Striking cap lining

Information

  • Patent Grant
  • 4345656
  • Patent Number
    4,345,656
  • Date Filed
    Tuesday, December 18, 1979
    45 years ago
  • Date Issued
    Tuesday, August 24, 1982
    42 years ago
Abstract
There is disclosed a pile-driver comprising a cylinder and a piston, the piston being in registry with a cap disposed over an article to be driven. The cap has a lining in striking relationship with the piston, which lining comprises a thermoplastic and a metal powder.
Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention refers to a new lining for driving or striking caps. These caps are used in conjunction with pile-drivers, which are operated by a gaseous medium under pressure.
2. Discussion of the Prior Art
Pile-drivers employed for driving in objects, e.g., stakes, consist of a cylinder, a piston situated inside the cylinder and a ram block, which can be moved backwards and forwards by the piston, and is thereby driven against a driving or striking cap. This cap transfers the powerful impact to the object which is to be driven in, e.g., a stake or a girder. A control valve, situated on or near the cylinder, regulates the flow of the pressure medium to the cylinder in order that the piston and the ram block can be moved up and down. A control column, connected to the ram block, moves up and down in conjunction with it thereby effecting the required movements of the control valve. The impact of the driving or striking cap, which transfer the energy of the ram block to the object which is to be driven in, gives rise to serious noise disturbance and, in addition, this impact can have a destructive effect on the pile-driver itself as well as on the object to be driven in.
It is therefore customary to provide the driving or striking caps, which lie between the ram block and the object to be driven in, with an impact transmitting lining. Possible materials for this purpose are, e.g., hard wood, asbestos, polyamide or fiber-reinforced phenol-melamine resin moulding compounds. The known driving or striking cap linings do not meet all the demands made of them. This is especially true with regard to their abrasion resistance, impact strength and, in many cases, their ease of handling. Due to the high energy transfer, the hard wood linings often become sintered to the cap and have to be chiselled out. Asbestos and fibers reinforced with phenolic resins have only a minor impact strength.
SUMMARY OF THE INVENTION
Broadly, this invention contemplates a lining for a driving or striking cap such as employed in connection with a pile-driver which lining comprises a thermoplastic and 5 to 40 volume percent of a metal powder.
It was therefore found that thermoplastics with a 5 to 40 volume percent metal powder content are especially suitable as linings for driving or striking caps and do not exhibit the disadvantages of the known linings.
The term "thermoplastics" refers to high molecular weight polymeric plastics which become soft and are capable of being molded at elevated temperatures but regain their previous solid composition on cooling. Within the framework of the invention, polyamides and high molecular weight polyethylene, in particular polyethylene with a viscosimetrically determined molecular weight of over 500,000, preferably 1.multidot.10.sup.6 to 10.multidot.10.sup.6 have been found to be especially suitable. Generally speaking, the polyamides have a viscosimetrically determined molecular weight of at least 4.multidot.10.sup.4, preferably 4.multidot.10.sup.4 to 1.multidot.10.sup.5. Other useful thermoplastics include
polycarbonates,
polypropylene,
polyoxymethylene. These generally have a viscosimetrically determined molecular weight of at least 1.multidot.10.sup.4, preferably 2.multidot.10.sup.4 to 1.multidot.10.sup.5.
The driving cap linings, according to the invention, exhibit high abrasion resistance, impact strength and hardness. The metal powder content ensures that the material possesses a high thermal conductivity. The heat resulting from the impact of the ram block on the driving or striking cap is therefore rapidly dissipated, avoiding thermal damage to the thermoplastics employed. Besides the use of thermoplastic high molecular weight polymers, the metal content of the material is decisive in imparting excellent qualities to the new driving or striking cap lining.
The relative position of the metal particles to one another is important for the physical behaviour of the thermoplastics (filled with the metal powder). With regard to the structure of the material, it is significant if the metal particles embedded in the plastic come into contact with one another. Material in which the metal particles are in contact with each other has a higher thermal conductivity, for example, than material in which this is not the case. The properties of the driving or striking cap lining derive, therefore, from the volume of the metal powder and not from a weight relationship.
The type of metal contained in the thermoplastics is not soley decisive for the properties of the new driving or striking cap lining. Pure metals such as copper, iron and aluminum or alloys in powdered form can be used. The use of aluminum is especially suitable, as it has a low density and can therefore be added to the polyethylene in smaller weight proportions than the powdered metals of higher density. The size of the metal particles should not exceed 300.mu.. Particles possessing an average size less than 100.mu. are particularly suitable.





