Stretch bender

Information

  • Patent Grant
  • 6679091
  • Patent Number
    6,679,091
  • Date Filed
    Tuesday, May 21, 2002
    22 years ago
  • Date Issued
    Tuesday, January 20, 2004
    20 years ago
Abstract
A stretch bending device that can conduct accurate bending without using heavy material. A tension application mechanism 62 comprises first and second drive sources for movably supporting both ends of a guide member 12 with respect to a pair of arm members 28, 30 and moving the guide member 12 along the arm members 28, 30. Between the arm members 28, 30, a work piece 6 is arranged. There are tension sensor 98 for detecting tension applied to the work piece 6 and position sensors for detecting positions of the guide member 12. Torque of the first drive source is controlled based on the tension detected by the tension sensor 98, and the second drive force is controlled based on the positions detected by the position sensors.
Description




FIELD OF THE INVENTION




This invention relates to a stretch bender for bending a strip work piece by thrusting it against a bending die while applying axial tension to the work piece.




BACKGROUND OF THE INVENTION




When a window frame for an automobile is formed, a steel strip is rolled, cut and bent into a desired shape. In order to form a work piece into a three-dimensional shape which is fitted to the outer shape of the window, a stretch bender for three-dimensional bending is required.




Schematic constitution of such a stretch bender is illustrated in

FIGS. 11A and 11B

. The stretch bender


400


comprises a base


410


, curved rails


420


mounted on the base


410


, arms


440


which rotatively move on the curved rails


420


around support shafts


430


provided on the base


410


, pillars


450


movably standing on the arms


440


, lifts


460


which can be moved upward and downward guided by the pillars


460


, and chuck mechanisms


470


provided on the lifts


460


for gripping a strip work piece. In stretch bending, the chuck mechanisms


470


grip both ends of the strip work piece


480


, and while tension is applied to the work piece


480


to its axial direction, the work piece


480


is thrust against the bending die


490


. The bending die


490


has a groove for bending, and the work piece


480


is formed into a desired shape by being bent to be fitted into the groove of the bending die


490


under the tension. To bend the work piece


480


to be fitted into the groove of the bending die


490


, swinging movement (arrow A) of the arms


440


, horizontal movement (arrow B) of the pillars to and from the support shafts


430


, and vertical movement (arrow C) of the lifts


460


are utilized.




However, such stretch benders must be built of heavy material in order to ensure rigidity of the device. Especially, since each pillar


450


is supported by a single arm


440


in a slidable manner, it is necessary to adopt material having a large cross section. Furthermore, in order to drive the pillars


450


and the lifts


460


, high-powered motors are required.




SUMMARY OF THE INVENTION




An object of the present invention is to provide a stretch bender which can maintain desired rigidity without using heavy material.




Another object of the present invention is to provide a stretch bender which can perform accurate bending using low-powered drive sources.




Further object of the present invention is to provide a stretch bender which is easy to operate.




To attain these and other objects, the present invention provides a stretch bender for bending a strip work piece by thrusting it against a bending die while applying axial tension to the work piece, comprising a pair of support shafts, and a pair of rotating members rotatably supported by the support shafts and provided with two arm members and a coupling member for connecting the arm members, each of the arm members extending outward from the support shafts.




Each of the rotating members comprises a guide member extending between the two arm members which can move to a direction parallel to the longitudinal direction of the arm members, a chuck mechanism, for gripping the strip work piece, arranged movable to a direction orthogonal to the longitudinal direction of the arm members, and a tension application mechanism for moving the guide member with respect to the arm members and applying tension to the work piece gripped by the chuck mechanism.




The stretch bender of the present invention further comprises rotation control means for controlling rotation of the rotating members in order to thrust the work piece gripped by the chuck mechanisms against the bending die.




High rigidity of the device is realized by the U-shaped rotating members which are constituted of the arm members, parallel to each other and supporting the guide member which holds the chuck mechanism gripping the work piece, and the coupling member by means of which the arm members are connected.




Accordingly, the stretch bender of the present invention can be built without using heavy material and also without deteriorating bending accuracy.




