None.
None.
Many types of automatic fishing devices exist, including trotlines, limblines, jugs, and hook setters. However, each of these devices is suited for use only in specific environments. For instance, trotlines are most effective for a relatively broad expanse of water with two readily identifiable endpoints protruding from the water. Limblines are useful only in places where thin, flexible tree limbs hang over the water at a height such that the fisherman can secure the limbline to the tree. Jugs are best suited to large areas of open water to avoid lost fish due to snagging. Finally, hook setters require close supervision, as such devices are not designed to maintain tension after a fish strikes. For these reasons, perhaps the most versatile automatic fishing device is the rotary automatic fisher, one type of which is also known as a “yoyo” to many fishermen. Yoyos can be used on boats, boat docks, trees, ice fishing rigs, and just about any other location where the yoyo can be secured to an above-water object.
As useful as yoyos are, they lack a strike indicator so that the fisherman knows to check the yoyo to see if a fish is on the line or if the yoyo needs to be rebaited. Fishermen must instead individually inspect each yoyo to determine whether the yoyo has hooked a fish. It is a primary object of the invention to provide a strike indicator for a yoyo that allows a fisherman to determine whether a yoyo needs to be checked without requiring the fisherman to be in very close proximity to the yoyo.
The original yoyo is the subject of U.S. Pat. No. 2,577,552 (the “'552 patent”), issued in 1951 to J. W. White, Jr. The design disclosed in the '552 patent is still in widespread use among fishermen and is readily available. Due to the sheer number of yoyos already on the market, it is thus another object of the invention to provide a strike indicator for a yoyo that may be retrofitted to yoyos of the prior art.
U.S. Pat. No. 2,791,857 (the “'857 patent”) discloses a device similar to a yoyo but that adds to the original design a rotating bar having a clapper to strike bells. An auditory signal is only useful if the fisherman is in close proximity to the device at the time the fish strikes. Notably, the '857 patent requires a separate frame to which the bells are mounted to give enough space between the rotating bar and the bells for the clapper to generate sufficient force to audibly ring the bells. For this reason, among others, the '857 patent cannot be easily retrofitted to yoyos of the prior art. Furthermore, the choice of bells for the '857 patent is unduly limiting, as the bells only ring when the line is actually retrieved into the spool of the device. The fisherman must be within earshot of the device at the time the fish strikes to work effectively, as the bells will not continue to ring after the line is fully retrieved. It is thus an object of the invention to provide a strike indicator that is functional even after the line of the automatic fishing device is fully retracted.
In many instances, fishermen use yoyos at night because many species of sporting fish actively feed at night. Thus, it is an object of the invention to provide a strike indicator that is useful at night.
U.S. Pat. No. 5,168,651 (the “'651 patent”) discloses a jug-type fishing device that has, as one component, a switch to turn on a light upon a fish strike. However, the '651 patent cannot be applied to a yoyo because such patent utilizes a jug-type fishing device that relies upon buoyancy as a counterweight to a fish's tugs. Such configuration is bulky and requires open water for efficient use, and the fishing device disclosed in the '651 patent cannot easily be mounted to fixed objects. The design disclosed in the '651 patent is also problematic because the design allows the switch to be triggered multiple times if a fish tugged on the line with sufficient strength more than once. Each cycle of slack and tension would trigger the switch, thus making the signal blink on and off and rendering the device useless half of the time. Furthermore, the line itself may trigger the switch because the line is fed through the switch at a severely acute angle; such an angle places excessive stress on both the line and the switch, which could lead to failure of either component. It is thus an object of the invention to provide a strike indicator for an automatic fishing device that is reliable and consistent.
The apparatus in accordance with the invention meets the above objectives and represents an advance in the art by providing a strike indicator for a fishing device that can signal when a fish needs to be removed or the device needs to be rebaited without requiring the fisherman to be in very close proximity to the device. The following three preferred embodiments set forth the inventor's best mode for practicing the invention.
