1. The Field of the Invention
The present invention relates generally to apparatus and methods for exercising by a user and more specifically to apparatus and methods for conducting flexibility or stretching exercises.
2. The Background Art
In most accounts, cultural belief in the necessity of physical fitness programs for the general population is a relatively new concept in history. The concept of conducting a regular physical fitness program emerged in the first half of the 20th Century and popularity of such programs has steadily progressed. The need for regular physical fitness may be a reflection of the fundamental shift from agrarian to industrial and urban societies over the previous 100 years. As the need to hunt, cultivate, and gather food has been reduced within a culture, the amount of physical activity associated with these activities has correspondingly decreased.
The decrease in overall physical activity has led to the development of numerous public health concerns. Currently, obesity and musculoskeletal disorders are two of the most pressing health problems in the United States. Lack of or reduced physical activity may be a significant factor in both of these conditions as well as many other health related conditions. Currently available prior art methods and apparatus have been variously successful and unsuccessful in meeting these challenges. The development and availability of effective, economical, and safe apparatus and methods for improving physical fitness is needed and of paramount importance to society.
Societal efforts to investigate and improve physical fitness began in earnest in the 1950s. Shortly after the introduction and general acceptance of television in the 1950s, the first television based exercise programs appeared. One of these programs was hosted by fitness expert, Jack La Lanne. Also, in 1954, the American College of Sports Medicine (ACSM) was founded to promote scientific investigation, research, and education in sports medicine and exercise science. In addition, ACSM helps to set and maintain standards for physical performance, fitness, health, and quality of life.
Two important characteristics, cardiovascular fitness (i.e., aerobic conditioning) and muscular strength fitness (i.e., anaerobic conditioning), have subsequently long been recognized in the prior art as goals for physical fitness programs. Prior art apparatus and methods to improve muscle strength and anaerobic conditioning include, for example, training with free weights (e.g., dumbbells, barbells, universal machines); resistance training; and isometric training.
Prior art apparatus and methods directed to improving cardiovascular fitness have largely focused on exercises replicating walking, jogging, stair climbing, rowing, and the like. Recently, ACSM released a position stand indicating that flexibility should be considered as a third major component to fitness and exercise programs (see, ACSM Position Stand on The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in adults, Med. Sci. Sports Exerc., Vol. 30, No. 6, pp. 975-991, 1998 incorporated herein by reference).
Although numerous apparatus exist for improving cardiovascular fitness and muscle strength, few prior art apparatus are directed solely to improving flexibility in a user. Apparatus and methods for improving flexibility include Pilates programs, antdyonizer, floor exercise programs, dance bars mounted on walls, and web-like cages with multiple placement sites for limbs. These prior art methods require that at least one portion of a users body be anchored or fixed to a specific point.
Moreover, many apparatus use positions that require that muscles be stressed in supporting the body while ostensibly being stretched. Muscles and tendons should have no stress (be unloaded) and relaxed when stretched. Accordingly, a limitation exists on the overall amount and quality of flexibility exercise achieved using available apparatus and methods for improving flexibility and range of motion.
In addition, the available prior art apparatus and method do not target all muscle groups or each group in turn in a user. Instead, muscle groups are not considered, may be disproportionately extended, or may be disproportionately loaded, all effectively limiting the utility of stretching. Moreover, they lack a dynamic movement that allows more than one muscle group to be stretched or have a limitation on the total range of motion that can be achieved in a user.
What are needed are effective, economical, and safe apparatus and methods for improving physical fitness by focusing on dynamic flexibility and stretching in a user and allowing greater range of motion to be achieved. What are also needed are effective, economical and safe apparatus and methods to provide unloaded, relaxed, stretching; in preparation for aerobic exercises, strength training, or therapies for decreasing obesity. Such are particularly needed for reducing harmful lower back conditions caused by other stretching methods that require one muscle group to support itself or others to accomplish stretching.
