This invention relates to a damper for damping vibration and noise in an archery bow, and more specifically to a vibration damper attached to a bowstring for damping vibration and noise in the bowstring.
Various designs of string dampers are known to exist. Generally, these designs are of two types—those supported by the bowstring and those supported by some structure other than the bowstring. Of those not supported by the bowstring, some are attached to the bow riser or handle while others are attached to a bow limb. These types of string dampers generally brace a string or transfer energy to the supporting structure.
Known string dampers attached to a bowstring or cable directly can be attached by various methods; however, these present difficulty for servicing. For example, some dampers are secured to a bowstring by placing a part of the string damper between strands of the bowstring or placing a part of the string damper around the string in a way that requires disassembly of bow in order to remove or adjust the damper.
There remains a need for novel string dampers that can be easily attached to a bowstring or cable, easily moved along the bowstring or cable or removed entirely from the bowstring or cable, and yet remain fixedly secured to the bowstring or cable while attached, all without disassembly of the bow.
All US patents and applications and all other published documents mentioned anywhere in this application are incorporated herein by reference in their entirety.
Without limiting the scope of the invention a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.
A brief abstract of the technical disclosure in the specification is provided as well only for the purposes of complying with 37 C.F.R. 1.72. The abstract is not intended to be used for interpreting the scope of the claims.
In some embodiments, a string damper comprises a body portion and an aperture portion being attached to the body portion. The string damper has a first relaxed configuration and a second bound configuration. In the second bound configuration, at least a portion of the body portion is disposed through the aperture portion.
In some embodiments, the body portion of the string damper further comprises a locking portion; the locking portion is configured to engage the aperture portion in the second bound configuration.
In some embodiments, the body portion of the string damper has a distal end. The locking portion is disposed between the aperture portion and the distal end.
In some embodiments, the locking portion comprises a tapered portion, the tapered portion tapering toward the distal end.
In some embodiments, the aperture portion defines an aperture axis. In some embodiments, the body portion defines a body portion axis. In a second configuration, the aperture axis is coaxial with the body portion axis.
In some embodiments, the body portion has an arcuate shape.
These and other embodiments which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages and objectives obtained by its use, reference can be made to the drawings which form a further part hereof and the accompanying descriptive matter, in which there are illustrated and described various embodiments of the invention.
A detailed description of the invention is hereafter described with specific reference being made to the drawings.
While this invention may be embodied in many different forms, there are described in detail herein specific embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
For the purposes of this disclosure, like reference numerals in the figures shall refer to like features unless otherwise indicated.
In some embodiments, for example as shown in
In some embodiments, the body portion 30 comprises a distal end 38. The distal end 38 extends distally from the body portion 30. The distal end 38 can comprise any suitable shape, for example the body portion can taper along its length such that the distal end 38 is pointed. In some embodiments, the distal end 38 has a circular cross section; or, for example, the distal end 38 can have a rectangular cross section or any other suitable cross section.
Turning to
In some embodiments, the body portion axis 40 can comprise a central arcuate path, wherein the body portion axis 40 has a curved profile consistent with the curvature of the body portion 30. Where the body portion 30 is substantially straight along its length, the body portion axis 40 is similarly straight along its length. In some embodiments, the body portion axis 40 can be accurate, substantially straight, straight or any other suitable configuration consistent with the shape of the body portion 30.
In some embodiments, the aperture portion 20 generally defines an aperture 22 disposed therethrough (
The string damper 10 has a relaxed or first configuration (or first position) (
Turning now to
In
The string damper(s) 10 can be easily added to or removed from a string or cable of an archery bow, as described herein. As such, string dampers can be replaced or supplemented, as desired. Furthermore, the string damper(s) can be moved along the length of a string, or moved from one string to another without having to re-string the archery bow and without having to separate strands of the bowstring or remove string serving.
In some embodiments, the string damper 10 can comprise a unitary material, wherein the body portion is integral with the aperture portion.
A sting damper 10 can be made from any suitable material and is desirably sufficiently elastic that the damper 10 can reduce the vibrations present in a bowstring after firing an arrow. In some embodiments, the string damper 10 is formed from an elastomeric material such as natural rubber and/or various polymeric elastomers and/or combinations thereof. In some embodiments, the damper 10 is formed from one or more thermoplastic elastomer(s) such as Monprene® MP-1037-FL elastomer and/or Monprene® MP-2730 elastomer, available from Teknor Apex Company, 3070 Ohio Drive, Henderson, Ky. 42420.
