1. Field of the Invention
The present invention relates generally to a strip brush seal arrangement to effect a seal between a rotary shaft of a compressor, gas turbine engine, refrigerator, pump or the like, and a housing containing the rotary shaft therein. More particularly, this invention relates to a technical domain of strip brush seals in which a lifting portion located the free end side of the seal portion is arranged at an angle relative to the diameter surface of the rotary shaft in order to increase a lifting force and to decrease friction under relative movements.
2. Description of the Related Art
Related art of the present invention is found in U.S. Pat. No. 6,343,792, which discloses a strip brush seal device 100 as shown in
A plurality of the strip brushes 109 are arranged to form an annularly-shaped body as a whole wherein the outer perimeter edges of the strip brushes 109 are welded at soldering portions 105 in an integral manner. The annularly-shaped outer perimeter surface thus formed by the soldering portions 105 defines a mounting portion 104, by means of which the annularly-shaped is installed onto a housing 110. A back plate 102 is disposed on one side of the strip brushes 109 which is in the low pressure region P2 whilst a retainer plate 103 is disposed on the other side which is in the high pressure region P1. The back plate 102 and the retainer plate 103 provide supports on the both sides of the strip brushes 109, and the back plate 102 effects a seal against a fluid located in the high pressure region P1. At the same time a seal against leakage of the fluid to the low pressure side P2 between the back plate 102 and the rotary shaft 120 is effected by a plurality of the strip brushes 109 constituting the annular shape.
However, the strip brush 109 retains a curved surface protruding in the rotational direction of the rotary shaft 120. Furthermore, as the strip brush 109 is made rather rigid, the free end surface of the strip brush 109 fits the outer diameter surface of the rotary shaft 120 with a relatively large clearance therebetween. The large fit clearance makes it difficult to effect a seal against the fluid. Also the strip brush 109 is bent to a circular shape such that the free end tip is directed toward the center of the rotary shaft 120. If the strip brush 109 increases its rigidity, the strip brush 109 exhibits less elastic deformation. Therefore the sliding surface of the strip brush 109 is subjected to wear when the free end tip of the strip brush 109 comes in contact with the rotary shaft 120 because of a vibration of the rotary shaft 120 or the like.
Thickness of the strip brush 109 is 0.1 mm and since the clearance gap between adjacent surfaces of the densely packed strip brushes 109 is arranged small, losing the degree-of-freedom in the strip brush 109 may worsen its elasticity. In particular, when the strip brush seal device 100 is in a small diameter, a longitudinal length of the strip brush 109 also becomes short. As a result the strip brush 109 substantially loses its elasticity and increasing wear of the strip brush 109 widens the clearance gap, which even worsens the seal capability.
Alternative related art of the present invention is found as a strip brush seal device 100 shown in
Also as the step 130 is disposed on the free end surface of the strip brush 109, employment of a thicker strip brush 109 makes it even more difficult to provide the strip brush 109 with a sufficient lifting force in order to lift the strip brush 109 off the circumference of the rotary shaft 120, when the relation between the rigidity of the strip brush 109 and the magnitude of the lifting force generated by the fluid is taken into account. Furthermore the step 130 on the thin strip brush 109, which requires precision machining, is not straightforward to manufacture. Use of the step 130 thus increases a machining cost and increases the production cost of the strip brush 109 after all.
Alternative related art of the present invention is found in the aforementioned U.S. Pat. No. 6,343,792, which discloses a strip brush seal device shown in
In the strip brush seal device 100 shown in
In addition with a strip brush seal comprised of strip brushes 109 which are circularly bent toward the opposite direction relative to the rotational direction, the step 130 disposed in the strip brush 109 cannot generate enough lifting force to lift the strip brush 109 off the rotary shaft 120 even when the fluid pressure acts on the step 130. Also disposing the tiny step 130 on the thin strip brush 109 alone can hardly exhibit a practical, lifting force. It implies that care for wear of the strip brush 109 is far from being sufficient. Fabricating the step 130 on an extremely thin strip imposes another technical difficulty.
