Not Applicable
Not Applicable
1. Technical Field of the Invention
The present invention provides a method and apparatus for implementing a non-blocking minimal spanning switch.
2. Background of the Invention
Telecommunication systems require switching networks to transmit data signals, or messages, from one point of the network to another point of the network. Many systems often employ the Clos Network, a type of switch network, for data transfer. The Clos Network is a multi-stage switch network, where each stage consists of a crossbar or crossbar switch. The system can be arranged into three stages: the ingress stage; the middle stage; and the egress stage. A total of n inputs are allowed into the ingress stage, where n=the total number of data input signals which are transmitted into the total crossbar connections (r) of the ingress stage for any other stage). The data input into the ingress stage is subsequently output from the ingress stage; a total of m outputs are allowed, where m=the total number of data output signals which are transmitted out of the ingress stage and m=the total number of crossbar connections located in the middle stage. One connection is provided to allow the data from the (n−1) data inputs of the ingress stage to be transmitted out of the ingress stage and into the middle stage, and one connection is provided to allow this data to be transmitted out of the middle stage and into the egress stage. The classic Clos Network switch fabric is illustrated in
Charles Clos further defines a Strict-Sense Non-Blocking Clos Network, where unused ingress crossbar connections are connected to unused egress crossbar connections, where m≧(2n−1). In a typical three stage Clos Network, to guarantee the connection of n connections, (2n−1) crossbar connections are required in the middle stage; with (n−1) data inputs active in the ingress stage crossbar connections, and another (n−1) data inputs potentially active in the egress stage crossbar connections, (2n−2) crossbar connections are required in the middle stage to allow the connection, where (n−1)+(n−1)=(2n−2). However, as (2n−2) crossbar connections may be unable to provide every necessary connection, an extra crossbar is provided to ensure Strict-Sense Non-Blocking, with (2n−1) middle stage crossbar connections.
(2n−1) middle stage crossbar connections would consume a large amount of resources, but in a Clos Network, m≧(2n−1) is necessary to maintain Strict-Sense Non-. Blocking. When implementing a Clos Network which does not adhere to m≧(2n−1), the data connections may need to be re-routed in order to establish new connections, and such re-routing would result in interrupted or blocked connections, i.e., dropped telephone connections.
One method of minimizing the number of crossbar connections in the middle stage is through the use of a Non-Blocking Minimal Spanning Switch, When using a Non-Blocking Minimal Spanning Switch system, the connections between the ingress stage, middle stage and egress stage are symmetrical, with n ingress stage crossbar connections, n middle stage crossbar connections and n egress stage crossbar connections, This is achieved through the use of multiple sub-switches located in each stage; as an example a 4×4 switch including two input crossbar connections and two output crossbar connections are used. In a Non-Blocking Minimal Spanning Switch system, any data input signal input to any ingress location may be output from any egress location provided there is an open connection and an open path; however, signals can be blocked when they arrive from the ingress stage to the middle stage where the sub-switch locations are already in use, requiring other signals to be re-routed to ensure transmission, Such re-routing of signals is undesirable; the signals being transmitted are already carrying data, thus re-routing the data signal would again result in interrupted or blocked connections, i.e., dropped telephone connections.
Therefore, a method of re-routing the data signals transmitted through switching fabrics, without causing such interruptions, is required.
The present invention discloses a novel Strict-Sense Minimal Spanning Non-Blocking Architecture for use in frame-based data communications networks, providing the ability to re-route a telecommunications connection without interrupting the data signal. To maximize efficiency, the amount of logic duplicated on each data stream is minimized through the use of a n framer system, where n=the total number of framers in the system. In addition, n=the total number of data input signals which are transmitted into the crossbar connections (r) of the system. In the present invention, a “framer”refers to a machine which recognizes inherent framing patterns in transmitted data which occurs at predictable intervals. In the n framer system, each of the n bit streams enters n framers at a crossbar connection, and the n framers subsequently determine the inherent framing patterns within the transmitted data which are necessary for re-alignment. From these inherent framing patterns, the n framers can derive an arbitrary frame start signal, or the “start of frame.” The start of frame, as derived by the n framers, indicates to the n framers to write the transmitted data into a specific, but arbitrary location(s) of buffers. These arbitrary locations of n butfery ocprcunnt the offsetting bit location in each of the n buffers where the n framers are to start writing the transmitted data to allow the data to be written into the n buffers in a re-aligned fashion. A multiplexer can then read out the realigned data from the n buffers and select from any of the re-aligned data signals to provide a single data output signal. In an illustrative embodiment of the invention, the n incoming data input signals are transmitted to n framers, where each of the n incoming data input signals are divided into d data signals, where d can be any arbitrary and user-definable amount of data signals. This provides a total of x internal data signals, as n×d=x. The x internal data signals are then written into a specific, but arbitrary location(s) of x buffers. A multiplexer can then read out the realigned data from the x uffers and select one, single data output signal; i.e., each crossbar connection has one data output signal, therefore m crossbar connections have m data output signals. Through this method, each crossbar connection of the switch will output the exact same data in each of the m data output signals. Therefore, when any of m crossbar connections (where m=the total number of data output signals switches from one sub-switch to another sub-switch, no interruption occurs; as the data on each sub-switch within a crossbar connection is identical, any connection can be successfully used by the switch.