A first preferred embodiment utilizes a signaling mechanism, such as a light-emitting diode (“LED”), coupled with a rotary switch. The rotary switch cooperates with and is mounted to the spool of an automatic fishing device. When a fish strikes, a trigger engages the rotary switch, thus activating the signaling mechanism. When used on a rotary automatic fishing device, each successive spool rotation further engages the rotary switch, thus ensuring a complete activation of the signaling mechanism.
A second preferred embodiment utilizes a signaling mechanism mounted to a binary switch. Like the first preferred embodiment, the binary switch in the second preferred embodiment is mounted to the spool of a rotary automatic fishing device, and a trigger mounted to the base of the device engages the binary switch following a fish strike. In the second preferred embodiment, however, the trigger physically actuates the switch from a first position to a second position. Following the actuation of the switch, the binary switch does not come into contact with the trigger again, which allows the spool to retract the fishing line without friction associated with the trigger engaging the binary switch.
A third preferred embodiment utilizes a different configuration than the previous two embodiments in that the signaling mechanism is mounted not to the spool, but to the base of the automatic fishing device. Such configuration provides an opportunity to add more features to the device. For example, a base-mounted signaling mechanism could easily be used to reduce the rotating mass of the spool. If necessary, the base-mounted signaling mechanism allows larger batteries to be used, which are typically less expensive and last longer than smaller, lighter watch-type batteries. A larger battery could also allow flexibility of incorporating a fish attracting light or a location beacon. Because the signaling mechanism is mounted to the base, the signaling mechanism switch protrudes from the base, where it is capable of being engaged by a trigger that is mounted to the spool of a rotary device. Thus configured, the battery can power a fish attracting light until such time as a fish strikes the device. When a fish strikes, the fish attractor light may be automatically switched off and the strike indicator switched on; if utilized, this configuration could conserve battery time for use by the strike indicator.
Any of these three preferred embodiments may be retrofitted to existing fishing devices, including a rotary automatic fisher of the prior art. These and other advantages will become apparent from the following detailed description which, when viewed in light of the accompanying drawings, disclose the embodiments of the invention.
11—yoyo
13—base
15—spindle
17—spring
19—- spool
21—fishing line
23—latch
25—securing means
27—notch
29—lip
31—aperture
33—signaling mechanism
35—cogs
37—trigger
39—teeth
41—binary signaling mechanism
43—lever
45—multiway signaling mechanism
47—on/off switch
49—strike indicator switch
51—set position signal
53—strike signal
55—battery
57—housing
The apparatus in accordance with the invention meets the above objectives and represents an advance in the art by disclosing a signaling mechanism for a fishing device that provides a strike indicator following a fish strike. In several embodiments, the invention may be constructed by retrofitting a small number of components to a fishing device of the prior art, or the device may be sold as a complete unit.
As shown in
When a fish strikes the bait at the end of fishing line 21, the fish draws an amount of fishing line 21 out of spool 19. Because fishing line 21 is routed through an aperture 31 in latch 23, the tension on fishing line 21 applies force to latch 23 that causes latch 23 to pivot away from notch 27, thus “tripping” the yoyo 11. With latch 23 pivoted away from notch 27, the tension previously established in spring 17 winds fishing line 21 back into spool 19, and this cycle continues until the fish tires, allowing the device to retract fishing line 21 and retrieve the fish.
The first preferred embodiment is shown in
The first preferred embodiment may be utilized to determine both the location of yoyo 11 and also whether a strike has taken place. By adding a variable resistance feature to signaling mechanism 33 (thus having a variable resistance signaling mechanism), such as a dial-type electrical switch in which voltage is determined by the rotational position of the switch, a relatively low voltage can be applied to signaling mechanism 33 (e.g., an LED light) when yoyo 11 is in the set position. A low voltage conserves battery life and is thus desirable for use with the set position. A fish strike could trip the yoyo 11 and cause successive rotation of signaling mechanism 33, which increases the voltage to signaling mechanism 33. Simply put, the amount of voltage to signaling mechanism 33 may be a function of the amount of rotation applied to signaling mechanism 33. Again using an LED light as an example, the light would be much brighter following several rotations of spool 19, which occurs after a fish strike.