The present invention is introduced to alleviate the above mentioned problems. A primary technical goal which this invention tries to achieve is to provide seal strips of a seal portion wiping against a rotary shaft with a lifting force in order to be lifted from the rotary shaft and to decrease friction therebetween, and to improve the seal capability by making use of a pressure generated at the seal portion due to a process fluid. Another technical goal is to simplify the manufacture of the seal strips disposing a lifting means and to decrease the production cost thereof.
A primary object of the present invention is to resolve the above mentioned technical problems, and preferred technical means of the present invention are realized as follows.
A strip brush seal device related to the present invention is for effecting a seal between one component and a rotary shaft defined as the other component in which the one component and the rotary shaft are in a mating relation with and relatively rotating against each other and the one component is attached with a mounting portion. The strip brush seal device comprises a strip brush seal and a back plate wherein the strip brush seal retains the mounting portion and a seal portion, the mounting portion being disposed in the outer circumference of an annularly-shaped body which is formed by arranging a plurality of thin rectangular seal strips along the circumference of the rotary shaft and the seal portion being located in the radially inward portion of the annularly-shaped body, and the back plate is disposed in the opposite side of the strip brush seal with respect to a fluid. Each seal strip retains a stoppage portion and a lifting portion wherein the stoppage portion is disposed in the radially outward portion of the seal strip relative to the seal portion and the lifting portion (also known as “lifting strip”) constitutes the radially inward portion of the seal strip and is arranged at a second angle (θ) to the tangential direction of the circumference of the rotary shaft, the second angle (θ) being in the range of from 0 to 40 degrees.
In the strip brush seal device related to the present invention, wherein the free end tip of the lifting portion being made of a thin strip is arranged at the second angle θ in the range of from 0 to 40 degrees to the tangential direction of the circumference of the rotary shaft which is originated at the point where the free end tip of the lifting portion makes a contact with or comes in close proximity to the circumference of the rotary shaft, a flow of the fluid which enters the inter strip gap between the seal strips of the seal portion is blocked by the back plate and directed toward the lifting portion. It is noted that the one component represents a component for retaining the rotary shaft such as housing or casing there within. The rotary shaft is defined as the other component, but it is not limited to a rotary shaft and an alternative relative component which is subjected to a relative movement will suffice.
The fluid pressure which acts on a space with a triangular cross section formed by the circumference of the rotary shaft and the lifting portion, provides a lifting force against the lifting portion so as to lift the lifting portion off the circumference of the rotary shaft forming a minute gap therebetween. When the lifting portion floats relative to the circumference of the rotary shaft, the fluid starts to flow from the free end of the rotary shaft toward the inter strip gap of the seal strip which is located adjacently forward in the direction of rotation. As a result a small gap is formed between the free end of the lifting portion and the circumference of the rotary shaft. At the same time a pressure increase at the free end of the lifting portion also leads to a pressure increase between the circumference of the rotary shaft and the inner diameter surface of the back plate, which effectively prevents the fluid from leaking through the gap between the circumference of the rotary shaft and the inner diameter surface of the back plate toward a low pressure region. The lifting portion therefore provides not only an effect for avoiding wear against the circumference of the rotary shaft but also another effect for improving the seal capability by increasing the inter surface pressure in the lifting portion.
Described below is details of the figures of preferred embodiments of a strip brush seal device constructed in accordance with the principles of the present invention. All the figures explained below are constructed according to actual design drawings with accurate dimensional relations.
In
In the seal portion 6, a stoppage portion 3A (it is hereafter called a stoppage strip) of the seal strip 3 located closer to the mounting portion 4, as shown in
Assembly of the strip brush seal 2 with the mounting portion 4, the back plate 16 and the retainer plate 15 is integrated by means of a joint portion 20A. The outer circumferential portion of the integrated assembly unit is defined as a fixing portion 20 which is mounted onto a groove portion 51 disposed in the housing 50. Instead, the outer perimeter of the mounting portion 4 integrally welded may be directly installed in the annularly-shaped groove 51 of the housing 50 without a support from a back plate 16. Also a strip brush seal 2 in
The inner portion of the strip brush seal 2 constitutes a seal portion 6 which is an inner portion of an annularly-shaped body being formed by piling a plurality of seal strips 3. The seal strip 3 in the seal portion 6 includes a stoppage strip 3A and a lifting strip 3B; the stoppage strip 3A is a portion of the seal portion 6 located from the inflection point toward the mounting portion 4 and the lifting strip 3B is located form the inflection point toward the free end edge. The individual lifting strips 3B are arranged at a small angle with respect to the tangential direction “H” of the rotary shaft 60 wherein adjacent lifting strips 3B come in contact or in close proximity with each other. The seal portion 6 thus arranged effects a seal against a process fluid between the housing 50 and the rotary shaft 60.
