 | Dalebout et al. | Sep 2015 | B2 |
9149683 | Smith | Sep 2015 | B2 |
9170223 | Hyun | Oct 2015 | B2 |
9186535 | Ercanbrack | Nov 2015 | B2 |
9186549 | Watterson et al. | Nov 2015 | B2 |
9186552 | Deal | Nov 2015 | B1 |
D746388 | Hockridge | Dec 2015 | S |
9211433 | Hall | Dec 2015 | B2 |
9227101 | Maguire | Jan 2016 | B2 |
9233272 | Villani | Jan 2016 | B2 |
9254409 | Dalebout et al. | Feb 2016 | B2 |
9254416 | Ashby | Feb 2016 | B2 |
9278248 | Tyger | Mar 2016 | B2 |
9278249 | Watterson | Mar 2016 | B2 |
9278250 | Buchanan | Mar 2016 | B2 |
9289648 | Watterson | Mar 2016 | B2 |
9292935 | Koduri et al. | Mar 2016 | B2 |
9308417 | Grundy | Apr 2016 | B2 |
9339683 | Dilli | May 2016 | B2 |
9339691 | Brammer | May 2016 | B2 |
9352185 | Hendrickson et al. | May 2016 | B2 |
9352186 | Watterson | May 2016 | B2 |
9364714 | Koduri et al. | Jun 2016 | B2 |
9375605 | Tyger | Jun 2016 | B2 |
9378336 | Ohnemus | Jun 2016 | B2 |
9381394 | Mortensen et al. | Jul 2016 | B2 |
9387387 | Dalebout | Jul 2016 | B2 |
9393453 | Watterson | Jul 2016 | B2 |
9403047 | Olson et al. | Aug 2016 | B2 |
9403051 | Cutler | Aug 2016 | B2 |
9415257 | Habing | Aug 2016 | B2 |
9421416 | Mortensen et al. | Aug 2016 | B2 |
9457219 | Smith | Oct 2016 | B2 |
9457220 | Olson | Oct 2016 | B2 |
9457222 | Dalebout | Oct 2016 | B2 |
9460632 | Watterson | Oct 2016 | B2 |
9463356 | Rhea | Oct 2016 | B2 |
9468793 | Salmon | Oct 2016 | B2 |
9468794 | Barton | Oct 2016 | B2 |
9468798 | Dalebout | Oct 2016 | B2 |
9480874 | Cutler | Nov 2016 | B2 |
9492704 | Mortensen et al. | Nov 2016 | B2 |
9498668 | Muller et al. | Nov 2016 | B2 |
9511259 | Mountain | Dec 2016 | B2 |
9517378 | Ashby et al. | Dec 2016 | B2 |
9521901 | Dalebout | Dec 2016 | B2 |
9533187 | Dalebout | Jan 2017 | B2 |
9539458 | Ross | Jan 2017 | B1 |
9539461 | Ercanbrack | Jan 2017 | B2 |
9550091 | Emerson | Jan 2017 | B2 |
9579544 | Watterson | Feb 2017 | B2 |
9586086 | Dalebout et al. | Mar 2017 | B2 |
9586090 | Watterson et al. | Mar 2017 | B2 |
9604099 | Taylor | Mar 2017 | B2 |
9616276 | Dalebout et al. | Apr 2017 | B2 |
9616278 | Olson | Apr 2017 | B2 |
9623281 | Hendrickson | Apr 2017 | B2 |
9636567 | Brammer et al. | May 2017 | B2 |
9662529 | Miller et al. | May 2017 | B2 |
9675839 | Dalebout et al. | Jun 2017 | B2 |
9682307 | Dalebout | Jun 2017 | B2 |
9694234 | Dalebout et al. | Jul 2017 | B2 |
9694242 | Ashby | Jul 2017 | B2 |
9700751 | Verdi | Jul 2017 | B2 |
9737755 | Dalebout | Aug 2017 | B2 |
9750454 | Walke | Sep 2017 | B2 |
9757605 | Olson et al. | Sep 2017 | B2 |
9764186 | Dalebout | Sep 2017 | B2 |
9767785 | Ashby | Sep 2017 | B2 |
9776032 | Moran | Oct 2017 | B2 |
9795822 | Smith et al. | Oct 2017 | B2 |
9795855 | Jafarifesharaki | Oct 2017 | B2 |
9808672 | Dalebout | Nov 2017 | B2 |
9849326 | Smith | Dec 2017 | B2 |
D807445 | Gettle | Jan 2018 | S |
9878200 | Edmondson | Jan 2018 | B2 |
9878210 | Watterson | Jan 2018 | B2 |
9889334 | Ashby et al. | Feb 2018 | B2 |
9889339 | Douglass | Feb 2018 | B2 |
9937376 | McInelly et al. | Apr 2018 | B2 |
9937377 | McInelly et al. | Apr 2018 | B2 |
9937378 | Dalebout et al. | Apr 2018 | B2 |
9937379 | Mortensen | Apr 2018 | B2 |
9943719 | Smith et al. | Apr 2018 | B2 |
9943722 | Dalebout | Apr 2018 | B2 |
9948037 | Ashby | Apr 2018 | B2 |
9968816 | Olson et al. | May 2018 | B2 |
9968821 | Finlayson et al. | May 2018 | B2 |
9968823 | Cutler | May 2018 | B2 |
9980465 | Hayashi | May 2018 | B2 |
10010755 | Watterson | Jul 2018 | B2 |
10010756 | Watterson | Jul 2018 | B2 |
10029145 | Douglass | Jul 2018 | B2 |
D826350 | Hochstrasser | Aug 2018 | S |
10046196 | Ercanbrack | Aug 2018 | B2 |
D827733 | Hochstrasser | Sep 2018 | S |
10065064 | Smith et al. | Sep 2018 | B2 |
10071285 | Smith et al. | Sep 2018 | B2 |
10085586 | Smith et al. | Oct 2018 | B2 |
10086254 | Watterson | Oct 2018 | B2 |
10118064 | Cox | Nov 2018 | B1 |
10136842 | Ashby | Nov 2018 | B2 |
10186161 | Watterson | Jan 2019 | B2 |
10188890 | Olson et al. | Jan 2019 | B2 |
10207143 | Dalebout | Feb 2019 | B2 |
10207145 | Tyger | Feb 2019 | B2 |
10207147 | Ercanbrack | Feb 2019 | B2 |
10207148 | Powell | Feb 2019 | B2 |
10212994 | Watterson | Feb 2019 | B2 |
10220259 | Brammer | Mar 2019 | B2 |
10226396 | Ashby | Mar 2019 | B2 |
10226664 | Dalebout | Mar 2019 | B2 |
10252109 | Watterson | Apr 2019 | B2 |
10258828 | Dalebout | Apr 2019 | B2 |
10272317 | Watterson | Apr 2019 | B2 |
10279212 | Dalebout et al. | May 2019 | B2 |
10293211 | Watterson et al. | May 2019 | B2 |
D852292 | Cutler | Jun 2019 | S |
10343017 | Jackson | Jul 2019 | B2 |
10376736 | Powell et al. | Aug 2019 | B2 |
10388183 | Watterson | Aug 2019 | B2 |
10391361 | Watterson | Aug 2019 | B2 |
D864320 | Weston | Oct 2019 | S |
D864321 | Weston | Oct 2019 | S |
10426989 | Dalebout | Oct 2019 | B2 |
10433612 | Ashby | Oct 2019 | B2 |
10441840 | Dalebout | Oct 2019 | B2 |
10449416 | Dalebout | Oct 2019 | B2 |
D868090 | Cutler et al. | Dec 2019 | S |
D868909 | Cutler | Dec 2019 | S |
10492519 | Capell | Dec 2019 | B2 |
10493349 | Watterson | Dec 2019 | B2 |
10500473 | Watterson | Dec 2019 | B2 |
10543395 | Powell et al. | Jan 2020 | B2 |
10561877 | Workman | Feb 2020 | B2 |
10561893 | Chatterton | Feb 2020 | B2 |
10561894 | Dalebout | Feb 2020 | B2 |
10569121 | Watterson | Feb 2020 | B2 |
10569123 | Hochstrasser | Feb 2020 | B2 |
20020013200 | Sechrest | Jan 2002 | A1 |
20020016235 | Ashby et al. | Feb 2002 | A1 |
20020025888 | Germanton | Feb 2002 | A1 |
20020077221 | Dalebout et al. | Jun 2002 | A1 |
20020086779 | Wilkinson | Jul 2002 | A1 |
20020128127 | Chen | Sep 2002 | A1 |
20020159253 | Dalebout et al. | Oct 2002 | A1 |
20030032528 | Wu et al. | Feb 2003 | A1 |
20030032531 | Simonson | Feb 2003 | A1 |
20030032535 | Wang et al. | Feb 2003 | A1 |
20030045406 | Stone | Mar 2003 | A1 |