In view of the foregoing, it is a primary object of the present system and series of inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness by increasing flexibility and range of motion. In the foregoing respects, the stretching exercise apparatus and methods according to the invention improve the amount and quality of flexibility that can be achieved in a user.
It is another object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness that do not require a bodily member of a user to be anchored to a fixed point.
It is a further object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness that improve the range of motion a user may achieve in a stretching exercise.
In addition, it is an object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness wherein a user may dynamically stretch multiple muscle groups, including neck, shoulder, arm, chest, back, abdomen, leg, and calf.
Additionally, it is an object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness that have a flexibility capable of generating a greater range of motion in a user during exercise stretching.
It is another object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness wherein recovery or recoil of an exercise device or assembly may urge a return to a starting position drawing a user toward a starting position when a user shifts his or her center of gravity.
It is a still further object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness in which a user may reduce conditions associated with obesity.
Also, it is an object of the presents invention to provide apparatus and methods for accomplishing stretching exercise and improvement of physical fitness that reduce the occurrence of lower back pain in a user.
Additionally, it is another object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness wherein posture and balance may be improved in a user.
It is another object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness to reduce stress and muscle aches and pains in a user.
It is a further object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness that may improve circulation in a user and allow for improved recovery following surgery.
In addition, it is an object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness wherein a user may reduce musculoskeletal conditions associated with chronic conditions.
It is a still further object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness wherein a center of gravity in a user may be displaced to assist and improve amount and quality of stretching exercise.
Also, it is an object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness by compounding stretching exercises and making such exercises progressively effective according to a user's size, strength, condition, and accumulated flexibility.
Additionally, it is an object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness which provides gravity-augmented passive (muscles not working against one another) stretching.
It is another object of the present inventions to provide apparatus and methods for stretching exercise and improvement of physical fitness wherein reduction in muscle tension (loading, stress) and improved muscle relaxation may be achieved by removing the requirement on a muscle to support a force or load while being stretched for improving flexibility.
Consistent with the foregoing objects, and in accordance with the various related inventions as embodied and broadly described herein, apparatus and methods for stretching exercise and improvement of physical fitness are disclosed. One embodiment of an apparatus in accordance with the invention may include a base frame, a post and a user support assembly. The base frame may include forward and rear lateral supports extending outward from a center or medial support.
The post may include a support (e.g., handle bar) for a user's hands and arms and a recoil assembly designed to return the post to a starting position. The recoil assembly may also increase safety and reduce the risk or injury for those using the device by significantly reducing the jerking in the arms and shoulders that accompanies a rigid handlebar. The user assembly may include a forward and rear padded seat and foot support plate. In practice, the user support assembly may pivot on the base frame and the user may shift center of gravity by dynamically altering the position of at least four pivot points.
One embodiment of a method for stretching exercise and improvement of physical fitness in accordance with the present invention may include providing an apparatus for compounding exercise to relax and engage in stretching a muscle or group. It may include progressive stretching wherein a user may increase stretching according to a user's improved ability. One embodiment provides gravity-augmentation by using the user's weight to promote stretching. Passive stretching does not require force loading in a muscle being stretched in the user. Mounting the gravity-augmented passive stretching apparatus conducting the gravity-augmented passive stretch may improve flexibility, posture, and balance in a user. A user may displace the center of gravity of the body by displacement of a hand pivot, assembly pivot, seat pivot, and a foot pivot to engage more or less gravity assistance, thus not needing another assistant or the muscles in question themselves.
The foregoing and other objects and features of the present invention will become more fully apparent from the following description, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only typical embodiments in accordance with the invention and are, therefore, not to be considered limiting of its scope, the invention will be described with additional specificity and detail through use of the accompanying drawings in which:
It will be readily understood that the components of the present invention, as generally described and illustrated in the Figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of systems and methods in accordance with the present invention, as represented in
For the purposes of establishing definition support for various terms used in the present application, Applicant provides the following technical comments and review.