BRIEF DESCRIPTION OF DRAWING
The enclosed drawing is a side sectional view of a typical cylinder-piston assembly of a pile-driver. Which assembly is equipped with a driving or striking cap of the invention.





DESCRIPTION OF SPECIFIC EMBODIMENT
A striking cap with an inseted lining is illustrated in the attached drawing. 1 is a ram block, 2 is a striking cap, 3 a lining inserted in the striking cap and 4 is the material to be driven in.
The usual thickness of the driving or striking cap lining is 25 to 200 mm. Driving or striking cap linings are usually round, rectangular or square molded articles.
In the following tables, characteristic properties of a thermoplastic (polyethylene) filled with metal powder are illustrated.
Table 1 gives a survey of the thermal conductivity and ball indentation hardness of polyethylene in relation to the type of metal and the metal content.
TABLE 1______________________________________ Thermal Ball Indentation conductivity Hardness W/k.m N/mm.sup.2Metal Wt. % Vol. % DIN 52 612 DIN 53 456______________________________________Copper 50 16 0.5 42.0Copper 70 25 0.879 44.5Aluminum 50 28 1.65 56.0Brass 30 5 0.4 40.5Tin Bronze 30 5 0.4 41.0______________________________________
The particle size of the metals employed lies between 80 and 300.mu..
Table 2 illustrates data on the physical properties of a polyethylene with a molecular weight over 1,000,000 and a 50 Wt.% aluminum content (corresponding to 28 Vol.% aluminum) in comparison with unfilled GUR. (GUR means a polyethylene with a viscosimetrically determined molecular weight of 1,000,000 to 8,000,000).
TABLE 2______________________________________ GUR with 50% GUR Aluminum______________________________________Density g/cm.sup.2 (DIN 53 479) 0.94 1.36Ball Indentation Hardness N/mm.sup.2 39 56(DIN 53 456)Notched Impact Strength mg/mm.sup.2 160 43(DIN 53 453, 15.degree. pointed notch)Ultimate Tensile Strength 23.degree. C. N/mm.sup.2 44 17(DIN 53 455)Ultimate Tensile Strength (internal) 27 7120.degree. C. N/mm.sup.2Thermal Conductivity W/K.m 0.42 1.65______________________________________
The manufacture of thermoplastics containing metal powder is well known. It is carried out, for example via the mixing of polymers and metal powder and the subsequent processing of the mixture in moldings or extruders to blocks or sheets.
The lining is cut according to the required measurements using this semi-finished product. The dimensions of the lining depend on the application and have to be individually shaped.
The driving or striking cap lining is usually inserted loosely in the cap. If necessary it can be replaced without difficulty.
Claims
  • 1. A pile-driver comprising a cylinder and a piston, said piston being in registry with a cap disposed over an article to be driven, said cap having a lining in striking relationship with said piston, said lining comprising polyethylene having a viscosimetrically determined molecular weight of 1,000,000 to 10,000,000 and 5 to 40 volume percent of a metal powder.
  • 2. A pile driver according to claim 1, wherein said thermoplastic is a polyamide.
  • 3. A pile driver according to claim 1, wherein said metal powder is copper, brass or tin bronze.
  • 4. A pile driver according to claim 1, wherein said metal powder is aluminum powder.
  • 5. A pile driver according to claim 1, wherein said metal powder has an average size of less than 100.mu..
Priority Claims (1)
Number Date Country Kind
2728164 Jun 1977 DEX
Parent Case Info

This is a division of application Ser. No. 918,188, filed June 19, 1978.

US Referenced Citations (10)
Number Name Date Kind
1943420 Budd Jan 1934
2718506 Elleman Sep 1955
2748099 Bruner et al. May 1956
2931186 Frederick Apr 1960
3300329 Orsino et al. Jan 1967
3425981 Puletti et al. Feb 1969
3491055 Saunders et al. Jan 1970
3867315 Tigner et al. Feb 1975
4036310 Schnell Jul 1977
4116710 Heikel Sep 1978
Foreign Referenced Citations (2)
Number Date Country
1028161 Mar 1978 CAX
197804 Aug 1976 FRX
Divisions (1)
Number Date Country
Parent 918188 Jun 1978