20030171189 | Kaufman | Sep 2003 | A1 |
20030176261 | Simonson et al. | Sep 2003 | A1 |
20030181293 | Baatz | Sep 2003 | A1 |
20040043873 | Wilkinson et al. | Mar 2004 | A1 |
20040091307 | James | May 2004 | A1 |
20040102292 | Pyles et al. | May 2004 | A1 |
20040171464 | Ashby et al. | Sep 2004 | A1 |
20040171465 | Hald et al. | Sep 2004 | A1 |
20040176227 | Endelman | Sep 2004 | A1 |
20040204294 | Wilkinson | Oct 2004 | A2 |
20050049117 | Rodgers | Mar 2005 | A1 |
20050049123 | Dalebout et al. | Mar 2005 | A1 |
20050077805 | Dalebout et al. | Apr 2005 | A1 |
20050107229 | Wickens | May 2005 | A1 |
20050130814 | Nitta et al. | Jun 2005 | A1 |
20050148445 | Carle | Jul 2005 | A1 |
20050164837 | Anderson et al. | Jul 2005 | A1 |
20050164839 | Watterson et al. | Jul 2005 | A1 |
20050272577 | Olson et al. | Dec 2005 | A1 |
20050277520 | Van Waes | Dec 2005 | A1 |
20060035755 | Dalebout et al. | Feb 2006 | A1 |
20060135322 | Rocker | Jun 2006 | A1 |
20060148622 | Chen | Jul 2006 | A1 |
20060217237 | Rhodes | Sep 2006 | A1 |
20060240955 | Pu | Oct 2006 | A1 |
20060240959 | Huang | Oct 2006 | A1 |
20060252613 | Barnes et al. | Nov 2006 | A1 |
20070066448 | Pan | Mar 2007 | A1 |
20070117683 | Ercanbrack et al. | May 2007 | A1 |
20070123395 | Ellis | May 2007 | A1 |
20070173392 | Stanford | Jul 2007 | A1 |
20070197346 | Seliber | Aug 2007 | A1 |
20070197353 | Hundley | Aug 2007 | A1 |
20070232463 | Wu | Oct 2007 | A1 |
20070254778 | Ashby | Nov 2007 | A1 |
20070287601 | Burck et al. | Dec 2007 | A1 |
20080051256 | Ashby et al. | Feb 2008 | A1 |
20080119337 | Wilkins et al. | May 2008 | A1 |
20080242520 | Hubbard | Oct 2008 | A1 |
20080300110 | Smith et al. | Dec 2008 | A1 |
20090036276 | Loach | Feb 2009 | A1 |
20090105052 | Dalebout et al. | Apr 2009 | A1 |
20100197462 | Piane, Jr. | Aug 2010 | A1 |
20100242246 | Dalebout et al. | Sep 2010 | A1 |
20100255965 | Chen | Oct 2010 | A1 |
20100317488 | Cartaya | Dec 2010 | A1 |
20110009249 | Campanaro et al. | Jan 2011 | A1 |
20110082013 | Bastian | Apr 2011 | A1 |
20110131005 | Ueshima | Jun 2011 | A1 |
20120065034 | Loach | Mar 2012 | A1 |
20120088638 | Lull | Apr 2012 | A1 |
20120237911 | Watterson | Sep 2012 | A1 |
20120277068 | Zhou et al. | Nov 2012 | A1 |
20120295774 | Dalebout et al. | Nov 2012 | A1 |
20130014321 | Sullivan | Jan 2013 | A1 |
20130065732 | Hopp | Mar 2013 | A1 |
20130090216 | Jackson | Apr 2013 | A1 |
20130109543 | Reyes | May 2013 | A1 |
20130123073 | Olson et al. | May 2013 | A1 |
20130123083 | Sip | May 2013 | A1 |
20130165195 | Watterson | Jun 2013 | A1 |
20130172152 | Watterson | Jul 2013 | A1 |
20130172153 | Watterson | Jul 2013 | A1 |
20130178334 | Brammer | Jul 2013 | A1 |
20130178768 | Dalebout | Jul 2013 | A1 |
20130190136 | Watterson | Jul 2013 | A1 |
20130196298 | Watterson | Aug 2013 | A1 |
20130196821 | Watterson et al. | Aug 2013 | A1 |
20130196822 | Watterson et al. | Aug 2013 | A1 |
20130218585 | Watterson | Aug 2013 | A1 |
20130244836 | Maughan | Sep 2013 | A1 |
20130267383 | Watterson | Oct 2013 | A1 |
20130268101 | Brammer | Oct 2013 | A1 |
20130274067 | Watterson et al. | Oct 2013 | A1 |
20130281241 | Watterson | Oct 2013 | A1 |
20130303334 | Adhami et al. | Nov 2013 | A1 |
20130337981 | Habing | Dec 2013 | A1 |
20140024499 | Watterson | Jan 2014 | A1 |
20140073970 | Ashby | Mar 2014 | A1 |
20140121071 | Strom et al. | May 2014 | A1 |
20140135173 | Watterson | May 2014 | A1 |
20140187389 | Berg | Jul 2014 | A1 |
20140235409 | Salmon et al. | Aug 2014 | A1 |
20140274574 | Shorten et al. | Sep 2014 | A1 |
20140274579 | Olson | Sep 2014 | A1 |
20140287884 | Buchanan | Sep 2014 | A1 |
20140309085 | Watterson et al. | Oct 2014 | A1 |
20140357457 | Boekema | Dec 2014 | A1 |
20140371035 | Mortensen et al. | Dec 2014 | A1 |
20150038300 | Forhan et al. | Feb 2015 | A1 |
20150182779 | Dalebout | Jul 2015 | A1 |
20150182781 | Watterson | Jul 2015 | A1 |
20150238817 | Watterson | Aug 2015 | A1 |
20150250418 | Ashby | Sep 2015 | A1 |
20150251055 | Ashby | Sep 2015 | A1 |
20150253210 | Ashby et al. | Sep 2015 | A1 |
20150253735 | Watterson | Sep 2015 | A1 |
20150253736 | Watterson | Sep 2015 | A1 |
20150258560 | Ashby | Sep 2015 | A1 |
20150352396 | Dalebout | Dec 2015 | A1 |
20150367161 | Wiegardt | Dec 2015 | A1 |
20160058335 | Ashby | Mar 2016 | A1 |
20160063615 | Watterson | Mar 2016 | A1 |
20160092909 | Watterson | Mar 2016 | A1 |
20160101311 | Workman | Apr 2016 | A1 |
20160107065 | Brammer | Apr 2016 | A1 |
20160121074 | Ashby | May 2016 | A1 |
20160148535 | Ashby | May 2016 | A1 |
20160148536 | Ashby | May 2016 | A1 |
20160158595 | Dalebout | Jun 2016 | A1 |
20160206248 | Sartor et al. | Jul 2016 | A1 |
20160206922 | Dalebout et al. | Jul 2016 | A1 |
20160250519 | Watterson | Sep 2016 | A1 |
20160253918 | Watterson | Sep 2016 | A1 |
20160339298 | Kats | Nov 2016 | A1 |
20160346595 | Dalebout et al. | Dec 2016 | A1 |
20160346617 | Srugo et al. | Dec 2016 | A1 |
20170036053 | Smith et al. | Feb 2017 | A1 |
20170056711 | Dalebout et al. | Mar 2017 | A1 |
20170056715 | Dalebout et al. | Mar 2017 | A1 |
20170056726 | Dalebout et al. | Mar 2017 | A1 |
20170124912 | Ashby et al. | May 2017 | A1 |
20170193578 | Watterson | Jul 2017 | A1 |
20170266481 | Dalebout | Sep 2017 | A1 |
20170266483 | Dalebout et al. | Sep 2017 | A1 |
20170266489 | Douglass et al. | Sep 2017 | A1 |
20170266532 | Watterson | Sep 2017 | A1 |
20170266533 | Dalebout | Sep 2017 | A1 |
20170270820 | Ashby | Sep 2017 | A1 |
20180001135 | Powell | Jan 2018 | A1 |
20180036585 | Powell | Feb 2018 | A1 |
20180084817 | Capell et al. | Mar 2018 | A1 |
20180085630 | Capell et al. | Mar 2018 | A1 |
20180089396 | Capell et al. | Mar 2018 | A1 |
20180099116 | Ashby | Apr 2018 | A1 |
20180099179 | Chatterton et al. | Apr 2018 | A1 |
20180099180 | Wilkinson | Apr 2018 | A1 |