This strip brush seal 2 disposes a plurality of thin seal strips 3, each of which is bent in two steps as illustrated in
The height of the protrusion portions 5, being dependent on the radial dimensions of the strip brush seal 2, can be 10−6 m as an example. Dimension of the inter strip gap of the seal strips 3 in the seal portion 6 thus arranged affects the seal capability against a process fluid. The inter strip gap of the seal strips 3 is also arranged such that the seal strips 3 exhibit a substantial elasticity when the seal portions 6 come in contact with the rotary shaft 60. The smaller the inter strip gap becomes, the more seal performance will be exhibited. At the same time, however, resilient flexibility of the seal strips 3 is decreased. On the other hand, increasing the inter strip gap leads to a decrease in the seal capability as well as an improvement of the resilient flexibility. Thus having seal strips whose thickness is gradually decreased toward the free end tip will provide a good result. Details on this arrangement will be described later.
As previously described the strip brush seal 2 in an integral annular shape can be installed to the groove portion 51 of the housing 50 for effecting a seal against a fluid. Also if the housing 50 has a step wall surface corresponding to a back plate 16, the strip brush seal 2 of an integral annular shape can be mounted to the housing 50. However, in order to improve the seal capability of the strip brush seal device 1, it is preferable to dispose a ring-shaped back plate 16 in the opposite side to a surface where the fluid acts on. The back plate 16 disposes a mount groove portion 16A1 on the joint surface of an outer perimeter portion 16A wherein the mounting portion 4 is engaged in the mount groove portion 16A1. Also a radially inward portion 16C of the back plate 16 fits with the rotary shaft 60 with a clearance gap therebetween. The inner diameter surface of the radially inward portion 16C is arranged larger than the outer diameter surface of the rotary shaft 60 such that the both surfaces do not touch with each other. The back surface 16B of the back plate 16 provides the strip brush seal 2 with a support against the fluid pressure and also prevents the fluid from leaking between the arranged surfaces of the individual seal strips 3 of the strip brush seal 2.
A retainer plate portion 15 disposes a mount groove portion 15A which is arranged symmetrically to the back plate 16 with respect to the strip brush seal 2 wherein the mount groove portion 15A is similar to the mount groove portion 16A1 of the back plate 16. This mount groove portion 10A is engaged with the mounting portion 4 to hold the mounting portion 4. The back plate 16 and the retainer plate portion 15 are oppositely made in contact to form a contact surface wherein the outer perimeter portion of the contact surface is welded. The welded portion is defined as a joint portion 20A and the whole radially outward portion is defined as a fixing portion 20. As an alternative means to obtain the fixing portion 20, an O-ring can be disposed around the contact surface between the back plate 16 and the retainer plate portion 15 without welding at the outer perimeter portion between the back plate 16 and the retainer plate portion 15. The fixing portion 20 consisting of the back plate 16 and the retainer plate portion 10, which are in contact with each other, is installed in the groove portion 51 of the housing 50, followed by fastening bolts for a secure assembly.