The tension application mechanism may comprise a first drive source for moving one end of the guide member along one of the arm members, a second drive source for moving the other end of the guide member along the other arm member, a tension sensor for detecting tension applied to the work piece, a position sensor for detecting a position of the guide member, and control means for controlling torque of the first drive source based on the tension detected by the tension sensor and also controlling the second drive source based on the position detected by the position sensor.




If the tension application mechanism is constituted as such, drive force for moving the guide member can be shared between the two drive sources having low power. In addition, since the first drive source of the tension application mechanism is controlled based on the tension and the second drive source is controlled based on the position of the guide member, the guide member can be moved with high accuracy by a pair of drive sources while desired tension is applied to the work piece.




The control means may adjust the torque of the first drive source to predetermined target torque based on the tension detected by the tension sensor. Additionally, the control means may comprise storage means for storing the position of the guide member detected by the position sensor and a control value for adjusting the torque of the first drive source to the target torque. It is also possible to provide position control means which, after stretch bending of one work piece, controls the first drive source according to the control value stored in the storage means instead of the control means.




It is preferable that a table on which the bending die is mounted is provided in a tiltable manner. As such, even if the position of the chuck mechanism on the guiding member is reached to its upper or lower limit and further move is restrained, it is possible to place the chuck mechanism at a desired position with respect to the bending die by tilting the table. Thus, it is possible to expand the range of position within which the chuck mechanism can be placed with respect to the bending die and continue bending without interruption. In other words, unless the table is tiltable, the work piece has to be taken off from the chuck mechanism when the position of the chuck mechanism is reached to its upper or lower limit, and the work piece is again attached to the chuck mechanism with its chuck position modified. The above constitution can save such time and labor.




It is preferable that when an operator performs teaching, bending is performed as taught. In this way, bending becomes easy to perform.




The drive sources for driving the guide member may be selectively operated either in a torque control mode or in a position control mode. In this case, the drive sources are driven in the torque control mode to generate predetermined tension, and the positions that the guide member takes at that time are stored in the storage means. In the position control mode, the drive sources are controlled based on the position data stored in the storage means. In initial stretch bending, the guide member is moved in the torque control mode to obtain desired tension. However, once the position of the guide member is fixed, it is possible to perform bending with application of the desired tension only by moving the guide member to the fixed position in the position control mode.











BRIEF DESCRIPTION OF THE DRAWING FIGURES




The invention will now be described, by way of examples, with reference to the accompanying drawings, in which:





FIG. 1

is a schematic elevation view of a stretch bender according to a first embodiment of the present invention, partly showing cross sections thereof;





FIG. 2

is a schematic plane view of the stretch bender of the first embodiment;





FIGS. 3A

,


3


B and


3


C are a plane view, an elevation view and a right side view, respectively, of an example of a bending die used in the stretch bender;





FIG. 4

is an enlarged view of the stretch bender taken along the line


4





4


in

FIG. 1

;





FIG. 5

is a block diagram of an electric system in the first embodiment;





FIG. 6

is an explanatory view illustrating master-slave control in a tension application mechanism of the first embodiment;





FIG. 7

is a flowchart illustrating a control process performed in an electronic control circuit of the first embodiment;





FIG. 8

is a schematic side view of a stretch bender according to a second embodiment of the present invention;





FIG. 9

is a flowchart illustrating operation in the stretch bender of the second embodiment in a teaching mode;





FIGS. 10A-10D

are diagrams illustrating the operations in the teaching mode; and





FIGS. 11A and 11B

are diagrams illustrating background technique of the present invention.











DETAILED DESCRIPTION OF THE INVENTION




[First Embodiment]




As shown in

FIGS. 1 and 2

, a stretch bender


1


of this embodiment mainly comprises a base


3


having a table


13


on which a bending die


2


is mounted, and U-shaped arms


5


,


7


attached to the base


3


in a swingable manner and provided with chuck mechanisms


8


,


10


for gripping both ends of a strip work piece


6


. In the neighborhood of the stretch bender


1


, a control device


9


and an operation console


11


are arranged for controlling the stretch bender


1


.