20180099205 | Watterson | Apr 2018 | A1 |
20180111034 | Watterson | Apr 2018 | A1 |
20180117383 | Workman | May 2018 | A1 |
20180117385 | Watterson et al. | May 2018 | A1 |
20180117393 | Ercanbrack | May 2018 | A1 |
20180154205 | Watterson | Jun 2018 | A1 |
20180154207 | Hochstrasser | Jun 2018 | A1 |
20180154208 | Powell et al. | Jun 2018 | A1 |
20180154209 | Watterson | Jun 2018 | A1 |
20180200566 | Weston | Jul 2018 | A1 |
20190058370 | Tinney | Feb 2019 | A1 |
20190080624 | Watterson | Mar 2019 | A1 |
20190151698 | Olson et al. | May 2019 | A1 |
20190168072 | Brammer | Jun 2019 | A1 |
20190178313 | Wrobel | Jun 2019 | A1 |
20190192898 | Dalebout | Jun 2019 | A1 |
20190192952 | Powell | Jun 2019 | A1 |
20190209893 | Watterson | Jul 2019 | A1 |
20190223612 | Watterson | Jul 2019 | A1 |
20190232112 | Dalebout | Aug 2019 | A1 |
20190269958 | Dalebout et al. | Sep 2019 | A1 |
20190269971 | Capell et al. | Sep 2019 | A1 |
20190275366 | Powell | Sep 2019 | A1 |
20190282852 | Dalebout | Sep 2019 | A1 |
20190328079 | Ashby et al. | Oct 2019 | A1 |
20190329091 | Powell et al. | Oct 2019 | A1 |
20190376585 | Buchanan | Dec 2019 | A1 |
20200009417 | Dalebout | Jan 2020 | A1 |
20200016459 | Smith | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2172137 | Jul 1994 | CN |
2291169 | Jun 1998 | CN |
101784308 | Nov 2001 | CN |
1658929 | Aug 2005 | CN |
1708333 | Dec 2005 | CN |
2841072 | Nov 2006 | CN |
201516258 | Jun 2010 | CN |
201410258 | Feb 2014 | CN |
103801048 | May 2014 | CN |
203989681 | Dec 2014 | CN |
10488413 | Sep 2015 | CN |
105848733 | Aug 2016 | CN |
104884133 | Feb 2018 | CN |
106470739 | Jun 2019 | CN |
110035801 | Jul 2019 | CN |
1188460 | Mar 2002 | EP |
2969058 | Jan 2016 | EP |
3086865 | Nov 2016 | EP |
3086865 | Jan 2020 | EP |
2013543749 | Dec 2013 | JP |
100829774 | May 2008 | KR |
1533710 | Jan 1990 | SU |
I339127 | Aug 2008 | TW |
M422981 | Feb 2012 | TW |
M464203 | Nov 2013 | TW |
M495871 | Feb 2015 | TW |
M504568 | Mar 2015 | TW |
201821129 | Jun 2018 | TW |
201821130 | Jun 2018 | TW |
201601802 | Dec 2018 | TW |
1989002217 | Mar 1989 | WO |
WO 1989002217 | Mar 1989 | WO |
1997006859 | Feb 1997 | WO |
2000030717 | Jun 2000 | WO |
2002053234 | Jul 2002 | WO |
2007015096 | Feb 2007 | WO |
2009014330 | Jan 2009 | WO |
2014153158 | Sep 2014 | WO |
2015100429 | Jul 2015 | WO |
2015191445 | Dec 2015 | WO |
2018106598 | Jun 2018 | WO |
2018106603 | Jun 2018 | WO |
Entry |
---|
U.S. Appl. No. 16/742,762, filed Jan. 14, 2020, Eric W. Watterson. |
U.S. Appl. No. 16/750,925, filed Jan. 25, 2019, Ryan Silcock. |
U.S. Appl. No. 16/780,765, filed Feb. 3, 2020, Scott R. Watterson. |
U.S. Appl. No. 16/787,850, filed Feb. 11, 2020, Scott R. Watterson. |
U.S. Appl. No. 62/914,007, filed Oct. 11, 2019, Jared Willardson. |
U.S. Appl. No. 62/934,291, filed Nov. 12, 2019, William T. Dalebout. |
U.S. Appl. No. 62/934,297, filed Nov. 12, 2019, William T. Dalebout. |
First Office Action and Search Report with English translation issued in Taiwan application 106135830 dated Jun. 15, 2018. |
U.S. Appl. No. 62/804,146, filed Feb. 11, 2019, titled Cable and Power Rack Exercise Machine, 49 pages. |
U.S. Appl. No. 16/780,765, filed Feb. 3, 2020, titled Cable and Power Rack Exercise Machine, 48 pages. |
U.S. Appl. No. 16/787,850, filed Feb. 11, 2020, titled Exercise Machine, 40 pages. |
International Patent Application No. PCT/US20/17710, filed Feb. 11, 2020, titled Exercise Machine, 41 pages. |
U.S. Appl. No. 29/568,648, filed Jun. 20, 2016, ICON Health & Fitness, Inc. |
U.S. Appl. No. 29/720,127, filed Sep. 16, 2019, ICON Health & Fitness, Inc. |
U.S. Appl. No. 13/088,007, filed Apr. 15, 2016, Scott R. Watterson. |
U.S. Appl. No. 15/821,386, filed Nov. 22, 2017, ICON Health & Fitness, Inc. |
U.S. Appl. No. 15/973,176, filed May 7, 2018, Melanie Douglass. |
U.S. Appl. No. 16/378,022, filed Apr. 8, 2019, William T. Dalebout. |
U.S. Appl. No. 16/435,104, filed Jun. 7, 2019, Dale Alan Buchanan. |
U.S. Appl. No. 16/506,085, filed Jul. 9, 2019, ICON Health & Fitness, Inc. |
U.S. Appl. No. 62/697,833, filed Jul. 13, 2018, ICON Health & Fitness, Inc. |
U.S. Appl. No. 62/796,952, filed Jan. 25, 2019, ICON Health & Fitness, Inc. |
U.S. Appl. No. 62/804,146, filed Feb. 11, 2019, ICON Health & Fitness, Inc. |
U.S. Appl. No. 62/804,685, filed Feb. 12, 2019, ICON Health & Fitness, Inc. |
U.S. Appl. No. 62/852,118, filed May 22, 2019, David Hays. |
U.S. Appl. No. 62/866,576, filed Jun. 25, 2019, ICON Health & Fitness, Inc. |
U.S. Appl. No. 62/887,391, filed Aug. 15, 2019, ICON Health & Fitness, Inc. |
U.S. Appl. No. 62/887,398, filed Aug. 15, 2019, ICON Health & Fitness, Inc. |
U.S. Appl. No. 62/897,113, filed Sep. 9, 2019, ICON Health & Fitness, Inc. |
U.S. Appl. No. 62/842,118, filed May 23, 2019, ICON Health & Fitness, Inc. |
English Translation of Search Report for Taiwan Patent Application No. 104131458 dated Jun. 3, 2016. |
English Translation of Search Report for Taiwan Patent Application No. 105126694 dated Oct. 3, 2017. |
International Search Report and Written Opinion issued in PCT/US2016/048692 dated Dec. 1, 2016. |
International Search Report and Written Opinion issued in PCT/US2017/023002 dated Jun. 28, 2017. |
International Search Report and Written Opinion issued in PCT/US2017/022989 dated May 23, 2017. |
U.S. Appl. No. 61/920,834, filed Dec. 26, 2013, titled “Magnetic Resistance Mechanism in a Cable Machine”, 31 pages. |
Exxentric, Movie Archives, obtained from the Wayback Machine for http://exxentric.com/movies/ accessed for Aug. 19, 2015. |
International Search Report & Written Opinion for PCT Application No. PCT/US2014/072390, dated Mar. 27, 2015, 9 pages. |