Strip brush seal 2 is arranged as shown in
If the spacer portions 5 are disposed at least at the both ends of the mounting portion 4, welding at the side edges of the mounting portion 4 can be done without having inbetween protrusions between the edges. Furthermore the spacer portions 5 can be fabricated not only by bending but also by alternative deposition methods including chemical processes such as chemical etching or chemical deposit. As far as the height of the continuous protrusions 5 (or spacer portion) shown in
In the seal strip 3 of the seal portion 6 in
Inclination angle θ1 of the seal strip 3 is determined based on the rotational speed of the shaft 60, the magnitude of excursions of the shaft 60, and vibration of the shaft 60. The angle θ1 of the seal strip 3 is in the range of from 50 to 90 degrees relative to the radial direction. Also the seal strip 3 has a rectangular form. Longitudinal dimensions of the rectangular seal strip 3 is that the mounting portion 4 is in the range of from 5 to 10 mm and the seal portion 13 is in the range of from 30 to 50 mm. Also the width of the rectangle is in the range of from 3 to 10 mm. Thickness of the seal strip 3 in use is in the range of from 0.05 to 0.5 mm, more preferably from 0.08 to 0.3 mm. These dimensions are determined depending on the size of a strip brush seal device 1, and a brush seal device 1 in large size required a large seal strip 3 accordingly. Also the higher the fluid pressure becomes, the larger the width necessarily becomes. The seal strip 3 is made of steel sheet, stainless sheet, nickel-based alloy, ceramics sheet or the like.
Strip brush seal device 1 in
Each of the lifting strips 3B of the seal portion 6 individually arranged lightly abuts with its adjacent lifting strip at the free end. When a fluid acts on the first gap H1 of the seal portion 6 thus arranged, the fluid pressure also acts on the second gap H2 of the wedged space. The pressure exerted to the second gap H2 provides the lifting strip 3B with a lifting force for floating off the circumference of the rotary shaft 60. The pressure distribution of the fluid acting on the lifting strip 3B is shown in
Strip brush seal device 1 in
The strip brush seal 2 of
Strip brush seal device 1 in
The seal strip 3 of
In the respective examples described above the mounting portions 4 of the strip brush seals 2 are integrally joined by means of a bonding means such as soldering, electron beam or alternative welding method. The radial length of the retainer plate 15 will be sufficient if it is long enough to cover and hold the mounting portion 4 and to define a fixing portion 20. It, however, can be made to have a similar radial length to the back plate 6. In case that the retainer plate 15 has a similar radial length to the back plate 6, there should preferably dispose a clearance gap between the strip brush seal 2 and the retainer plate 15 such that the seal strips 3 can move along the circumference of the rotary shaft 60.
Although materials for the back plate 16 and the retainer plate 15 can be chosen as described above, the choice of a material should preferably be done in accordance with the thermal expansion ratio of the housing 50. For example, a nickel-based alloy or other non-ferrous metal may also be used. Furthermore the type and temperature of the process fluid in use and other conditions depending on its application domain will affect the selection process of materials.
In
In addition since the inter strip gap in the free end side of the lifting strip of a seal portion 6 is arranged small a secure seal can be provided against fluid. Also the individual spacer portions 5 which are integrally joined effectively prevent the fluid from leaking through the mounting portion 4 in a radially outward direction. The mounting portions 4 can securely be connected with each other by means of welding at the both sides of the spacer portions 5.
Described below is an alternative embodiment related to the present invention.
In a strip brush seal device 1 of a second embodiment related to the present invention, the lifting portion is defined as a lifting strip and a lifting strip 3B retains a lifting means 10 at the free end of the lifting strip 3B.
In the strip brush seal device 1 of a second embodiment related to the present invention, as the notch-shaped lifting means 10 is disposed at the free end of the lifting strip 3B as shown in
The lifting force distribution becomes of an equal amount of force anywhere as indicated by U of
A strip brush seal device 1 of a third embodiment related to the present invention retains a spacer portion for providing an inter strip gaps to a seal strip 3 in an outer circumferential mounting portion 4 and the free end surface of an inner circumferential lifting portion 3B is disposed in an abutting relation or in close proximity with a rotary shaft 60.
In the strip brush seal device 1 of a third embodiment related to the present invention, when the seal strips 3 are disposed around the rotary shaft 60 to form an annularly shape and the adjacent strip surfaces of the seal strips 3 located toward the seal portion 6 side lightly abut with each other or come in close proximity relative to each other, a mounting portion 4 side necessarily becomes large in diameter and a gap remains between the arranged surfaces. Choosing the height of the spacer portion 5 according to the remaining inter strip gap leads to a straightforward manufacture of the annularly shape of the mounting portions 4. Also welding of the spacer portions 5 of the mounting portion 4 along the side edge does not cause any deformation to the orderly arranged strip gap of the seal strips 3 and provides an easy means for integration. This welding process takes place at a distal location from the radially inward free end and therefore no influence on the elastic deformation of the lifting portion 3 is resulted.