A groove


4


, illustrated in

FIGS. 3A

,


3


B and


3


C as an example, suitable for bending to be performed is formed on the bending die


2


. The work piece


6


is inserted into this groove


4


and bent along the same under tension to be formed into a desired shape. For this purposes the chuck mechanisms


8


,


10


for gripping both ends of the work piece


6


are arranged on both sides of the bending die


2


.




The chuck mechanisms


8


,


10


are arranged on lifts


16


,


18


supported in a slidable manner along a pair of pillar guide members


12


,


14


which extend orthogonal to the work piece


6


. The chuck mechanisms


8


,


10


are supported in a swingable manner around swinging shafts


20


,


22


attached to the lifts


16


,


18


, and they can swing up and down freely within an angle of 30 degrees to both sides of a horizontal plane, for example




The lifts


16


,


18


are supported in a swingable manner around the guide members


12


,


14


. They can swing right and left freely within an angle of 45 degrees to both sides of a vertical plane in which both of the lifts


16


,


18


face to each other, for example. Accordingly, the chuck mechanisms


8


,


10


can swing to both vertical and horizontal directions freely within the aforementioned angles, so that they can take appropriate positions according to a direction of the applied tension.




Motors


24


,


26


are mounted respectively on the lifts


16


,


18


, and by driving the motors


24


,


26


, the lifts


16


,


18


can move up and down along the guide members


12


,


14


.




In the present embodiment, the lift


16


, swinging shaft


20


and motor


24


constitute a right vertical move mechanism


27


, and the lift


18


, swinging shaft


22


and motor


26


constitute a left vertical move mechanism


29


.




As shown in

FIG. 4

, linear rails


32


and


33


and linear rails


34


and


35


are laid on a pair of arm members


28


,


30


, respectively. Both ends of the guide member


12


of the right vertical move mechanism


27


abut on the rails


32


and


33


and the rails


34


and


35


, and are supported by the same in a slidable manner. As can be seen in

FIG. 1

, the arm members


28


,


30


are, on one end, attached to a pair of rotation shafts


36


,


38


, respectively, which are supported rotatably by the base


3


, and, on the other end, attached to a coupling member


40


. The arm members


28


,


30


and coupling member


40


form a U-shaped arm


5


and accordingly, rigidity of the device is improved.




Referring to

FIG. 4

, ball screws


42


,


44


(the left vertical move mechanism


29


is not shown) are arranged parallel to the rails


32


-


35


on the arm members


28


,


30


. The guide member


12


is adapted to move forward and backward along with rotation of the ball screws


42


,


44


. The ball screws


42


,


44


comprise pulleys


46


,


48


, respectively. First and second drive sources


50


,


52


having motors are respectively attached adjacent to the respective arm members


28


,


30


, and belts


58


,


60


are attached between the pulleys


46


,


48


and pulleys


54


,


56


, respectively. The pulleys


54


,


56


are respectively attached to rotation shafts of the first and second drive sources


50


,


52


.




In the present embodiment, the arm members


28


,


30


, rails


32


-


35


, rotation shafts


36


,


38


, coupling member


40


, ball screws


42


,


44


, pulleys


46


,


48


,


54


,


56


, first and second drive sources


50


,


52


and belts


58


,


60


constitute a right tension application mechanism


62


.




In

FIG. 1

, gear wheels


64


,


66


are attached to the rotation shafts


36


,


38


, respectively, and pinions


68


,


70


mesh the gear wheels


64


,


66


, respectively. The pinions


68


,


70


are respectively attached to rotation shafts of upper and lower drive sources


72


,


74


having motors. In the present embodiment, the gear wheels


64


,


66


, pinions


68


,


70


and drive sources


72


,


74


constitute a right lap mechanism


76


. The lap mechanism is a mechanism for swinging, that is, rotating the aforementioned U-shaped arms. Also, an axis for the rotation is called a lap axis.




Similarly, the guide member


14


of the left vertical move mechanism


29


is adapted to move the left chuck mechanism


10


along a pair of arm members


80


,


82


by driving first and second drive sources


78


,


79


of a left tension application mechanism


77


. In addition, a left lap mechanism


84


enables the arm members


80


,


82


to be rotated around rotation shafts


86


,


88


by upper and lower drive sources


90


,


92


.