Supplemental European Search Report for European Application No. 14874303, dated May 10, 2017, 6 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Petition for Inter Partes Review of U.S. Pat. No. 9,403,047, filed May 5, 2017; 76 pages (paper 2). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Olson, U.S. Pat. No. 9,403,047, 16 pages, (Petition Ex. 1001). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Sleamaker, U.S. Pat. No. 5,354,251, 14 pages, (Petition Ex. 1002). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Hanoun, U.S. Publication No. 2007-0232452, 28 pages, (Petition Ex. 1003). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Six-Pak, Printed Publication TuffStuff Fitness Six-Pak Trainer Owner's Manual, 19 pages, (Petition Ex 1004). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Ehrenfried, U.S. Pat. No. 5,738,611, 19 pages, (Petition Ex. 1005). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Kleinman, International Publication No. WO2008/152627, 65 pages, (Petition Ex. 1006). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Declaration of Lee Rawls, (Petition Ex. 1007). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, U.S. Pat. No. 9,403,047 File history, 130 pages, (Petition Ex. 1008). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, U.S. Appl. No. 61/920,834, 38 pages, (Petition Ex. 1009). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Declaration of Christopher Butler, 26 pages, (Petition Ex. 1010). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Petitioner's Power of Attorney, filed May 5, 2017, 2 pages (paper 2). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Mandatory Notice to Patent Owner, filed May 19, 2017, 4 pages (paper 3). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Power of Attorney, filed May 19, 2017, 3 pages (paper 4). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Notice of Accord Filing Date, filed Jun. 9, 2017, 5 pages (paper 5). |
U.S. Appl. No. 61/786,007, filed Mar. 14, 2013, titled “Strength Training Apparatus with Flywheel and Related Methods ”, 28 pages. |
U.S. Appl. No. 62/009,607, filed Jun. 9, 2014, titled “Cable System Incorporated into a Treadmill”, 32 pages. |
International Search Report & Written Opinion for PCT Application No. PCT/US2014/029353, dated Aug. 4, 2014, 9 pages. |
Supplemental European Search Report for European Application No. 14768130, dated Oct. 11, 2016, 9 pages. |
U.S. Appl. No. 15/472,954, filed Mar. 29, 2017, titled “Strength Training Apparatus with Flywheel and Related Methods”, 22 pages. |
U.S. Appl. No. 15/976,496, filed May 10, 2018, titled “Magnetic Resistance Mechanism in a Cable Machine”, 36 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petition for Inter Partes Review of U.S. Pat. No. 9,616,276 (Claims 1-4, 7-10), filed May 5, 2017. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Dalebout et al., U.S. Pat. No. 9,616,276, (Petition Ex. 1001). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Wu, U.S. Publication No. 20030171192, (Petition Ex. 1002). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Webb, U.S. Publication No. 20030017918, (Petition Ex. 1003). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Watson, U.S. Publication No. 20060234840, (Petition Ex. 1004). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Jones, U.S. Pat. No. 4,798,378, (Petition Ex. 1005). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Zhou et al., U.S. Pat. No. 8,517,899, (Petition Ex. 1006). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Loach, U.S. Publication No. WO2007015096, (Petition Ex. 1007). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Rawls Declaration, Part 1 & 2, (Petition Ex. 1008). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, U.S. Pat. No. 9,616,276 File History, (Petition Ex. 1009). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, U.S. Appl. No. 61/786,007 File History, (Petition Ex. 1010). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Sawicky, U.S. Pat. No. 5,042,798, (Petition Ex. 1011). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Power of Attorney, filed May 5, 2017. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Mandatory Notice to Patent Owner, filed May 19, 2017. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Power of Attorney, filed May 19, 2017. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Notice of Accord Filing Date, filed Jun. 6, 2017. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petition for Inter Partes Review of U.S. Pat. No. 9,616,276 (Claims 1-20) filed May 5, 2017. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Dalebout et al., U.S. Pat. No. 9,616,276, (Petition Ex. 1001). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Wu, U.S. Publication No. 20030171192, (Petition Ex. 1002). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Webb, U.S. Publication No. 20030017918, (Petition Ex. 1003). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Watson, U.S. Publication No. 20060234840, (Petition Ex. 1004). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Jones, U.S. Pat. No. 4,798,378, (Petition Ex. 1005). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Zhou et al., U.S. Pat. No. 8,517,899, (Petition Ex. 1006). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Loach, U.S. Publication No. WO2007015096, (Petition Ex. 1007). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Rawls Declaration, Part 1 & 2, (Petition Ex. 1008). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, U.S. Pat. No. 9,616,276 File History, (Petition Ex. 1009). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, U.S. Appl. No. 61/786,007 File History, (Petition Ex. 1010). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Sawicky, U.S. Pat. No. 5,042,798, (Petition Ex. 1011). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Power of Attorney, filed May 5, 2017. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Mandatory Notice to Patent Owner, filed May 19, 2017. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Power of Attorney, filed May 19, 2017. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Notice of Accord Filing Date, filed Jun. 6, 2017. |