In some embodiments, the cross sectional area of the aperture 22 is less than the cross sectional area of the body portion 30 when the string damper 10 is in a relaxed configuration. In this way, when the string damper 10 is placed in a bound configuration, the body portion 30 is positively engaged by the aperture portion 20, placing the aperture portion 20 in tension around the elongate portion 32 and preventing the string damper 10 from inadvertently coming loose, falling off or moving along the bowstring. In some embodiments, the cross sectional area of the aperture 22 is less than the cross sectional area of the elongate portion 32 or a portion of the elongate portion 32. As such, when the string damper 10 is in a bound configuration, the aperture portion 20 tightly engages the body portion 30 disposed in the aperture 22.
In some embodiments, the aperture 22 of the aperture portion 20 is circular. However, other suitable configurations are also acceptable. Moreover, the shape of the aperture portion 20 defining aperture 22 can coincide with a particular shape of the cross section of the body portion 30 or a portion of the body portion, specifically elongate portion 32. For example, if the cross section of the body portion 30 (or a portion of the body portion) is circular, the aperture 22 can comprise a circular opening. Other suitable cross sections can also be used.
In some embodiments, the aperture portion 20 is generally toroidally (or doughnut) shaped. In this case, the aperture portion 20 has a circular cross section of material. The aperture portion 20 can also comprise other suitable cross sections. For example, the aperture portion can have an elliptical, oblong, or polygonal cross section, or any other suitable cross section.
In some embodiments, for example as shown in
In at least one embodiment, the locking mechanism 34 comprises a raised flange 36, for example as shown in
Turning again to
In some embodiments, the elongate segment of the body portion axis 40 is coaxial with the aperture axis 50 when the string damper 10 is in a second or bound configuration, for example as shown in
In some embodiments, the cross sectional area of the locking mechanism 34 is generally greater than the cross sectional area of the portion of the body portion 30 oriented in the aperture 22. In some embodiments, the cross sectional area of the locking mechanism 34 is greater than the cross sectional area of the elongate portion 32. Furthermore, the cross section of the locking mechanism 34 is greater than the cross section of the aperture 22.
In some embodiments, the locking mechanism 34 has a peak 42 and a tapered or sloping portion 44. As shown in
The sloping portion 44 is generally distal to the peak 42. The tapered or sloping portion 44 transitions into arm portion 46 and eases pulling locking mechanism 34 through aperture 22 during placement of the string damper 10 on the cable or bowstring. In some embodiments, the sloping portion 44 is frustoconical.
In some embodiments, the arm portion 46 is a portion of the body portion 30. In some embodiments, the arm portion 46 is curved. The arm portion 46 can also comprise other suitable shapes. The arm portion 46 may alternatively be referred to as damping portion 46.
In some embodiments, the side of the locking mechanism 34 opposite the sloping portion 44 comprises a first surface 48 (
In some embodiments, when the string damper 10 is attached to a bowstring, for example as shown in
Generally, the string damper 10 is secured to a bowstring by wrapping a portion of the body portion 30 around the bowstring, threading the distal end 38 of the string damper 10 through the aperture 22 of the aperture portion 20, pulling on the distal end 38, and securing the string damper 10 on the string.
In some embodiments, the body portion 30 is configured such that a locking mechanism 34 is pulled through the aperture 22 until the aperture portion 20 abuts the first surface 48, thereby securing the string damper 10 on the string. Furthermore, the string damper 10 can be rotated relative to the bowstring to position the arm 46 in a desired orientation, for example substantially perpendicular to the direction of bowstring travel. The string damper can be oriented in any suitable configuration to maximize damping effectiveness.
The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this field of art. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to”. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims.
Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.
This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.