As illustrated in

FIG. 5

, first and second position sensors


96




a,




96




b


for detecting positions of the guide member


12


with respect to the arm members


28


,


30


are provided in the right tension application mechanism


62


. First and second position sensors


97




a,




97




b


for detecting positions of the guide member


14


with respect to the arm members


80


,


82


are provided in the left tension application mechanism


77


. In addition, in order to detect tension applied to the work piece


6


, a tension sensor


98


having a load cell is provided for the right tension application mechanism


62


, and a tension sensor


99


is provided for the left tension application mechanism


77


.




The motors


24


,


26


, first and second drive sources


50


,


52


,


78


,


79


of the right and left tension application mechanisms


62


,


77


, upper and lower drive sources


72


,


74


,


90


,


92


of the right and left lap mechanisms


76


,


86


, first and second position sensors


96




a,




96




b,




97




a,




97




b


and tension sensors


98


,


99


are all connected to an electronic control circuit


100


.




The electronic control circuit


100


is a logic circuit mainly comprising CPU


102


, ROM


104


and RAM


106


, and is interconnected to an input/output circuit


108


via a common bus


110


. The input/output circuit


108


controls input and output of the motors


24


,


26


, first and second drive sources


50


,


52


,


78


,


79


and upper and lower drive sources


72


,


74


,


90


,


92


.




The CPU


102


takes in data from the first and second position sensors


96




a,




96




b,




97




a,




97




b


and tension sensors


98


,


99


via the input/output circuit


108


, and executes calculation using data stored in the ROM


104


and RAM


106


and a built-in control program. The CPU


102


outputs drive signals to the motors


24


,


26


, first and second drive sources


50


,


52


,


78


,


79


and upper and lower drive sources


72


,


74


,


90


,


92


via the input/output circuit


108


.




Upon tension stretching, the first and second drive sources


50


,


52


,


78


,


79


of the right and left tension application mechanisms


62


,


77


are driven to apply tension to the work piece


6


gripped by the chuck mechanisms


8


,


10


. While the motors


24


,


26


are driven to move up and down the chuck mechanisms


8


,


10


according to a form of the groove


4


, the upper and lower drive sources


72


,


74


,


90


,


92


of the right and left lap mechanisms


76


,


84


are driven to swing the arm members


28


,


30


,


80


,


82


around the rotation shafts


36


,


38


,


86


,


88


. As a result, the work piece


6


is inserted into the groove


4


and thrust against the bending die


2


under the tension, to be stretched and bent.




From now on, operation for applying desired tension to the work piece


6


is explained.




As shown in

FIG. 6

, master-slave control is adopted in the right and left tension application mechanisms


62


,


77


of the present embodiment. As shown in

FIGS. 4 and 5

, the first drive sources


50


,


78


on the lower side are controlled as master devices, and the second drive sources


52


,


79


on the upper side are controlled as slave devices. Only the operation of the right tension application mechanism


62


is described below, but it is understood that the left side tension application mechanism


77


operates in the same way.




In

FIG. 6

, a motion controller MC which constitutes a part of the electronic control circuit


100


transmits a torque control command to a motor MM. The motor MM is the first drive source


50


on the master side. The motor MM operates according to the torque control command. Tension is generated in the work piece


6


according to rotation of the motor MM, and the generated tension is detected by a load cell LC. The load cell LC constitutes the first position sensor


96




a.






The detected tension is fed back to the motion controller MC for control of the motor MM so that the desired tension is always applied to the work piece


6


. In the meantime, the rotational position (rotation angle) of the motor MM is detected at all times, and the detected rotational position is transmitted to the motion controller MC.




The motion controller MC transmits a position control command to a motor SM on the slave side. The motor SM rotates according to the position control command, and the rotational position of the motor SM is fed back to the motion controller MC.




Now, a control process for applying tension to the work piece


6


executed in the aforementioned electronic control circuit


100


is described by way of a flowchart in FIG.


7


. Only the operation in the right tension application mechanism


62


is explained below, since the left tension application mechanism


77


operates in the same way as the right tension application mechanism


62


.