Inter strip gap in the mounting portion 4 side of the seal portion 6 is made large and the radially inward surface of the lifting portion 3B lightly abut on the circumference of the rotary shaft 60 wherein a space of a triangular cross section is formed between the arranged surfaces of the seal portion 6. This makes the fluid flow more easily from the inter strip gap in the stoppage portion 3A side toward the inter strip gap in the radially inward lifting portion 3B. The fluid then passes through between the lifting portion 3B and the circumference of the rotary shaft 60 and lifts up the lifting portion 3B by a minute clearance gap. The lifting portion 3B is therefore put into a non-contact situation relative to the circumference of the rotary shaft 60 and friction and wear under a sliding motion is prevented. Also a pressure increase of the fluid in the inter strip gap of the lifting portion 3B leads to an improvement of the seal capability of the seal portion 6.
A strip brush seal device 1 of a fourth embodiment related to the present invention retains a seal strip 3 of a seal portion 6 being arranged gradually thinner as it approaches the free end tip thereof.
In the strip brush seal device 1 of the fourth embodiment related to the present invention, since the thickness of the seal strip 3 gradually decreases as it approaches the free end tip, the lifting portion 3B can exhibit a substantial elastic deformation and improve a lifting capability thereof. Also as the inter strip gap of the seal portion 6 can be arranged small an inhibition (seal) effect of the seal portion 6 against the fluid can be improved. In case of a strip brush seal 2 of a small diameter, in particular, a longitudinal length of the seal strip 3 becomes small. Gradually thinning the seal strip 3 in a direction toward the lifting portion 3B provides a substantial lifting capability of the lifting portion 3B even for the seal strip 3 of a short length. The lifting portion 3B thus provided with a resilient flexibility effectively prevents friction and wear against the rotary shaft 60.
A strip brush seal device 1 of a fifth embodiment related to the present invention retains a lifting portions 3B which is cut away in a notch shape in a direction of from a free end tip of a lifting portion 3B toward a mounting portion 4 side.
In the strip brush seal device 1 of a fifth embodiment related to the present invention, as the lifting portion 3B is cut away in a notch shape from the free end tip of the lifting portion 3B a fluid entering the inter strip gap of a stoppage means 3A passes through the lifting portion 3B and provides the lifting portion 3B with a continuous lifting force such that the lifting portion 3B is lifted away from the circumference of a rotary shaft 60 at a uniform distance thereto. The pressure distribution acts on in a uniform manner as shown in PB of
The lifting force distribution becomes of an equal amount of force anywhere on the surface as indicated by U of
Having described specific embodiments of the invention, however, the descriptions of these embodiments do not cover the whole scope of the present invention nor do they limit the invention to the aspects disclosed herein, and therefore it is apparent that various changes or modifications may be made from these embodiments. The technical scope of the invention is specified by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2003-153810 | May 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5941685 | Bagepalli et al. | Aug 1999 | A |
6267381 | Wright | Jul 2001 | B1 |
6308957 | Wright | Oct 2001 | B1 |
6343792 | Shinohara et al. | Feb 2002 | B1 |
6601853 | Inoue | Aug 2003 | B2 |
6648334 | Inoue | Nov 2003 | B2 |
6874788 | Kono | Apr 2005 | B2 |
20020140175 | Kono | Oct 2002 | A1 |
20030042682 | Inoue | Mar 2003 | A1 |
20030062684 | Inoue | Apr 2003 | A1 |
Number | Date | Country |
---|---|---|
0 629 798 | Dec 1994 | EP |
0 933 567 | Aug 1999 | EP |
1 013 975 | Jun 2000 | EP |
2 715 983 | Aug 1995 | FR |
2 286 434 | Aug 1995 | GB |
Number | Date | Country | |
---|---|---|---|
20070018408 A1 | Jan 2007 | US |