Chinese Office Action for Chinese Patent Application No. 201480003701.9 dated Apr. 6, 2016. |
Chinese Search Report for Chinese Patent Application No. 2014800708329 dated Jun. 2, 2017. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Declaration of Tyson Hottinger in Support of Motion for Admission Pro Hac Vice, filed Feb. 1, 2018 (Ex 2001). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Transcript of Deposition of R. Lee Rawls, filed Mar. 5, 2018 (Ex 2002). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Order Conduct of Proceedings, filed May 7, 2018 (Paper 20). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Decision Institution of Inter Partes Review, filed Dec. 4, 2017 (Paper 6). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Scheduling Order, filed Dec. 4, 2017 (Paper 7). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Order, filed Jan. 19, 2018 (Paper 8). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Notice of Deposition of R. Lee Rawls, filed Jan. 19, 2018 (Paper 9). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Unopposed Motion for Pro Hac Vice Admission of Tyson Hottinger, filed Feb. 1, 2018 (Paper 10). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Current Exhibit List, filed Feb. 1, 2018 (Paper 11). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Updated Notice of Deposition of R. Lee Rawls, filed Feb. 1, 2018 (Paper 12). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Order Granting Motion of Pro Hac Vice Admission of Mr. Hottinger, filed Feb. 12, 2018 (Paper 13). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Updated Mandatory Notices, filed Feb. 20, 2018 (Paper 14). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Updated Power of Attorney, filed Feb. 20, 2018 (Paper 15). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Motion to Amend, filed Mar. 5, 2018 (Paper 16). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Current Exhibit List of Patent Owner, filed Mar. 5, 2018 (Paper 17). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Order Conduct of Proceedings 37 C.F.R. Sec 42.5, filed Apr. 27, 2018 (Paper 18). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Order Conduct of Proceedings 37 C.F.R. Sec 42.5, filed May 7, 2018 (Paper 19). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Declaration of Tyson Hottinger in Support of Motion for Admission Pro Hac Vice, (Patent Owner Ex. 2001). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Claim Listing of Proposed Substitute Claims for Patent Owner Motion to Amend, (Patent Owner Ex. 2002). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Specification of U.S. Pat. No. 9,616,276, (Patent Owner Ex. 2003). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Drawings of U.S. Pat. No. 9,616,276, (Patent Owner Ex. 2004). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Specification of U.S. Pat. No. 9,254,409 (Patent Owner Ex. 2005). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Drawings of U.S. Pat. No. 9,254,409 (Patent Owner Ex. 2006). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Provisional Patent Specification of Application No. 61/786,007, (Patent Owner Ex. 2007). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Provisional Patent Drawings of U.S. Appl. No. 61/786,007, (Patent Owner Ex. 2008). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Specification of U.S. Appl. No. 13/754,361 (Patent Owner Ex. 2009). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Drawings of U.S. Appl. No. 13/754,361 (Patent Owner Ex. 2010). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Webster Dictionary p. 2211 (Merriam-Webster, Inc. 1961, 2002) (Ex. 3001). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Patent Owner Preliminary Response to Petition, filed Sep. 5, 2017 (Paper 6). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Decision Institution of Inter Partes Review, filed Dec. 4, 2017 (Paper 7). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Scheduling Order, filed Dec. 4, 2017 (Paper 8). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Order Conduct of Proceeding, filed Jan. 19, 2018 (Paper 9). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Patent Owner's Notice of Deposition of R. Lee Rawls, filed Jan. 19, 2018 (Paper 10). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Unopposed Motion for Pro Hac Vice Admission of Tyson Hottinger, filed Feb. 1, 2018 (Paper 11). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Current Exhibit List for Patent Owner, filed Feb. 1, 2018 (Paper 12). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Patent Owner's Updated Notice of Deposition of R. Lee Rawls, Feb. 1, 2018 (Paper 13). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Order Granting Motion for Pro Hac Vice Admission, filed Feb. 12, 2018 (Paper 14). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Updated Mandatory Notices, filed Feb. 20, 2018 (Paper 15). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Updated Power of Attorney, filed Feb. 20, 2018 (Paper 16). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Patent Owners Motion to Amend, filed Mar. 5, 2018 (Paper 17). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Current Exhibit List of Patent Owner, filed Mar. 5, 2018 (Paper 18). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Order Conduct of Proceedings, filed Apr. 27, 2018 (Paper 19). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Order Conduct of Proceedings, filed May 7, 2018 (Paper 20). