Embodiments of the invention relate to lighting fixtures.
Traditional strip lighting fixtures have included a substantially rectilinear channel defined by a base and two upstanding side walls and an end plate positioned on each end of a channel. Collectively, the channel and the end plates define a channel cavity for housing the electronic fixture components, such as the ballast. A channel cover is positioned on and attached to the channel to enclose the electronic components. Socket brackets extend from the channel and receive lamps.
In use, the channel, which is positioned so that the channel base is positioned proximate the ceiling, is suspended from a ceiling with a tong hanger. The tong hanger has downwardly extending arms that engage each of the side walls of the channel. Traditionally, as shown in
In some cases, it may be desirable to install strip fixtures end-to-end to give the appearance of a continuous light fixture. Traditionally, this type of installation required the removal of the end plates from adjacent fixtures to create an open channel between the fixtures. As shown in
Embodiments of the invention provide strip lighting fixtures. In one embodiment, the strip fixture includes a channel defined by a base plate and two side walls, end plates located at each end of the channel, and a channel cover that snap-fits onto the channel to form an electronic enclosure for the ballast and other fixture components.
In some embodiments, the channel side walls may include at least one gripper indentation that engages with a tong hanger to attach the strip fixture to a support structure. In one embodiment, the tong hanger includes a base plate and side arms, where the side arms have tong hanger hooks that releasably engage the gripper indentations via a snap-fit connection. Thus, the tong hanger may support the weight of the strip fixture without requiring additional mechanical fasteners. For purposes of this application, the term “releasably” (as in releasably engage or secure) is intended to mean without the use of separate mechanical fasteners.
In some embodiments, the tong hanger includes fasteners on the tong hanger base plate to connect the tong hanger to a support structure in various orientations. In one embodiment, hooker clips are affixed to the tong hanger base plate, which are designed to connect the tong hanger to the lower flange of a T-bar. In one method of installation, the tong hanger is affixed to a support structure with hooker clips, the channel is snap-fitted onto the tong hanger, and the channel cover is snap-fitted onto the channel without the need for separate mechanical fasteners or tools.
In some embodiments, socket brackets are connected to the channel, with lamp sockets in turn connected to the socket brackets. The wiring from the lamp sockets and ballasts may be located within the channel. In some embodiments, the channel cover is contoured to provide additional spacing or relief areas to avoid pinching wires between the channel cover and the socket bracket and/or the channel. In other embodiments, a lamp reflector may be used in conjunction with, or in place of, the channel cover. The lamp reflector enhances directional control of the lamp output.
In some embodiments, multiple strip fixtures may be secured end-to-end to create the appearance of a continuous lighting fixture. To connect these strip fixtures, an end plate is removed from one end of each strip fixture, and the open ends of each strip fixture are positioned adjacent one another to form a seam. In some embodiments, a channel aligner is used to span the seam and connect the adjacent open ends of the two strip fixtures. To provide additional lateral stability, the channel aligner may also have wings that releasably engage with the channel side walls.
Embodiments of the invention provide strip lighting fixtures. While the strip lighting fixtures are discussed for installation with tong hangers, they are by no means so limited. Rather, embodiments of the strip lighting fixtures may be installed with fastening devices of any type.
The components of strip fixture 10 may be formed of any material(s) having sufficient structural integrity. Suitable materials include, but are not limited to, metallic and polymeric materials. In some embodiments, the strip fixture 10 components are formed from metal, such as 22 or 26 gauge steel. It may be desirable, but certainly not necessary, to treat some surfaces of the strip fixture 10 (such as the channel cover) to be reflective, such as via application of a highly reflective paint.
Conventionally, channel covers have been attached to channels with screws, ¼ turn fasteners, etc. While one of skill in the art will understand that the channel cover 20 may be attached to the channel 12 through the use of any suitable fastening device (including those used in the past), it is preferable, but not required, that the channel cover 20 be installed onto the channel 12 without the use of mechanical fasteners. In one such embodiment, the channel cover 20 has a base 24 and sides 26 that extend over side walls 16 and releasably engage with a lance 28 on the outer surface 30 of side walls 16. Thus, the channel cover 20 snap-fits onto the channel 12 without the need for any additional mechanical fasteners. As a result, the channel cover 20 is easily removed to access electrical components housed therein.