This application is a Continuation of U.S. patent application Ser. No. 13/903,628, filed May 28, 2013, which is a Continuation of U.S. patent application Ser. No. 12/606,873, filed Oct. 27, 2009, now U.S. Pat. No. 8,448,633, the entire content of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
D27931 | Eaton | Dec 1897 | S |
D33108 | Eaton | Aug 1900 | S |
D123490 | Saffell | Nov 1940 | S |
2326693 | Sindler | Aug 1943 | A |
2617402 | Roemer | Nov 1952 | A |
2777437 | Allen | Jan 1957 | A |
2910058 | Bender | Oct 1959 | A |
2956560 | Stockfleth | Oct 1960 | A |
3010447 | Roemer | Nov 1961 | A |
3059370 | Moore | Oct 1962 | A |
3059629 | Stinson | Oct 1962 | A |
3331720 | Watson | Jul 1967 | A |
3340862 | Saunders | Sep 1967 | A |
3375815 | Novak | Apr 1968 | A |
3507525 | Sable | Apr 1970 | A |
3584615 | Stinson | Jun 1971 | A |
3588963 | Moberg | Jun 1971 | A |
3597803 | Van Neil | Aug 1971 | A |
3612029 | Carroll | Oct 1971 | A |
3658157 | Lee | Apr 1972 | A |
D226429 | Christen | Mar 1973 | S |
3756214 | Christen | Sep 1973 | A |
3756215 | Black | Sep 1973 | A |
3757761 | Izuta | Sep 1973 | A |
3837327 | Saunders | Sep 1974 | A |
3937205 | Saunders | Feb 1976 | A |
4023551 | Huddleston | May 1977 | A |
4050334 | Davis, Jr. | Sep 1977 | A |
4061125 | Trotter | Dec 1977 | A |
4079722 | Griggs | Mar 1978 | A |
4080951 | Bateman, III | Mar 1978 | A |
D266179 | Peck | Sep 1982 | S |
RE31541 | Wood | Mar 1984 | E |
4461267 | Simonds et al. | Jul 1984 | A |
4628892 | Windedaul et al. | Dec 1986 | A |
4909233 | Stephenson | Mar 1990 | A |
5016604 | Tilby | May 1991 | A |
D322022 | Cunningham et al. | Dec 1991 | S |
5079804 | Gregurich et al. | Jan 1992 | A |
D343234 | Williams | Jan 1994 | S |
D344123 | Bertram | Feb 1994 | S |
5287842 | Saunders | Feb 1994 | A |
D346423 | Kitagawa | Apr 1994 | S |
5323756 | Rabska | Jun 1994 | A |
5368006 | McPherson | Nov 1994 | A |
5390657 | Larson | Feb 1995 | A |
5450673 | Denton | Sep 1995 | A |
5452704 | Winebarger | Sep 1995 | A |
5606963 | Wenzel et al. | Mar 1997 | A |
5680851 | Summers | Oct 1997 | A |
5715578 | Knudson | Feb 1998 | A |
5720269 | Saunders | Feb 1998 | A |
D410272 | Fitzgerald, Jr. | May 1999 | S |
RE36555 | Tentler | Feb 2000 | E |
6044526 | Putney | Apr 2000 | A |
D426612 | Primeau, IV | Jun 2000 | S |
6237584 | Sims | May 2001 | B1 |
6257220 | McPherson et al. | Jul 2001 | B1 |
6412586 | Askew | Jul 2002 | B1 |
6443139 | McPherson | Sep 2002 | B1 |
6446620 | Summers | Sep 2002 | B1 |
6679242 | Martin | Jan 2004 | B1 |
6681755 | Pujos | Jan 2004 | B2 |
6761158 | Wright | Jul 2004 | B2 |
D503769 | Korn et al. | Apr 2005 | S |
6966314 | McPherson | Nov 2005 | B2 |
7082937 | Land | Aug 2006 | B1 |
D546659 | Smith | Jul 2007 | S |
7264098 | McPherson | Sep 2007 | B2 |
D584134 | Lee | Jan 2009 | S |
D600773 | Hall | Sep 2009 | S |
D627460 | Horton | Nov 2010 | S |
D628669 | McPherson | Dec 2010 | S |
D628670 | McPherson | Dec 2010 | S |
D629896 | Horton | Dec 2010 | S |
D650036 | McPherson | Dec 2011 | S |
8839777 | Webb | Sep 2014 | B1 |
8850675 | Frydlewski | Oct 2014 | B2 |
20020162199 | Notomi | Nov 2002 | A1 |
20030183219 | Wright | Oct 2003 | A1 |
20060011190 | Andrews | Jan 2006 | A1 |
20080040898 | Stolk | Feb 2008 | A1 |
20090107474 | Silverson | Apr 2009 | A1 |
20100089375 | McPherson et al. | Apr 2010 | A1 |
20100319670 | Sims et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
0159392 | Aug 2001 | WO |
0159393 | Aug 2001 | WO |
Entry |
---|
Dealer-Only Jennings Line Gets New Damping System, Unique Camo:, Arrowtrade, Jan. 2002 Edition, pp. 50-52. |
Bowhunting.net, eNews Bowhunting & Archery News & Articles, http://www.bowhunting.net/artman/publish/BowTech—WildThing.shtml, Copyright 2005, Retrieved Oct. 13, 2008. |
Martin Archery 2003 catalog. |
Number | Date | Country | |
---|---|---|---|
20160146565 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13903628 | May 2013 | US |
Child | 15011271 | US | |
Parent | 12606873 | Oct 2009 | US |
Child | 13903628 | US |