Stamping systems in metalworking often encompass punching, coining, and bending a strip of metallic stock. To accomplish this effort, a metal strip of steel is fed through a reciprocating stamping press. As the press moves up, a die moves with it, which allows the material to feed into the stamping press. When the press moves down, the die closes and performs the stamping operation. Thus, with each stroke of the press, a part can be formed, completed, and then removed from the stamping system.
As it is fed through the stamping press, metallic stock has also been known to accidentally come loose in the feed line. Once loosened, strip is apt to folding up, jamming the feed, and causing the die to crash. A strip holding device is therefore desirable to ensure the metallic stock does not come loose while being fed through stamping systems.
A metal strip holding device configured to be connected to the die of a stamping system is presented herein. The strip holding device includes a magnetic component and a non-magnetic bracket. The magnetic component has at least one pole shoe. The bracket is configured to be connected to the die. Moreover, the magnetic component is installed into a cavity in the metal bracket.
The metal strip holding device may include a second magnetic component with at least one pole shoe. The bracket may be constructed from aluminum, bronze, or stainless steel. The bracket may have a substantially rectangular shape. In certain instances, the magnetic component may have four pole shoes. The cavity may be centrally located in the metal bracket. The strip holding device may be configured to be installed onto the bottom die of a stamping system. The strip holding device may be configured to be installed onto the rail component of the bottom die.
A method of feeding a metallic strip past the die of a stamping system is also presented herein. The feeding method includes the following steps: (a) providing a die of a stamping system; (b) providing an embodiment of the strip holding device presented herein, the holding device being connected to the rail of the die; (c) feeding a portion of the metallic strip next to a portion of the die, to force the rest of the metallic strip downstream in the stamping system; (d) allowing the strip holding device to magnetically hold onto the metallic strip; (e) allowing the die to perform the stamping operation on the portion of the metallic strip; and (f) repeating steps (c), (d), and (e) until completion of the stamping operation.
Embodiments of the present disclosure are described herein. It is to be understood, however, that the disclosed embodiments are merely examples and other embodiments can take various and alternative forms. The figures are not necessarily to scale; some features could be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present system and/or method. As those of ordinary skill in the art will understand, various features illustrated and described with reference to any one of the figures can be combined with features illustrated in one or more other figures to produce embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. Various combinations and modifications of the features consistent with the teachings of this disclosure, however, could be desired for particular applications or implementations.
Referring to
The bracket 14 may have a rectangular shape with two peripherally extending step features 22, which facilitates the operative installation of holding device 10 onto rail 24 of the stamping system's bottom die 26. The bracket 14 may moreover be constructed from a non-magnetic metal such as, but not limited to, aluminum, bronze, or stainless steel so the magnetic flux will not get transferred into bracket 14 and can remain concentrated around the magnets 12. As can be seen, holding device 10 is operatively installed onto rail 24 via a number of bolts; however, it should be understood that holding device 10 may be operatively installed to rail 24 by other means (e.g., welding, being inserted into a cavity/orifice in the rail body, etc.).
Another embodiment of holding device 10 is shown in
To operate holding device 10 an operator of the stamping system feeds a strip of steel stock into the stamping system. The operator then empowers the stamping system. At this point, airflow should also be provided to the magnets 12, and the pole shoes 18 producing a magnetic field. This allows strip holding device 10 to magnetically hold the metal strip in place. The operator will then cause the press to move down and close the die to perform the stamping operation. Once stamping is complete, the airflow may be halted and the pole shoes may be relieved of producing a magnetic field to allow more of the strip to be fed into the system. These steps should be repeated until the metallic strip runs out of feed or stamping operation is considered complete.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms encompassed by the claims. The words used in the specification are words of description rather than limitation, and it is understood that various changes can be made without departing from the spirit and scope of the disclosure. As previously described, the features of various embodiments can be combined to form further embodiments of the system and/or method that may not be explicitly described or illustrated. While various embodiments could have been described as providing advantages or being preferred over other embodiments or prior art implementations with respect to one or more desired characteristics, those of ordinary skill in the art recognize that one or more features or characteristics can be compromised to achieve desired overall system attributes, which depend on the specific application and implementation. These attributes can include, but are not limited to cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. As such, embodiments described as less desirable than other embodiments or prior art implementations with respect to one or more characteristics are not outside the scope of the disclosure and can be desirable for particular applications.
Number | Name | Date | Kind |
---|---|---|---|
687931 | Barr | Dec 1901 | A |
2209558 | Bing | Jul 1940 | A |
2287286 | Bing | Jun 1942 | A |
2479584 | Meyer | Aug 1949 | A |
2992580 | Stolk | Jul 1961 | A |
3211035 | Whistler, Sr. | Oct 1965 | A |
3253493 | Weisbeck | May 1966 | A |
3269238 | Whistler, Sr. | Aug 1966 | A |
3353822 | Dangelmaier | Nov 1967 | A |
3688619 | Yabuta | Sep 1972 | A |
3812629 | Campbell | May 1974 | A |
5138919 | Wilhelm | Aug 1992 | A |
7237421 | Von Allwoerden | Jul 2007 | B2 |
20090027149 | Kocijan | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
19644513 | Jun 1998 | DE |
648356 | Jan 1951 | GB |
Number | Date | Country | |
---|---|---|---|
20180093320 A1 | Apr 2018 | US |