The term “flexibility” may be used synonymously with “range of motion” and may designate an ability in a user to have plasticity and pliance in the musculoskeletal system, especially in joints and muscles. A range of motion is typically limited by the extension.
The term “exercise” may be used synonymously with conditioning and may designate a practice of regular repeated use of muscles and bones to develop and maintain physical fitness. Accordingly, exercise may include anaerobic (strength) conditioning, aerobic (cardiovascular) conditioning, and flexibility conditioning.
The term “stretching” may designate the use of force to distend a muscle, group of muscles, or at least one muscle and joint. Stretching may be referred to as an exercise to improve the flexibility or range of motion in muscles and joints. There are many types of stretching exercises, including for example and not by limitation, ballistic stretching, dynamic stretching, active stretching, passive stretching, static stretching, isometric stretching, and proprioceptive neuromuscular facilitation (PNF) stretching. Passive stretching may sometimes be referred to a relaxed stretching or static-passive stretching, and involves the use of another part of the body or an apparatus for holding a specific stretching position. For example, and not by way of limitation, the practice of “splits” is a passive stretch utilizing the floor or other hard surface to hold the legs and hip in a split position. Gravity may also be used as an apparatus for purposes of conducting a passive stretching exercise. Accordingly, the term “gravity-augmented” may designate the use of an apparatus configured to utilize gravity and the shifting of center of gravity of a user in order to provide the force needed to increase the range of motion generated in a stretching exercise program rather than or in addition to force applied by another person, muscle group, or the exercised muscles themselves.
The term “compounded progressive stretching” may designate the use of an apparatus to provide additional pressure to the musculoskeletal system to improve the range of motion in a user. Progressive refers to the property of using a series of stages to advance the range of motion achieved by a user. Compound or compounded refers to the ability to engage a muscle group together. A compounded progressive exercise may include multiple types of stretching, including, but not limited to, ballistic, dynamic and passive stretching to gradually extend the range of motion in a user.
Referring now generally to
A base frame 12 may include a forward support 18, a medial support 20, and a rear support 22 that may be formed in a generally arcuate shape. An arcuate shape is not required in the invention, but may assist a user in producing a greater range of motion.
A post 14 may include a top post 24, a joint 26, a bottom post 28, a pinch sleeve 30, a spring 32, a recoil bumper 34, and an upper extremity support 35. A top post 24 and bottom post 28 are flexibly connected by a joint 26. In resting position, a spring element 32, such as a spring 32 provides sufficient force to urge the top post 24 and bottom post 28 into a generally upright position. A pinch sleeve 30 provides protection for a user from movement of the joint 26 and a recoil bumper 34 may minimize damage to the pinch sleeve during operation of the apparatus 10. A post 14 may be formed from any material readily known, including, for example and not by limitation, metal, wood, plastic, composite, and reinforced materials such as fiberglass.
A joint 26 may have any suitable configuration to provide the desired flexure. For example, if desired or necessary, the spacing between the top post 24 and the bottom post 28 may be sufficient to allow the top post 24 to pivot at the joint 26 to an angle of ninety degrees with respect to the bottom post 28. This provides great rearward deflection of the top post 24 and allows a user to move backward and down until the seat (rear support 38) contacts the floor. A spring 32 or other resilient biasing member 32 may be shaped and sized to accommodate such motion. Thus, the top post 24 may bend rather than pivot. Alternatively, the joint 26 and spring 32 may limit the flexure of the top post 24 with respect to the vertical to a desired angle such as thirty degrees, forty-five degrees, sixty degrees etc.
In one embodiment, the top post 24, joint 26, bottom post 28, pinch sleeve 30, and spring 32 may be replaced by a single post formed partially or entirely of a resiliently deflectable material. In such an embodiment, the entire post may perform the function of the spring 32 and permit deflection or bending of the post to a location within the reach of a user. Alternatively, the lower portion 28 may be formed of a flexible, resilient material. Moreover, the resilient nature of the post may urge the post into a generally upright position when not used or loaded by a user.