Firstly, it is determined whether a position detection mode is selected (Step


200


). In the present embodiment, the tension application mechanism is provided with two modes, namely, a tension detection mode and a position detection mode. Operation in the tension detection mode is followed by that in the position detection mode. Accordingly, if the operation in the tension detection mode is not yet executed, it is determined that the position detection mode is not selected, and target torque of the first drive source


50


is loaded (Step


210


).




The target torque of the first drive source


50


is predetermined and being stored beforehand. It is the torque for generating tension required for stretching of the work piece


6


. The target torque is set differently for respective stages of the stretch bending.




Current torque of the first drive source


50


based on the tension detected by the tension sensor


98


is loaded (Step


220


). A control value is calculated based on this current torque and the target torque and is outputted to the first drive source


50


(Step


230


). Subsequently, a position of the guide member


12


detected by the first position sensor


96




a


is loaded (Step


240


). In the present embodiment, the first position sensor


96




a


detects the position of the guide member


12


based on rotation of the ball screw


42


or that of the first drive source


50


.




According to the detected position of the guide member


12


, the second drive source


52


is informed of a target position (Step


250


). Then, a current position of the guide member


12


on the side where the second drive source


52


is provided is detected by the second position sensor


96




b


(Step


260


). A control value is calculated based on the current position and the target position and is outputted to the second drive source


52


(Step


270


). In the present embodiment, the position of the guide member


12


on the side where the second drive source


52


is provided is detected by rotation of the ball screw


44


or that of the second drive source


52


.




As such, the work piece


6


is stretched and bent, and the control value for the first drive source


50


and the positions of the guide member


12


during the bending are associated to each other and stored (Step


280


). After the stretch bending of one work piece


6


, a new work piece


6


is attached and bent to be stretched again. After execution of Step


200


, if it is determined that the position detection mode is selected, the target position stored in Step


280


is then outputted to the first drive source


50


(Step


290


).




In the next step, the current position of the guide member


12


detected by the first position sensor


96




a


is loaded (Step


300


). On the basis of the current position and the target position, a speed command value is outputted to the first drive source


50


(Step


310


). Thereafter, the aforementioned Step


240


and onwards are executed.




A position of the chuck mechanism


8


gripping the work piece


6


is defined by an angle of the lap axis of the right lap mechanism


76


, a distance from the original position of the chuck mechanism


8


in the right tension mechanism


62


, and a vertical position of the chuck mechanism


8


in the right vertical move mechanism


27


. Here, the angle of the lap axis is determined by rotational positions of the upper drive source


72


and the lower drive source


74


. The distance from the original position of the chuck mechanism


8


in the right tension mechanism


62


is determined by rotational positions of the first and second drive sources


50


,


52


. The vertical position in the right vertical move mechanism


27


is determined by a rotational position of the motor


24


.




[Second Embodiment]




As shown in

FIG. 8

, a stretch bender


201


in this embodiment comprises a table


213


supporting a bending die and arranged in a tiltable manner. The table


213


can be tilted up to a position having an angle of θ indicated by a chained line, from a horizontal plane indicated by a full line. The angle θ is 15 degree, for example. The table


213


is made tiltable so as not to limit vertical move of the chuck mechanisms


8


,


10


when the work piece


6


is bent along the groove


4


provided on the bending die


2


. In the present embodiment, the table


213


is tilted when the chuck mechanisms


8


,


10


have to be moved to a position beyond its predetermined range in relation to the groove


4


. In this case, the left and right lap and tension mechanisms are also operated, if required.




In

FIG. 8

, first and second drive motors


250


,


252


are motors for respectively applying tension to the work piece


6


. A drive motor


224


is for moving up and down a chuck mechanism not shown in

FIG. 8

, a piston


300


is for tilting the table


213


, a hydraulic pomp


400


is for supplying hydraulic thrusture to the piston


300


, and a hydraulic pomp


500


is for swinging the arm


205


. Descriptions for other compositions are omitted since they are the same as in the first embodiment.




The stretch bender in the present invention is operated not only according to a preset program, but also as taught.

