1. Field
This disclosure relates to an apparatus for dispensing strip materials onto a moving substrate, such as paper-like material in a laminating or corrugating machine.
2. Related Art
U.S. Pat. Nos. 6,705,500; 5,759,339; 7,222,653 and 7,255,255; and Canadian Patent No. 2,342,495 disclose embodiments of strip material dispensing machines.
In one embodiment disclosed herein there is described an apparatus for dispensing strip materials onto one or more moving substrates. The apparatus includes a frame extending transversally of the substrate path, the frame supporting at least one guide arm and a guide arm positioning system. Each guide arm includes means for dispensing strip materials and can be independently moved along the frame by the guide aim positioning system. The guide arm positioning system includes at least one crank shaft coupled to a first end of the frame, such that each crank shaft can rotate about an independent axis per crank shaft. The guide arm positioning system also includes at least one friction drive means coupled to each crank shaft and to a corresponding guide arm, wherein each friction drive means depends on frictional contact between two surfaces to transfer rotational movement of a crank shaft to linear motion of a guide arm. Each guide arm is independently movable along the frame by rotation of a corresponding crank shaft.
Each friction drive means can include one or more drive pulley and tail pulley pairs, and cables that extend around each pair of drive and tail pulleys and that are fixed to a guide arm therebetween. A friction braking means can also be included to hold the guide arms in position, which can include various members that can be pressed against components of the drive system to frictionally prevent their motion.
The apparatus can also include a guide arm position feedback system that can include a magnet attached to each guide arm and a transducer attached to the frame which interact with a remote control panel to measure and display the location of the guide arms.
The apparatus can further include a substrate tracking and adjustment system that includes a controller, an actuator, and a sensor that can track the position of the substrate as it moves side to side from the normal substrate path and automatically adjust the position of the frame to match. In one embodiment, a linear actuator can adjust the transversal location of the frame relative to the substrate in response to a signal from the substrate sensor means, thereby adjusting all of the mounted guide arms in unison. The sensor can sense the substrate position and transmit the position information to a controller that can send a command signal to the actuator to move the frame to be aligned with the substrate position. As the frame moves, so do the guide arms supported by the frame. This sensing, comparing, and adjusting loop can be done repeatedly to maintain the frame and guide arms in the desired position in relation to the substrate.
Also disclosed herein is a process that includes three steps for preparing to dispense strip materials onto a moving substrate. Step one includes rotating at least one crank shaft coupled to a first end of a frame such that each crank shaft can rotate about an independent axis per crank shaft, the frame extending transversally of the substrate path, each rotating crank shaft thereby actuating a friction drive means, one friction drive means being coupled to each crank shaft and a corresponding guide arm, each friction drive means depending on frictional contact between two surfaces to transfer rotational movement of the crank shaft to linear motion of a guide arm, each friction drive means thereby moving the corresponding guide arm to a desired position along the frame, each guide arm having a supporting means to movably couple the guide arm to the frame and a dispensing means for dispensing strip materials onto the substrate. Step two includes using a guide arm position feedback means to automatically determine the transversal position of each guide arm in relation to a predetermined position and display the positions on a display device. Step three includes repeating steps one and two until the display device displays the desired positions of the guide arms.
a is a detailed isometric view of part of the inner components of the apparatus of
b is a detailed cross-sectional end view of the apparatus of
a is an exploded isometric view a tail end of the apparatus of
b is a cross-sectional end view of a tail end of the apparatus of
a is a cross-sectional end view of brake systems of the apparatus of
b is a cross-sectional end view of brake systems of the apparatus of
c is a detailed side view of a brake system member of the apparatus of
Disclosed herein is a compact, light weight, and easily floor-moveable apparatus for the dispensing of strip materials onto a moving substrate in a substrate processing machine. The apparatus includes at least one strip material dispensing guide arm that may be independently adjustable transversely of the direction of movement of the substrate.
The strip materials may be a ribbon material, such as tape, string and yarn, various web materials and various widths of material, particularly tapes that include an adhesive such as a hot melt adhesive, a hot melt pressure sensitive adhesive, a hot melt remoistenable adhesive, a water dispersible hot melt adhesive, a biodegradable hot melt adhesive or a repulpable hot melt adhesive, or heat activatable adhesives.
The substrate may be a film, non-woven web, paper product, paper board, carton blank, box board, corrugated board or other sheet material or web material, all of various widths.
The substrate processing machine may be a wet end, a dry end, or both a wet end and a dry end of a corrugation machine, a lamination machine, a carton press, a fiber reinforcement application machine, or other similar machines that processes a moving substrate. In some embodiments, the substrate processing machine can process more than one substrate at the same time, for example, one above the other, and can combine more than one substrate into a single substrate during the processing.
According to one embodiment, changing the position of any one or more of the dispensing guide arms is accomplished by turning a series of crankshafts located at a head end of the apparatus. As the guide arms are moved, a control box precisely displays the position of each of the guide arms. This combination of moving the guide arms from the head end of the apparatus and the precise guide arm position readout enables apparatus setup and fine calibration without removing the apparatus from the substrate processing machine.
Change in the position of the strip materials is dictated by the desired position of the strip material on the substrate and the later manufacturing of the substrate. Depending on the strength of the strip material, the same will be a suitable transverse reinforcement of the substrate or serve as a tear strip affording ease in opening the container to be formed from the substrate.