In some retrofit applications, notch 27 may protrude from the generally flat, planar surface of spool 19. In such retrofit applications, care must be taken so that trigger 37 does not interfere with the rotation of spool 19 as notch 27 passes trigger 37.
The second preferred embodiment is shown in
The third preferred embodiment is shown in
The inventor contemplates several configurations of trigger 37 and strike indicator switch 49. For example, in
Another example of a configuration of trigger 37 and strike indicator switch 49 is shown in
Optionally, set position signal 51 may be configured in several different ways. The inventor contemplates that the set position signal 51 could be a green location beacon which indicates the yoyo 11 is in the set position. The inventor also contemplates that the set position signal 51 could be a white fish attracting light pointed towards the water, which would increase the efficacy of yoyo 11. A combination location beacon and fish attracting light is yet another configuration of set position signal 51. In each of these examples, an LED light is preferred for use as set position signal 51 due to the substantially lower power requirements of an LED light than an incandescent bulb.
Also optionally, strike signal 53 can be configured in several different ways. As a first example, strike signal 53 can be implemented as a red light, preferably an LED for low power consumption, which signals that yoyo 11 requires attention. Another configuration of strike signal 53 recognizes that many fishermen own handheld, short distance, two-way radios. Thus, strike signal 53 can be implemented as a radio transmission capable of being received by such two-way radios. The use of radio signals has the advantage of extending the range of strike signal 53 beyond line of sight.
The radio transmission implementation of strike signal 53 can be as simple as a single intermittent tone. However, since the placement of a large number of yoyos 11 may oftentimes preclude all yoyos from being seen at the same time, it is advantageous to have a unique identifier for each yoyo 11. Strike signal 53 implemented with radio signals allows for such identification. For instance, the use of a DIP switch (a group of manual electric switches in a standard dual inline package) on each yoyo 11 allows each yoyo 11 to carry a unique identifier. For instance, a five-switch DIP switch can easily be used to identify ten yoyos 11 in Morse code, as each numeral in Morse code has exactly five dashes or dots. Using slightly more sophisticated but readily available components, the radio transmission can comprise a voice recording which states, “Check yoyo X,” where X is a unique identifier for each yoyo 11.
The inventor contemplates a retrofit application of the invention in which base 13 and spool 19 are cleaned with an included alcohol swab. In either the first or second preferred embodiment, signaling mechanism 33 or binary signaling mechanism 41, respectively, is then secured to spool 19 using an adhesive. Trigger(s) 37 are mounted to base 13, also using an adhesive. Similarly, a retrofit application of the third preferred embodiment of the invention involves securing multiway signaling mechanism 45 to base 13 using an adhesive. Trigger(s) 37 are mounted to spool 19, also using an adhesive.