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Declaration of Tyson Hottinger in Support of Motion for Admission Pro Hac Vice, (Patent Owner Ex. 2001). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Claim Listing of Proposed Substitute Claims for Patent Owner Motion to Amend, (Patent Owner Ex. 2002). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Specification of U.S. Appl. No. 15/019,088, (Patent Owner Ex. 2003). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Drawings of U.S. Appl. No. 15/019,088, (Patent Owner Ex. 2004). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Specification of U.S. Appl. No. 14/213,793, (Patent Owner Ex. 2005). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Drawings of U.S. Appl. No. 14/213,793, (Patent Owner Ex. 2006). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Specification of U.S. Appl. No. 61/786,007, (Patent Owner Ex. 2007). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Drawings of U.S. Appl. No. 61/786,007, (Patent Owner Ex. 2008). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Specification of U.S. Appl. No. 13/754,361, (Patent Owner Ex. 2009). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Drawings of U.S. Appl. No. 13/754,361, (Patent Owner Ex. 2010). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Webster Dictionary p. 2211 (Merriam-Webster, Inc. 1961, 2002) (Ex. 3001). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Petitioner's Reply in Support of Petition for Inter Partes Review; filed Jun. 4, 2018; 18 pages (paper 21). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Petitioner's Motion for Pro Hac Vice Admission, filed Jun. 6, 2018; 5 pages (paper 22). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363; Affidavit of Lane M. Polozola in support of Petitioner's Motion of Pro Hac Vice Admission Under 37 C.F.R. 42.10(c), filed Jun. 6, 2018, 4 pages (exhibit 1011). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Order granting Motion for Pro Hac Vice Admission—37 C.F.R. 42.10(c), filed Jun. 14, 2018; 4 pages (paper 23). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Petitioner's Updated Mandatory Notices, filed Jun. 20, 2018; 4 pages (paper 24). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Petitioner's Updated Power of Attorney, filed Jun. 20, 2018; 3 pages (paper 25). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Petitioner's Request for Oral Argument, filed Jul. 25, 2018; 4 pages; (paper 26). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Patent Owner's Request for Oral Argument, filed Jul. 25, 2018; 4 pages (paper 27). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Order 37 C.F.R. 42.70, filed Aug. 14, 2018, 5 pages (paper 28). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Current Exhibit List of Patent Owner, filed Aug. 24, 2018, 3 pages (paper 29). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Order Conduct of Proceedings 37 C.F.R. 42.5, filed Aug. 24, 2018, 4 pages (paper 30). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Petitioner's Updated Exhibit List, filed Aug. 24, 2018, 4 pages (paper 31). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363; Petitioner's Oral Argument Demonstrative Exhibits, filed Aug. 24, 2018, 31 pages (exhibit 1012). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363; Patent Owner Demonstrative Exhibits; filed Aug. 24, 2018, 10 pages (exhibit 2003). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Motion for Pro Hac Vice Admission, filed Jun. 6, 2018, 5 pages (paper 21). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Objections to Evidence, filed Jun. 7, 2018, 5 pages (paper 22). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Notice of Deposition of Christopher Cox, filed Jun. 13, 2018, 3 pages (paper 23). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Order—Granting Motion for Pro Hac Vice Admission, filed Jun. 14, 2018, 4 pages (paper 24). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Updated Mandatory Notices, filed Jun. 20, 2018, 4 pages, (paper 25). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Updated Power of Attorney, filed Jun. 20, 2018, 3 pages, (paper 26). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Reply to Petitioners Opposition to Motions to Amend, filed Jul. 5, 2018, 28 pages, (paper 27). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Current Exhibit List for Patent Owner, filed Jul. 5, 2018, 4 pages, (paper 28). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Updated Mandatory Notices, filed Jul. 5, 2018, 4 pages, (paper 29). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Notice of Deposition Scott Ganaja, filed Jul. 11, 2018, 3 pages (paper 30). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Joint Notice of Stipulation to Modify Scheduling Order, filed Jul. 12, 2018, 3 pages, (paper 31). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Objections to Evidence, filed Jul. 12, 2018, 4 pages (paper 32). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Amended Notice of Deposition Scott Ganaja, filed Jul. 12, 2018, 3 pages (paper 33). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Order Conduct of Proceeding 37 C.F.R. 42.5, filed Jul. 20, 2018, 5 pages, (paper 34). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Sur-Reply ISO Opposition to Motions to Amend, filed Aug. 1, 2018, 19 pages, (paper 35). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Joint Notice of Stipulation to Modify Scheduling Order, filed Aug. 3, 2018, 3 pages (paper 36). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Order Conduct of the Proceeding, filed Aug. 7, 2018, 4 pages (paper 37). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Objections to Petitioners Sur Reply, filed Aug. 8, 2018, 5 pages (paper 38). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Request for Oral Argument, filed Aug. 10, 2018, 4 pages , (paper 39). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Request for Oral Argument, filed Aug. 10, 2018, 4 pages, (paper 40). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Motion to Exclude Evidence, filed Aug. 10, 2018, 11 pages (paper 41). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Order 37 C.F.R. 42.70, filed Aug. 14, 2018, 5 pages (paper 42). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Petitioner's Opposition to Patent Owner's Motion to Exclude, filed Aug. 16, 2018, 18 pages (paper 44). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Patent Owner's Reply in support of Motion to Exclude, filed Aug. 22, 2018, 8 pages, (paper 45). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Current Exhibit List of Patent Owner, filed Aug. 24, 2018, 4 pages (paper 46). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Order re Po Sur-Rebuttal at Hearing, filed Aug. 24, 2018, 4 pages (paper 47). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 1012—U.S. Pat. No. 8,585,561 (Watt), filed Jun. 4, 2018, 32 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 1013—U.S. Pat. No. 9,044,635 (Lull), filed Jun. 4, 2018, 21 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 1014—U.S. Pat. No. 7,740,563 (Dalebout), filed Jun. 4, 2018, 31 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 1015—US20020055418A1 (Pyles), filed Jun. 4, 2018, 9 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 1016—US20120258433A1 (Hope), filed Jun. 4, 2018, 51 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 1017—U.S. Pat. No. 7,771,320 (Riley), filed Jun. 4, 2018, 44 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 1018—Declaration of Christopher Cox in Support of Petitioners Oppositions to Patent Owners Motions to Amend, filed Jun. 4, 2018, 739 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 1019—Affidavit of Lane M. Polozola in Support of Petitioners Motion for Pro Hac Vice Admission, filed Jun. 6, 2018, 4 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 1020—S. Ganaja Depo Transcript, filed Aug. 1, 2018, 58 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 1021—Petitioner's Demonstrative Exhibits, filed Aug. 24, 2018, 92 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 2011—Declaration of Scott Ganaja in Support of Patent Owner's Reply to Petitioners Opposition to Patent Owners Motion to Amend, filed Jul. 5, 2018, 42 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 2012—Declaration of Richard Ferraro in Support of Patent Owner's Reply to Petitioners Opposition to Patent Owners Motion to Amend, filed Jul. 5, 2018, 35 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 2013—Cox, Christopher Depo Transcript Jun. 26, 2018, filed Jul. 5, 2018, 26 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407, Exhibit 2014—Patent Owner Demonstrative Exhibits, filed Aug. 24, 2018, 21 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Opposition to Patent Owner's Motion to Amend, filed Jun. 4, 2018, 44 pages (paper 21). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioners Motion for Pro Hac Vice Admission, filed Jun. 6, 2018, 5 pages (paper 22). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Patent Owner's Objections to Evidence, filed Jun. 7, 2018, 5 pages (paper 23). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Declaration R. Lee Rawls, Part 1, dated May 12, 2017, 447 pages, (paper 24). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Declaration R. Lee Rawls, Part 2, dated May 12, 2017, 216 pages, (paper 24). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Order granting Motion for Pro Hac Vice Admission, filed Jun. 14, 2018, 4 pages (paper 25). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Updated Mandatory Notices, filed Jun. 20, 2018, 4 pages, (paper 26). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Updated Power of Attorney, filed Jun. 20, 2018, 3 pages, (paper 27). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Patent Owner's Reply to Opposition to Motions to Amend, filed Jul. 5, 2018, 28 pages, (paper 28). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Current Exhibit List of Patent Owner, filed Jul. 5, 2018, 4 pages, (paper 29). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Patent Owner's Updated Mandatory Notices, filed Jul. 5, 2018, 4 pages, (paper 30). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Notice of Deposition of Scott Ganaja, filed Jul. 11, 2018, 3 pages (paper 31). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Joint Notice of Stipulation to Modify Scheduling Order, filed Jul. 12, 2018, 3 pages (paper 32). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Objections to Patent Owner's Evidence, filed Jul. 12, 2018, 4 pages, (paper 33). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Amended Notice of Deposition of Scott Ganaja, filed Jul. 12, 2018, 3 pages, (paper 34). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Order—Conduct of the Proceeding, 37 C.F.R. 42.5, filed Jul. 20, 2018, 5 pages (paper 35). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Sur-Reply in Support of Opposition to Patent Owners Motions to Amend, filed Aug. 1, 2018, 19 pages, (paper 36). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Joint Notice of Stipulation to Modify Scheduling Order, filed Aug. 3, 2018, 3 pages (paper 37). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Order—Conduct of the Proceeding, 37 C.F.R. 42.5, filed Aug. 7, 2018, 4 pages (paper 38). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Patent Owner's Objections to Petitioners Sur Reply, filed Aug. 2, 2018, 5 pages, (paper 39). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Patent Owner's Request for Oral Argument, filed Aug. 10, 2018, 4 pages, (paper 40). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Request for Oral Argument, filed Aug. 10, 2018, 4 pages, (paper 41). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Patent Owner's Motion to Exclude Evidence, filed Aug. 10, 2018, 11 pages (paper 42). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Order—Oral Hearing 37 C.F.R. 42.70, filed Aug. 14, 2018, 5 pages (paper 43). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Opposition to Patent Owner's Motion to Exclude Evidence, filed Aug. 16, 2018, 18 pages (paper 44). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Patent Owners Reply in Support of its Motion to Exclude, filed Aug. 22, 2018, 8 pages, (paper 46). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Current Exhibit List of Patent Owner, filed Aug. 24, 2018, 4 pages (paper 47). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Order Conduct of the Proceedings—37 C.F.R. 42.5, filed Aug. 24, 2018, 4 pages, (paper 48). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Petitioner's Updated Exhibit List, filed Aug. 24, 2018, 5 pages, (paper 49). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 1012—U.S. Pat. No. 8,585,561 (Watt), filed Jun. 4, 2018, 32 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 1013—U.S. Pat. No. 9,044,635 (Lull), filed Jun. 4, 2018, 21 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 1014—U.S. Pat. No. 7,740,563 (Dalebout), filed Jun. 4, 2018, 31 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 1015—US20020055418A1 (Pyles), filed Jun. 4, 2018, 9 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 1016—US20120258433A1 (Hope), filed Jun. 4, 2018, 51 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 1017—U.S. Pat. No. 7,771,320 (Riley), filed Jun. 4, 2018, 44 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 1018—Declaration of Christopher Cox in Support of Petitioners Oppositions to Patent Owners Motions to Amend, filed Jun. 4, 2018, 739 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 1019—Affidavit of Lane M. Polozola in Support of Petitioners Motion for Pro Hac Vice Admission, filed Jun. 6, 2018, 4 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 1020—Scott Ganaja Depo Transcript, filed Aug. 1, 2018, 58 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 1021—Petitioner's Demonstrative Exhibits, filed Aug. 24, 2018, 92 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 2011—Declaration of Scott Ganaja in Support of Patent Owner's Reply to Petitioner's Opposition to Patent Owner's Motion to Amend, filed Jul. 5, 2018, 42 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 2012—Declaration of Richard Ferraro in Support of Patent Owner's Reply to Petitioner's Opposition to Patent Owner's Motion to Amend, filed Jul. 5, 2018, 35 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 2013—Cox, Christopher Depo Transcript Jun. 26, 2018, filed Jul. 5, 2018, 26 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01408, Exhibit 2014—Patent Owner's Demonstrative Exhibits, filed Aug. 24, 2018, 21 pages. |
European Patent Office, Article 94(3) EPC Communication dated Jul. 10, 2018, issued in European Patent Application No. 14768130.8-1126, 3 pages. |
United States Patent and Trademark Office; International Search Report and Written Opinion issued in application No. PCT/US2015/034665; dated Oct. 8, 2015 (14 pages). |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No's. IPR2017-01363, IPR2017-01407, and IPR2017-01408 Record of Oral Hearing held Aug. 29, 2018; (paper 32) 104 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01407—Petitioner's Updated Exhibit List, filed Aug. 24, 2018, (paper 48) 5 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case No. IPR2017-01363, Final Written Decision dated Nov. 28, 2018; (paper 33) 29 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case Nos. IPR2017-01407, Final Written Decision dated Dec. 3, 2018; (paper 50) 81 pages. |
Nautilus, Inc. v. ICON Health & Fitness, Inc., Civil Case Nos. IPR2017-01408, Final Written Decision dated Dec. 3, 2018; (paper 51) 82 pages. |
U.S. Appl. No. 16/572,272, filed Sep. 16, 2019, titled “Cable Exercise Machine”, (35 pages). |
U.S. Appl. No. 62/310,467, filed Mar. 18, 2016, titled “Collapsible Strength Exercise Machine”, 31 pages. |
U.S. Appl. No. 62/429,977, filed Dec. 5, 2016, titled “Pull Cable Resistance Mechanism in a Treadmill”, 37 pages. |
U.S. Appl. No. 62/429,970, filed Dec. 5, 2016, titled “Tread Belt Locking Mechanism”, 37 pages. |
International Bureau of WIPO; International Preliminary Report on Patentability; Int'l App No. PCT/US2017/064523 dated Jun. 11, 2019; 7 pages. |
International Bureau of WIPO; International Preliminary Report on Patentability; Int'l App No. PCT/US2017/064536 dated Jun. 11, 2019; 8 pages. |
Chinese Second Office Action for Chinese Patent Application No. 201480003701.9 dated Nov. 21, 2016. |
Chinese Third Office Action for Chinese Patent Application No. 201480003701.9 dated Nov. 24, 2017. |
Chinese Office Action for Chinese Patent Application No. 201580033332 dated Feb. 28, 2018. |
Chinese Second Office Action for Chinese Patent Application No. 201580033332 dated Nov. 15, 2018. |
Nordic Track Fusion CST Series; website; located at: http://www/nordictrack.com/fusion-cst-series; accessed on Jan. 24, 2018; 11 pages. |
U.S. Appl. No. 15/460,984, Jun. 24, 2019, Notice of Allowance. |
Number | Date | Country | |
---|---|---|---|
20190269958 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
61786007 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15472954 | Mar 2017 | US |
Child | 16404413 | US | |
Parent | 15019088 | Feb 2016 | US |
Child | 15472954 | US | |
Parent | 14213793 | Mar 2014 | US |
Child | 15019088 | US |