FIG. 9

is a flowchart explaining operation in a teaching mode, and

FIGS. 10A-10D

are diagrams for illustrating the bending operation.

FIG. 10A

shows a state that the work piece


6


gripped by the chuck mechanisms


8


,


10


is in contact with the bending die


2


at the point P.

FIGS. 10B-10D

show states of gradual increase in bending angle.




Now, an operation of the stretch bender


201


in the teaching mode is explained by way of FIGS.


9


and


10


A-


10


D.




The following conditions are assumed in the teaching mode explained herein.




A plurality of stages, for example, 4 stages, are provided in bending of the work piece


6


as shown in

FIGS. 10A-10D

.




Scheduled positions in which the chuck mechanisms


8


,


10


should take in respective stages are stored as process data beforehand, and the chuck mechanisms


8


,


10


are moved to the scheduled positions automatically.




An operator moves the chuck mechanisms


8


,


10


in each stage by using the operation console


11


, and determines the positions of the chuck mechanisms


8


,


10


in each stage.




The determined positions are stored and the next bending will be performed according to the data stored.




In Step


400


, initialization such as moving the chuck mechanisms


8


,


10


to their home positions is executed. In Step


410


, both ends of the work piece


6


are gripped by the chuck mechanisms


8


,


10


, and by moving the chuck mechanisms


8


,


10


, predetermined initial tension is generated in the work piece


6


. In Step


420


, a process number stored in the RAM


106


is initialized.




In Step


430


, among the process data stored beforehand in the RAM


106


, the data corresponding to a current process number is loaded. In Step


440


, the chuck mechanisms


8


,


10


are moved based on the process data loaded.




In Step


450


, the operator determines whether the positions of the chuck mechanisms


8


,


10


are appropriate, and in Step


460


, determines whether tilting of the table


213


is necessary. If the positions of the chuck mechanisms


8


,


10


are appropriate, the operator transmits a determination command from the operation console


11


. In this case, the process proceeds to Step


490


, and the data for defining the positions of the chuck mechanisms


8


,


10


are stored in a predetermined area of the RAM


106


.




If the tilting of the table


213


is not necessary, the process proceeds to Step


480


, and the operator operates the operation console


11


to move the chuck mechanisms


8


,


10


to the appropriate positions.




On the other hand, if the tilting of the table


213


is necessary, the process proceeds to Step


470


, and the operator operates the operation console


11


to tilt the table


213


to the appropriate angle. Accordingly, bending of the work piece which cannot be achieved by the vertical move of the chuck mechanisms


8


,


10


is realized.




When the position data are stored in Step


490


, the process proceeds to Step


500


where the process number is incremented by one and then proceeds to Step


510


.




In Step


510


, it is determined whether the process is completed at all. If not, the process returns to Step


430


to repeat the aforementioned operation. If it is determined that the process is completed in Step


510


, the operation in the teaching mode is ended.




The present invention is not limited to the above embodiment, and other modifications and variations are possible within the scope of the present invention. For example, in case of bending a work piece using a bending die which is symmetrical, teaching may be conducted for only one of the sides, and by copying data obtained by the teaching, teaching to be done on the other side may be omitted.




Moreover, in the aforementioned embodiment, the scheduled positions in which the chuck mechanisms


8


,


10


should take are preset in the teaching mode. However, the positions may be determined only by the operation of the operator, without the presetting.




Furthermore, the tension to be applied to the work piece may be monitored, and when there is an abnormal change in the tension, it is determined that the work piece is broken and the operation of the tension and lap mechanisms may be stopped automatically.




As above explained, mechanical rigidity is improved by the stretch bender of the present invention, since both ends of the guide member which guides the chuck mechanisms gripping the work piece are supported by the pair of arm members and the arm members are connected by the coupling member. Moreover, accurate movement is achieved by the pair of drive sources, since the first drive source of the tension application mechanism is controlled by the tension and the second drive source is controlled based on the position. Accordingly, the stretch bender of the present invention can perform accurate stretch bending even of large-sized parts.