While the inventor has described above what he believes to be the preferred embodiments of the invention, persons having ordinary skill in the art will recognize that other and additional changes may be made in conformance with the spirit of the invention and the inventor intends to claim all such changes as may fall within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
384853 | Keller | Jun 1888 | A |
625829 | Cook | May 1899 | A |
827972 | Grignon | Aug 1906 | A |
840598 | Tuttle | Jan 1907 | A |
1132158 | Brewer et al. | Mar 1915 | A |
1177885 | Molnar | Apr 1916 | A |
1212696 | Schuler et al. | Jan 1917 | A |
1524011 | Ed Ballew | Jan 1925 | A |
2032537 | Kozikowski | Mar 1936 | A |
2145929 | Herman | Feb 1939 | A |
2195356 | Biddinger | Mar 1940 | A |
2283430 | Frettem | May 1942 | A |
2303668 | Tilbury | Dec 1942 | A |
2518517 | Baulski | Aug 1950 | A |
2545385 | Reppert et al. | Mar 1951 | A |
2554927 | Schultz, Jr. | May 1951 | A |
2577552 | White, Jr. | Dec 1951 | A |
2577553 | White, Jr. | Dec 1951 | A |
2577554 | White, Jr. | Dec 1951 | A |
2577555 | White, Jr. | Dec 1951 | A |
2606385 | Laurito | Aug 1952 | A |
2755590 | Collins | Jul 1956 | A |
2765566 | Waddell et al. | Oct 1956 | A |
2783574 | Bayes | Mar 1957 | A |
2785493 | Thiel | Mar 1957 | A |
2791857 | Schrader | May 1957 | A |
2813364 | Appleman | Nov 1957 | A |
2871614 | Roff | Feb 1959 | A |
2887812 | Staskiews et al. | May 1959 | A |
2899768 | Steinauer | Aug 1959 | A |
2913845 | Baker et al. | Nov 1959 | A |
2970400 | Nolin | Feb 1961 | A |
3015181 | O'Donnell | Jan 1962 | A |
3037317 | Morrison et al. | Jun 1962 | A |
3169335 | Nalder | Feb 1965 | A |
3359673 | Roemer | Dec 1967 | A |
3394484 | Sonoski | Jul 1968 | A |
3453766 | Hunt et al. | Jul 1969 | A |
3474561 | McConkey | Oct 1969 | A |
3605314 | Sarns | Sep 1971 | A |
3878634 | Quimpo | Apr 1975 | A |
3950880 | Polaszek | Apr 1976 | A |
4120111 | Young, Jr. | Oct 1978 | A |
4340192 | Burris, III | Jul 1982 | A |
4642930 | Graf | Feb 1987 | A |
4651459 | Wurtz | Mar 1987 | A |
4807386 | Emory, Jr. | Feb 1989 | A |
4890409 | Morgan et al. | Jan 1990 | A |
4907363 | Dury | Mar 1990 | A |
4916846 | Pehm | Apr 1990 | A |
4924617 | Parent | May 1990 | A |
4934090 | Storey et al. | Jun 1990 | A |
5036615 | Lu | Aug 1991 | A |
5050332 | Cross | Sep 1991 | A |
5050333 | Debreczeni | Sep 1991 | A |
5109624 | Bryan | May 1992 | A |
5163243 | Wold et al. | Nov 1992 | A |
5168651 | Wilson | Dec 1992 | A |
5199205 | Klammer | Apr 1993 | A |
5309663 | Shirley | May 1994 | A |
5351432 | Tse | Oct 1994 | A |
5412898 | Crain | May 1995 | A |
5483768 | Tessier | Jan 1996 | A |
5495688 | Sondej | Mar 1996 | A |
5570534 | Ford | Nov 1996 | A |
5615512 | Wang | Apr 1997 | A |
5758449 | Munsterman et al. | Jun 1998 | A |
5813161 | Yai | Sep 1998 | A |
5898372 | Johnson et al. | Apr 1999 | A |
5974721 | Johnson et al. | Nov 1999 | A |
6336287 | Lobato | Jan 2002 | B1 |
6671994 | Klein | Jan 2004 | B1 |
6880285 | Frost et al. | Apr 2005 | B1 |
7047687 | Liu | May 2006 | B2 |
7131231 | Lee | Nov 2006 | B1 |
7207133 | Schiemann et al. | Apr 2007 | B2 |
7357343 | Hoag et al. | Apr 2008 | B2 |
Number | Date | Country |
---|---|---|
2657752 | Aug 1991 | FR |
2191071 | Dec 1987 | GB |
2248161 | Apr 1992 | GB |
08009859 | Jan 1996 | JP |
09037692 | Feb 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20100005699 A1 | Jan 2010 | US |