As shown in
One of skill in the art will understand that the strip fixture 10 may be affixed to a support surface, such as a ceiling, by any suitable mechanical or chemical fastening device. In one embodiment, as shown in
In use, the strip fixture 10 is positioned relative to the tong hanger 34 so that the base plate 14 is received in the tong hanger channel 40. The strip fixture 10 is releasably attached to the tong hanger 34 via snap-fit engagement of the tong hanger hooks 44 in the gripper indentations 32 located on the side walls 16 of the channel 12. Insertion of the channel 12 into the tong hanger channel 40 causes the side arms 36 to flex outwardly from their resting state when the base plate 14 passes through the tong hanger hooks 44. Because the side arms 36 are resilient, they then contract inwardly so that the tong hanger hooks 44 engage the gripper indentations 32. The material properties of the tong hanger 34 also allow the side arms 36 to return to a resting state after the strip fixture 10 has been removed, providing for a repeatable snap-fit connection between the strip fixture 10 and the tong hanger 34. Thus, the tong hanger 34 supports the weight of the strip fixture 10 without the need for additional mechanical fasteners or other retention devices as has historically been the case, as illustrated by the traditional tong hanger shown in
As shown in
The tong hanger 34 may be installed on the T-bar 50 prior or subsequent to attachment of the strip fixture 10 on the tong hanger 34. In one method of installation, the tong hanger 34 is positioned on the T-Bar 50 with hooker clips 46, the channel 12 is snap-fitted onto the tong hanger 34, the channel cover 20 is snap-fitted onto the channel 12, and the bulbs are positioned in the sockets 52. This entire installation process occurs without the need for separate mechanical fasteners or tools for use with such fasteners, as has historically been the case.
As shown in
Lamp sockets 52 (mounted on socket brackets) for retaining lamps (not shown) may be provided on the strip fixture 10 via connection to socket brackets 54, as is commonly known and done in the art. Wiring from the lamp sockets 52 is routed within the channel 12. When connecting the channel cover 20 to the socket bracket 54 and/or channel 12, such wiring can become pinched between the channel cover 20 and the socket bracket 54 and/or the channel 12, thereby jeopardizing operation of the fixture. Embodiments of channel covers contemplated herein preferably, but not necessarily, are contoured to provide additional spacing or relief areas for wire routing. For example and as shown in
While the illustrated relief channels 58 are substantially rectilinear-shaped recesses, one of skill in the art will understand that relief channels 58 may be of any shape. When the channel cover 20 is connected to the strip fixture 10, relief channels 58 create spacing within the cavity of the strip fixture 10 for wire routing, thereby reducing the risk that wires will become pinched and thereby jeopardize operation of the fixture.
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, a channel aligner 66 is used to span the seam 64 and thereby connect adjacent open ends 62 of the two strip fixtures 10. While the illustrated channel aligner 66 is shaped to substantially correspond to the cross-sectional shape of the channel 12, one of skill in the art will understand that the channel aligner 66 may be any shape that provides a device to connect the open ends 62 of adjacent strip fixtures 10. In one embodiment, the channel aligner 66 has a channel aligner base plate 68 and wings 70 that extend upwardly from the channel aligner base plate 68. When the channel aligner 66 is positioned to span the seam 64 between the two strip fixtures 10, almost the entirety of the seam 64 is buttressed by the channel aligner 66 to impart a rigid, structurally sound connection between the two strip fixtures 10.
The channel aligner 66 may be secured in place to the strip fixtures 10 using any mechanical retention means. In the illustrated and non-limiting embodiment shown in
The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of the present invention. Further modifications and adaptations to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope or spirit of the invention.