An upper extremity support 35 or handlebar 35 may be formed in a generally “U” shaped configuration. An upper extremity support 35 may include hand grips and may include a place for resting arms or shoulders.
A user support assembly 16 may have a forward support 36, a rear support 38, at least one foot support 40, a pivot bracket 42, and a pivot pin 44. As shown in
A user support assembly 16 may be configured so that the foot support 40 is located behind and optionally above the position of the pivot bracket 42 and pivot pin 44. In this location, a foot support 40 may have a rear displacement when an apparatus 10 is in operation by a user.
Still referring generally to
A post 14 may be flexed by the force exerted by a user during operation of the apparatus 10. The spring element 32 may be compressed during flexion of the post. The recoil properties of the spring 32 will provide a force to return the post 14 starting position.
A user support assembly 16 is shown in a rearward position. Alternatively, the pivot 44 connecting the user support 16 to the base frame 12 may be positioned such that in a fully back position, the rear support 38 moves until it rests in contact with the ground or supporting surface behind the device 10. In either position, a user support assembly rest 48 and assembly bumper 50 may be exposed. Likewise, the top post 24 may deflect accordingly. In some embodiments, the top post 24 may deflect approximately ninety degrees. The assembly rest 48 may be located on the base frame 12 along the medial support 20. The assembly rest 48 is located in optimal position to contact with assembly bumper 50 as the user support assembly 16 returns to starting position. An assembly rest 48, and assembly bumper 50 may be formed of any readily available material, including for example and not by limitation, plastic, rubber, metal, wood, composite, fiberglass and the like.
Also depicted in this full-back position, the rear user support 38 is in actual contact or nearly contacting the ground surface behind the rear support 22 of the base frame 12. In addition, foot supports 40a and 40b may undergo a rearward displacement at least one centimeter and preferably several centimeters relative to the pivot bracket 42 and pivot pin 44.
In the full-back position as shown in
Referring specifically to
In this starting position, an apparatus 10 has a post 14 in a substantially upright position where the top post 24 and bottom post 28 define a generally straight line relative to the joint 30. In addition, in the starting position, foot supports 40a, 40b may be elevated slightly above and behind the pivot bracket 42 and pivot pin 44.
Now referring specifically to
In this one-half back position, an apparatus 10 has a post 14 in a partially flexed position where the top post 24 and bottom post 28 form an angle, typically less than 180 degrees relative to joint 30. In the one-halfback position, the top post 24 may be displaced in a rear direction by a few centimeters. In addition, in the one-half back position, the foot support 40 may joined to the user support assembly 16 by a pedal support 58 and a pedal bracket 60. The foot support 40 may be substantially equal in height and further to the rear of the pivot bracket 42 and pivot pin 44. The rear support 38 may be substantially above the rear support 22.
Specifically in
In this full-back position, an apparatus 10 has a post 14 in a fully flexed position where the top post 24 and bottom post 28 define an angle less than 180 degrees relative to joint 30 and an angle less than that found in the one-halfback position. In the full-back position, the top post 24 may be displaced in a rear direction by several centimeters. In addition, in the full-back position, the foot support 40 may joined to the user support assembly 16 by a pedal support 58 and a pedal bracket 60. The foot support 40 may be lower in height and substantially further to the rear of pivot bracket 42 and pivot pin 44. In addition, the rear support 38 may be behind the rear support 22 and substantially at ground level.
Referring generally to
Now referring to
In one embodiment as shown generally in
Although not shown in
Likewise it is also contemplated within the scope of the invention that a post 14 may optionally include a strap or similar device to attach to a user and assist in conducting a range of motion exercise. A strap may be affixed to an upper extremity support 35 or top post 24 in a manner to optimize exercise and to provide user safety. In one embodiment, it may be preferable to replace an upper extremity support 35 with a flexible support 35, such as rope, strap or the like.
