A complementary metal-oxide-semiconductor (CMOS) image sensor (CIS) generally utilizes a series of photodiodes formed within an array of pixel regions of a semiconductor substrate in order to sense when light has impacted the photodiode. Adjacent to each of the photodiodes within each of the pixel regions, a transfer transistor may be formed in order to transfer the signal generated by the sensed light within the photodiode at a desired time. Such photodiodes and transfer transistors allow for an image to be captured at a desired time by operating the transfer transistor at the desired time.
The CIS may be formed in either a front side illumination (FSI) configuration or a back-side illumination (BSI) configuration. In a front-side illumination configuration, light passes to the photodiode from the “front” side of the image sensor where the transfer transistor has been formed. However, forcing the light to pass through any overlying metal layers, dielectric layers, and past the transfer transistor before it reaches the photodiode may generate processing and/or operational issues as the metal layers, dielectric layers, and the transfer transistor may not necessarily be translucent and easily allow the light to pass through.
In the BSI configuration, the transfer transistor, the metal layers, and the dielectric layers are formed on the front side of the substrate and light is allowed to pass to the photodiode from the “back” side of the substrate. As such, the light hits the photodiode before reaching the transfer transistor, the dielectric layers, or the metal layers. Such a configuration may reduce the complexity of the manufacturing of the image sensor and improve the image sensor operation.
Unfortunately, the semiconductor substrate, which may be a silicon film or a silicon layer, is subjected to stress. The stress may lead to undesirable results such as, for example, the delamination of films or layers that overly the semiconductor substrate.
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.
The making and using of the present embodiments are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative and do not limit the scope of the disclosure.
The present disclosure will be described with respect to some embodiments in a specific context, namely a complementary metal-oxide-semiconductor (CMOS) image sensor (CIS) in a back-side illumination (BSI) configuration. The concepts in the disclosure may also apply, however, to other semiconductor structures or circuits or to any thin film manufacturing process wherein peeling and delamination is a concern.
Referring to
As shown in
Still referring to
As shown in
Still referring to
Referring now to
Referring now to
Referring now to
Referring now to
It should be recognized that a variety of different configurations may be used for the stress release pattern 26 in order to inhibit or prevent stress in the CIS 10. For example, dotted line in a zig-zag shapes or solid line zig-zag shapes could also be employed. In embodiments of two or more lines, the two or more lines could also be of complimentary zig-zag shapes.
Referring now to
Referring now to
Moving on to
As shown in
In an embodiment, the metal stress release features 16 disclosed herein are formed from, for example, tungsten, titanium, tantalum, aluminum, gold, platinum, palladium, and other suitable conductors that are compatible with the manufacturing processes employed in production of the resulting CIS 10. In some embodiments, the metal stress release features 16 may be formed from copper or a copper alloy.
In an embodiment, the metal stress release features 16 may be formed by blanket depositing and then patterning a metal layer. In other embodiments, the metal stress release features 16 may be formed by selectively depositing a metal such as, for example, by plating a metal on a patterned seed layer.
Referring now to
It is believed that these stress release features will reduce or prevent peeling and delamination of thin films, layers, or features subsequently formed over the substrate 12 surface on/in which the pixel array 14 is formed by reducing or eliminating sheer stress. One skilled in the art will recognize that the spacing and dimensions identified herein are typically specific to a particular technology node and minimum critical dimension scheme. As such, these dimensions are provided for illustration only, but should not be construed as limiting.
An embodiment semiconductor device includes a substrate, a pixel array supported by the substrate, and a metal stress release feature arranged around a periphery of the pixel array.
An embodiment semiconductor device includes a silicon film, a pixel array formed in the silicon film, and a metal stress release feature formed in the silicon film, the stress release feature arranged in a stress release pattern around a periphery of the pixel array.
An embodiment method of forming a semiconductor device includes forming a pixel array on a silicon substrate, and arranging a metal stress release feature around a periphery of the pixel array.
In an embodiment, a semiconductor device is provided. The semiconductor device includes a substrate, the substrate having a device region and a periphery region, and one or more metal stress release features on the periphery region of the substrate. An interlayer dielectric layer is formed over the device region and the one or more metal stress release features, the interlayer dielectric layer being a lowermost interlayer dielectric layer.
In another embodiment, a method of forming a semiconductor device is provided. The method includes forming a device region on a substrate, the substrate having a periphery region around the device region, and forming one or more metal stress release features on the periphery region of the substrate, the one or more metal stress release features comprising a metal line. An interlayer dielectric layer is formed over the device region and the one or more metal stress release features, the interlayer dielectric layer being a lowermost interlayer dielectric layer.
In yet another embodiment, a method of forming a semiconductor device is provided. The method includes forming a device region on a substrate, and forming a metal stress release feature on the substrate around a periphery of the device region. An interlayer dielectric layer is formed over the device region and the metal stress release feature, and a lowermost metallization layer M1 is formed over the interlayer dielectric layer.
While the disclosure provides illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
This application is a continuation application of U.S. patent application Ser. No. 13/708,625, entitled “Stress Release Layout and Associated Methods and Devices,” filed on Dec. 7, 2012, claims the benefit of U.S. Provisional Application No. 61/698,992, filed on Sep. 10, 2012, entitled “Stress Release Layout and Associated Methods and Devices,” which applications are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5539257 | Hara et al. | Jul 1996 | A |
6177293 | Netzer et al. | Jan 2001 | B1 |
6653717 | Jain et al. | Nov 2003 | B2 |
20020167071 | Wang | Nov 2002 | A1 |
20110227186 | Chang et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
200514231 | Apr 2005 | TW |
Number | Date | Country | |
---|---|---|---|
20160043129 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
61698992 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13708625 | Dec 2012 | US |
Child | 14923148 | US |