Claims
  • 1. A stretch bender for bending a strip work piece by thrusting it against a bending die while applying tension to the work piece, comprising:a pair of support shafts, a pair of rotating members rotatably supported by the support shafts, each of the rotating members having two arm members and a coupling member for connecting the arm members, the arm members being parallel to each other and extending outward from the respective support shafts, and rotation control means for controlling rotation of the rotating members to thrust the work piece gripped by the chuck mechanisms against the bending die, wherein each of the rotating members further comprises a guide member extending between the two parallel arm members and arranged movable to a direction parallel to the arm members, a chuck mechanism which is guided by the guide member and arranged movable to a direction orthogonal to the arm members, for gripping the strip work piece, and a tension application mechanism for moving the guide member in relation to the arm members to apply tension to the work piece gripped by the chuck mechanism.
  • 2. The stretch bender set forth in claim 1, wherein said tension application mechanism comprises:a first drive source for moving one end of said guide member along one of said arm members, a second drive source for moving the other end of the guide member along the other of the arm members, a tension sensor for detecting tension applied to said work piece, a position sensor for detecting a position of the guide member, and control means for adjusting torque of the first drive source based on the tension detected by the tension sensor as well as controlling the second drive source based on the position detected by the position sensor.
  • 3. The stretch bender set forth in claim 2, wherein said control means adjust the torque of said first drive source to predetermined target torque, based on the tension detected by said tension sensor.
  • 4. The stretch bender set forth in claim 3, wherein said control means further comprises storage means for storing the position of said guide member detected by said position sensor and a control value for adjusting the torque of said first drive source to the target torque.
  • 5. The stretch bender set forth in claim 4, wherein said control means further comprises position control means for, when stretching and beading of one work piece is completed, controlling said first drive source according to said control value stored in said storage means instead of said control means.
  • 6. The stretch bender set forth in claim 1, further comprising a table on which a bending die is mounted and tilting means for tilting the table.
  • 7. A stretch bender for bending a strip work piece by thrusting it against a bending die while applying tension to the work piece, comprising:chuck mechanisms for gripping the strip work piece, guide members for guiding the chuck mechanisms and which permit the chuck mechanisms to move orthogonal to an axial direction of the work piece gripped by the chuck mechanisms, rotating members attached rotatably to support shafts, for supporting the guide members movably, tension application mechanisms for applying tension to the work piece gripped by the chuck mechanisms, rotation control means for controlling rotation of the rotating members to thrust the work piece gripped by the chuck mechanisms against the bending die, teaching means for teaching desired operation procedures to the tension application mechanisms and rotation control means, and control means for controlling operation of the tension application means and rotation control means according to the procedures taught by the teaching means.
  • 8. A stretch bender for bending a strip work piece by thrusting it against a bending die while applying tension to the work piece, comprising:chuck mechanisms for gripping the strip work piece, guide members for guiding the chuck mechanisms which permit the chuck mechanisms to move orthogonal to an axial direction of the work piece gripped by the chuck mechanisms, rotating members attached rotatably to support shafts, for supporting the guide members movably, tension application mechanisms having drive sources for applying tension to the work piece gripped by the chuck mechanisms, rotation control means for controlling rotation of the rotating members to thrust the work piece gripped by the chuck mechanisms against the bending die, position sensors for detecting positions of the guide members, storage means for storing the positions detected by the position sensors, selection means for selecting one of a torque control mode and a position control mode, torque command means for providing torque to the drive sources, and position command means for providing the positions to the drive sources, wherein the tension application mechanisms further comprise control means for driving the drive sources based on the torque provided from the torque command means and for storing the positions detected by the position sensors in the storage means in case that the torque control mode is selected by the selection means, and for driving the drive sources based on the positions stored in the storage means in case that position control mode is selected by the selection means.
Priority Claims (1)
Number Date Country Kind
2001-153947 May 2001 JP
US Referenced Citations (6)
Number Name Date Kind
2446089 Hochreiter Jul 1948 A
3948071 Lieberman et al. Apr 1976 A
4459838 Kutz et al. Jul 1984 A
4803878 Moroney Feb 1989 A
5086636 Huet Feb 1992 A
6018970 Ford et al. Feb 2000 A
Foreign Referenced Citations (1)
Number Date Country
09285822 Nov 1997 JP