Specifically referring to
As shown in
Referring specifically to
Now referring in general to
Still referring in general to
Referring specifically to
Referring specifically to
Referring specifically to
Now referring specifically to
In practice, a user 100 may conduct a compounded progressive stretching exercise by initiating a rear displacement 120 of a post 14 and a user assembly 16 such that a user's 100 center of gravity 112 is displaced in a rearward 122 and a downward 124 direction. As shown in
Generally referring to
The step of providing a gravity-augmented passive stretching apparatus 134 may further include the steps of providing a frame 142, providing a flexible post 144, providing a user support 146, providing a pivot point 148, and providing a moveable foot support 150. In addition, the step of mounting a gravity-augmented passive stretching apparatus 136 may further include the steps of mounting a forward user support 152 and mounting a rear user support 154. A user 100 may mount a user support by placing any portion of the user's body in contact with the user support. In addition, a user 100 may not have to mount both a forward user support 152 and a rear user support 154 in order to suitably mount a gravity-augmented passive stretching apparatus 136.
The step of conducting a gravity-augmented passive stretch 138 may include the steps of shifting the center of gravity of a user in a rearward and downward direction 156 and shifting the center of gravity of a user back to the starting point 158. The step of shifting the center of gravity rearward and downward 156 may include displacement of a post 160, displacement of a user support 162, and displacement of a foot support 164. The step of shifting center of gravity to starting point 158 may include the step of a flexible post 14 recoiling to a starting position 165.
The step of improving flexibility, posture, and balance in a user 140, may include stretching a muscle group selected from the group of neck/shoulders 166, back/abdomen 168, arms/upper extremity 170, and legs/calves 172. These muscles groups may be stretched independently or at the same time depending the position of the user 100.
Still referring generally to
In addition, the step of providing a flexible post 144 may further include the steps of providing a top post 182, providing a bottom post 184, providing a pivot 186, providing a recoil assembly 188, providing an upper extremity support 190, and providing pinch protection 192. Moreover, the step of providing a user support 146 may further include the steps of providing a forward support 194, providing a rear support 196, and providing a foot support 198.
The present invention may be embodied in other specific forms without departing from its function, structure, or essential characteristics. The described embodiments are to be considered in all respects only as illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Name | Date | Kind |
---|---|---|---|
1973945 | Chavin et al. | Sep 1934 | A |
2405024 | Eynon | Jul 1946 | A |
2454656 | Kollman | Nov 1948 | A |
2470544 | Bell | May 1949 | A |
2544106 | Ray | Mar 1951 | A |
2973029 | Schlosstein | Feb 1961 | A |
3380737 | Elia et al. | Apr 1968 | A |
4084810 | Forsman | Apr 1978 | A |
4429871 | Flechner | Feb 1984 | A |
4583731 | Crivello et al. | Apr 1986 | A |
4632393 | Van Noord | Dec 1986 | A |
4700946 | Breunig | Oct 1987 | A |
4743010 | Geraci | May 1988 | A |
4819936 | Muller | Apr 1989 | A |
4840372 | Oglesby et al. | Jun 1989 | A |
4883268 | Salkind | Nov 1989 | A |
5108090 | Reed | Apr 1992 | A |
5110121 | Foster | May 1992 | A |
5178599 | Scott | Jan 1993 | A |
5184991 | Brangi | Feb 1993 | A |
5288130 | Foster | Feb 1994 | A |
5299997 | Chen | Apr 1994 | A |
5299998 | Hutchins | Apr 1994 | A |
5322489 | Webb et al. | Jun 1994 | A |
5342269 | Huang et al. | Aug 1994 | A |
5527248 | Crivello | Jun 1996 | A |
5565002 | Rawls et al. | Oct 1996 | A |
6117055 | Boland | Sep 2000 | A |
6752745 | Davis | Jun 2004 | B1 |
20020077221 | Dalebout et al. | Jun 2002 | A1 |
20030203791 | Chen | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
1929340 | Jun 1968 | DE |
Number | Date | Country | |
---|---|---|---|
20060160683 A1 | Jul 2006 | US |