The present disclosure relates generally to hand tools, and, more particularly, to a striking tool, such as a hammer, or the like.
For many different purposes, striking tools, such as hammers, or the like, have been employed for delivering or imparting an impact force to a selected target. Forces generated by even light-duty striking tools can be considerable due to the mechanical advantage involved with such tools. Accordingly, striking tools have been developed having durable, sometimes hardened materials, at least in a striking head or striking surface thereof, and are typically of robust design. Such durable materials, commonly metal, and such robust design, have produced massive tools.
While such tools exhibit acceptable durability characteristics, they are frequently disadvantageously heavy. As a result, a user may become strained or fatigued from use, resulting in poor control of strikes, damage to materials, or even injury. Consequently, efforts have been made to reduce the weight of striking tools to avoid strain or fatigue during use. Reduction of weight, however, affects a striking force delivered to the selected target when struck at a given velocity. Since certain tasks require substantial striking forces, reducing the weight of a striking tool is not always possible or beneficial. Instead, selective distribution of the mass of a striking tool may provide beneficial properties with respect to durability, ease and/or comfort of use, and strike force capacity.
Additionally, and particularly when used to deliver large force strikes, striking tools may disadvantageously transmit impact vibrations to a user through the handle. Such vibrations can accelerate the onset of strain or fatigue, and cause the user to experience discomfort. Furthermore, such vibrations can contribute to material strain and fatigue, causing damage to the tool itself, reducing tool life and posing a threat of injury. In order to avoid transmissions of such vibrations, striking tools have been provided with cushioned handles or the like. Such cushioned handles, however, fail to prevent vibrations within the tool, and merely serve to isolate a user's hand for comfort.
Finally, as is well known in the art, proper balance of a striking tool, i.e. distribution and location of mass between and within the head and the handle of the tool, contributes to reducing strain and/or fatigue and to improving accuracy.
Thus, it is clear that there is an unmet need for a striking tool that advantageously provides beneficial distribution of sufficient mass to safely and reliably allow accurate delivery of forceful strikes without causing excessive strain or fatigue.
Briefly described, in an exemplary embodiment, the striking tool of the present disclosure overcomes the above-mentioned disadvantages and meets the recognized need for such a tool by providing a monolithic steel hammer having a head, a striking surface, a nail-pulling tool, and including one or more cavity and/or void, and a handle having a strong yet lightweight I-beam construction.
More specifically, the exemplary striking tool includes a generally extended handle portion, such as in the form of an I-beam, and a striking head integrally carried at a first end of the handle portion. The handle portion preferably includes a generally broad, flat forward surface adapted to reduce damage caused by overstrikes, i.e. poorly aimed strikes where an impact force is borne by the handle portion. A medial section of the handle portion, however, is generally thin compared to the broad forward surface. A broad rearward surface is preferably also included for stability and strength of the handle portion. The handle portion preferably additionally includes a comfortable grip operable therewith to provide a comfortable and secure gripping surface by which a user may grasp the striking tool.
The striking head preferably includes a transverse cavity extending therethrough, and a plurality of voids formed therein. The cavity preferably defines an upper beam portion and a lower beam portion. The beam portions preferably reduce vibrations caused by strikes, and substantially prevent transmission of vibrations to the handle portion, while allowing beneficial force transference from mass located on an opposite side of the cavity from the striking surface. More specifically, the striking face is preferably provided on a forward surface of the head, and the beam portions, particularly the upper beam portion, are arranged to substantially prevent compression along an axis of the head extending from the striking face to a rear portion of the head. The nail-pulling tool is preferably disposed proximate the rear portion of the head, as is conventional. The beam portions, particularly the lower beam portion, are arranged to substantially prevent bending between the nail-pulling tool and the handle portion.
Accordingly, one feature and advantage of the tool of the present disclosure is its ability to provide a strong, yet lightweight handle portion having a broad flat forward surface adapted to reduce damage caused by overstrikes.
Another feature and advantage of the tool of the present disclosure is its ability to provide a durable striking tool capable of delivering great impact forces while providing a beneficial weight distribution and balance for ease of use.
These and other features and advantages of the tool of the present disclosure will become more apparent to those ordinarily skilled in the art after reading the following Detailed Description of the Invention and Claims in light of the accompanying drawing Figures.
Accordingly, the present disclosure will be understood best through consideration of, and with reference to, the following drawings, viewed in conjunction with the Detailed Description of the Invention referring thereto, in which like reference numbers throughout the various drawings designate like structure, and in which:
It is to be noted that the drawings presented are intended solely for the purpose of illustration and that they are, therefore, neither desired nor intended to limit the scope of the disclosure to any or all of the exact details of construction shown, except insofar as they may be deemed essential to the claimed invention.
In describing exemplary embodiments of the hammer of the present disclosure illustrated in the drawings, specific terminology is employed for the sake of clarity. The claimed invention, however, is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.