An illustrative embodiment of the invention employs a n framer system as applied to a 4×4 switch, The crossbar connections employed triay be Field Programmable Gate Arrays (FPGAs) or any other logic circuitry element. It should be noted that this example is provided for illustrative purposes only and is not meant to limit the scope of the invention, as any size switch can be accommodated. In the 4×4 switch, each of the crossbar connections m has four separate data input locations and one single data output location, This is illustrated in FIG, 1, where four data input signals A, B, C and D enter a single crossbar connection m(1), where multiplexer (1) selects one of data input signals A, B, C and D and subsequently outputs the signal from the system through the single data output location; this is illustrated as data output signal W. As illustrated in
The full 4×4 switch is illustrated in
Through using this Strict-Sense Minimal Spanning Non-Blocking Architecture, the present invention ensures that each of the four crossbar connections m(1), m(2), m(3) and m(4) output the exact same data in each of the four data output signals, W, X, Y and Z, respectively. Therefore, when the 4×4 switch switches from one of crossbar connections m(1), m(2), m(3) or m(4), to any other of crossbar connections m(1), m(2), m(3) or m(4), no interruption occurs; the data on each crossbar connection m(1), (2), m(3) and m(4) is identical, thus any connection can be used for the switch. This allows for the use of a m=n Non-Blocking Minimal Spanning Switch, where n=the total number of data input signals and m=the total number of data output signals and m=the number of crossbar connections in each switch, while eliminating the possibility of data interrupts.
This application is a continuation of co-pending U.S. patent application Ser. No. 13/555,755, filed on Jul. 23, 2012, which is a continuation of U.S. patent application Ser. No. 12/554,043, filed on Sep. 4, 2009, which claims priority to U.S. Provisional Application No. 61/227,923, filed on Jul. 23, 2009, the disclosures of which are hereby incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5442636 | Bontekoe | Aug 1995 | A |
5974058 | Burns et al. | Oct 1999 | A |
6052368 | Aybay | Apr 2000 | A |
6704307 | Graves et al. | Mar 2004 | B1 |
6711357 | Brewer et al. | Mar 2004 | B1 |
6807186 | Dally et al. | Oct 2004 | B2 |
6870838 | Dally | Mar 2005 | B2 |
6876630 | Shim | Apr 2005 | B1 |
7006498 | Benayoun et al. | Feb 2006 | B2 |
7020135 | Klausmeier et al. | Mar 2006 | B2 |
7113505 | Williams | Sep 2006 | B2 |
7260092 | Dally | Aug 2007 | B2 |
7301941 | Dally | Nov 2007 | B2 |
7349387 | Wu | Mar 2008 | B2 |
8199782 | Haas | Jun 2012 | B2 |
8363684 | Haas | Jan 2013 | B2 |
8477770 | Haas | Jul 2013 | B2 |
20010033569 | Dally | Oct 2001 | A1 |
20010033584 | Dally | Oct 2001 | A1 |
20010053160 | Dally | Dec 2001 | A1 |
20020181482 | Dally et al. | Dec 2002 | A1 |
20030099231 | Betts et al. | May 2003 | A1 |
20040062228 | Wu | Apr 2004 | A1 |
20040095025 | Adam et al. | May 2004 | A1 |
20080317024 | Rygh et al. | Dec 2008 | A1 |
20080317025 | Manula et al. | Dec 2008 | A1 |
20090073967 | How et al. | Mar 2009 | A1 |
20100215060 | Haas | Aug 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20130272300 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61227923 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13555755 | Jul 2012 | US |
Child | 13913342 | US | |
Parent | 12554043 | Sep 2009 | US |
Child | 13555755 | US |