In that form of the hammer of the present disclosure chosen for purposes of illustration,
Head 120 preferably includes claw 121 disposed on a rearward portion thereof and is adapted to pry articles, such as nails, boards, or the like, via application of force to handle 110. Striking surface 123 is preferably disposed on a forward portion of head 120 and is adapted to deliver a striking force to a selected target. Striking surface 123 may optionally include a plurality of teeth or other texture, such as a waffle pattern, a diamond pattern, or the like. Head 120 preferably further includes cavity 125 formed therethrough and a plurality of beams 127. Cavity 125 preferably serves to reduce a total mass of head 120 and to reduce transmission and/or creation of vibrations as may occur from striking impacts. Additionally, beams 127 preferably function to transmit force applied to handle 110 and momentum force from the mass of head 120 proximate claw 121 in order to deliver the striking force. Accordingly, beams 127 are substantially incompressible in a direction of such force transmission, i.e. along a respective longitudinal axis of each such beam 127. Beams 127 are operable, however, to absorb and/or dissipate off-axis forces, such as those that may cause vibration. Thus, vibrations are preferably not substantially transmitted to handle 110. Head 120 preferably additionally includes voids 129 formed therein at selected locations to both reduce the mass of head 120 and to produce a desired balance of head 120 while not substantially reducing a strength and/or durability thereof.
Handle 110 is preferably likewise configured to provide durability and/or strength while reducing a total mass thereof and while providing a beneficial balance or distribution of mass. Specifically, handle 110 preferably includes an I-shape cross-sectional profile, at least along a portion thereof. Such I-shape cross-sectional profile includes front and rear flanges 111 and 112, respectively, and web 113. Front flange 111 preferably provides a broad surface adapted to reduce damage to handle 110 and/or a target caused by striking contact therebetween, such as due to an overstrike. Web 113 preferably resists bending and provides strength for handle 110 to allow generation and delivery of substantial striking forces by striking surface 123.
Now referring particularly to
As a further option, and with particular reference to
In use, hammer 100 may be used to drive a nail or the like by engaging a shaft of the nail with channel 131 of nail-starter 130 such that a head of the nail abuts anvil surface 133 and such that the nail is retained within channel 131 via magnet 135. A user may then drive the nail into a target by swinging head 120 via handle 110 such that anvil surface 133 applies a driving force. Preferably, the nail may be removed from channel 131, overcoming a retention force, via frictional engagement with the target and a removal force applied to handle 110 by the user. The user may then swing hammer 100 to deliver a striking force by impacting the head of the nail with striking surface 123. If desired or necessary, a nail may be removed from an object via engagement of claw 121 with the shaft of the nail under the head and applying a levered extraction force via handle 110. Additionally or alternatively, slot 141 may be engaged with the nail head to apply an extraction force. Likewise, notch 143 may be engaged with the nail shaft beneath the head of the nail to apply an extraction force.
Having thus described exemplary embodiments of the present invention, it should be noted by those skilled in the art that the within disclosures are exemplary only and that various other alternatives, adaptations, and modifications may be made within the scope and spirit of the present invention. For example, while cavity 125 has been described and illustrated as defining a closed-loop aperture through head 120, cavity 125 may be formed as an open-loop aperture, such as when cavity 125 extends to an exterior perimeter of head 120. Accordingly, the present invention is not limited to the specific embodiments as illustrated herein, but is only limited by the following claims.
This application claims the benefit as a continuation of U.S. Utility application Ser. No. 12/589,846 filed on Oct. 28, 2009, currently pending, which in turn claims priority to U.S. Utility application Ser. No. 12/387,761 filed on May 6, 2009 currently abandoned, the contents of which is hereby incorporated by reference, which in turn claimed priority to U.S. Provisional Application Ser. No. 61/050,963 filed on May 6, 2008, presently abandoned, the contents of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6619408 | Lai | Sep 2003 | B1 |
6763747 | Gierer et al. | Jul 2004 | B1 |
6848341 | Pace et al. | Feb 2005 | B2 |
6923432 | Martinez | Aug 2005 | B1 |
6961985 | Boys | Nov 2005 | B2 |
7066052 | Chen | Jun 2006 | B2 |
7143667 | Deros et al. | Dec 2006 | B2 |
20060021473 | Deros et al. | Feb 2006 | A1 |
20060207391 | Chen | Sep 2006 | A1 |
20070006686 | Warren et al. | Jan 2007 | A1 |
20070089571 | Chen | Apr 2007 | A1 |
20070151421 | Schroder | Jul 2007 | A1 |
20080053278 | St. John et al. | Mar 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20110079111 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
61050963 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12589846 | Oct 2009 | US |
Child | 12967936 | US | |
Parent | 12387761 | May 2009 | US |
Child | 12589846 | US |