As illustrated in
In some embodiments, two or more upright support towers 10 can hold the apparatus 2 in a generally horizontal position at a desired height above the ground. Each of these upright support towers 10 can be mounted on wheels 12 for increased mobility. The apparatus 2 and towers 10 can be wheeled in and out of the substrate processing machine 4. In one embodiment, after being wheeled into the machine 4, a portion of the apparatus 2, e.g. a guide track 110, can be fixed to and supported by the substrate processing machine 4, and one or more of the upright support towers can then be removed. In another embodiment, the upright support towers 10 can hold the apparatus 2 within the substrate processing machine 4 during operation and the apparatus 2 is not attached to the machine 4.
An extension member 14 can also be included to connect the apparatus 2 to an upright support tower 10 such that the tower can be located farther away from the laminating machine. The length of the extension member 14 can be adjustable, and in one embodiment, the extension member 14 has a hollow cross section.
The apparatus 2 includes an elongated frame 16. The frame 16 can be rectangular in cross section and can be constructed of aluminum. In certain embodiments, the frame 16 has a cross-sectional width of about 5.0 to 7.0 inches, and a cross-section height of about 4.25 inches. The frame 16 supports and encloses many components of the apparatus 2, shielding them from starch and other contaminants.
The frame 16 supports one or more guide aims 18 that can be mounted in a series along the length of the frame 16. As shown in
In certain embodiments, the frame 16 with mounted guide arms 18 and pulleys 24 can have a total cross-sectional width of about 12.1 inches and a total cross-sectional height of about 6.6 inches.
As shown in
In one embodiment, a series of crank shafts 32 are rotably supported by the sides 42 of the frame 16 along parallel, horizontal axes. Pairs of shafts can be supported by the frame 16, side by side along the same axis. In this format, a center member 40 of the frame 16 is vertically disposed between the two crank shafts 32 and supports the inner ends of both crank shafts 32 such that they can rotate independently. The outer ends of the crank shafts 32 pass through opposite side walls 42 of the frame 16 and are connected to drive mechanisms 44. The drive mechanisms 44 can be manual cranks or automated devices, such as electric motors or actuators.
A head pulley 34 is fixed to each crank shaft 32 within the frame 16 such that the head pulley 34 rotates with the crank shaft 32. Each cable 36 is secured to a corresponding guide arm 18 and makes a closed loop wrapping around a head pulley 32 and a tail pulley 46. The tail pulley assembly 48, shown in
The cable-pulley system is a friction-drive system that relies on the tension of the cable 36 strained around the head pulley 34 to move and hold the guide arms 18 in their desired positions. Tension can be necessary to prevent the cable 36 from slipping on the pulley 34 when the guide arms 18 exert a force on the cable 36, such as from a residual tension of the strip material 8 or an occasional jerk resulting from the splicing of two ends of running strip material 8. Tension can also be necessary to prevent the cable 36 from slipping on the pulley 34 when the crank shaft 32 is turned to move a guide arm 18 to a desired position. The frictional resistance generated can be the product of the tension force multiplied by the coefficient of static friction between the cable and pulley materials. The frictional resistance of the cable 36 on the pulley 34 and the angle subtending the arc of contact between the pulley 34 and tension element are the primary factors that affect the design and performance of the cable-pulley friction-drive systems.
An alternative to the cable-pulley friction-drive system, which relies on the tension of a cable strained around a pulley to move and hold guide arms in their desired positions, is a chain-sprocket direct-drive system, which relies on intimately interlocking contact between chain links and sprocket teeth to move and hold guide arms to desired positions. In such a direct-drive system, tension is not required to prevent the chain from slipping on the sprocket when moving a guide arm to the desired position or when guide arms exert a force on the chain. Other direct-drive systems include gear and threaded rod drives that also rely on the intimate interlocking contact between drive elements to provide the desired motive force.
As shown in
In another embodiment, shown in
In another embodiment, shown in
In yet another embodiment, shown in
Each of these brake system embodiments can create a friction-brake system that relies exclusively or primarily on the friction force between a surface of a friction member, such as the horseshoe-shaped member 64, the brake pad 78, or the brake nut 84, and a surface of a moving component of the drive system, such as a head pulley 34 or a crank shaft 32, to keep the guide arms 18 in their desired positions. In each embodiment, the friction force generated to restrict the motion of arm guide arm is a product of a normal force exerted upon the friction member multiplied by the coefficient of friction between the friction member and the drive system component. The normal force can be supplied by manual pressure transferred to the friction member through a suitable device, such as a lever or spring system.
The apparatus 2 can include a system for determining the position of the guide aims 18 transversely of the substrate direction of movement or the machine direction of the substrate 6. In such a system, the linear bearing 22 of each guide arm 18 can have a magnet 88 mounted to it that cooperates with a transducer 90, as shown in
The magnets 88 cooperate with the transducer 90 to afford a signal in response to a current pulse sent from the control panel 92 along the transducer 90. The signal from each arm 18 can be discerned by the electronics in the control panel 92 to calculate the distance any particular guide arm 18 is from the predetermined “0” and the numeric value can then be displayed on the display 94.
The transducer 90 and control panel 92 operation allows an operator to view the precise location of any guide arm 18. The control circuitry can trigger the transducer 90 to send a current pulse down a wire held inside the transducer 90. The current in the wire can then create an electric field about the wire. When the current flowing down the wire reaches the guide arm 18 in question, the electrical field of the wire interacts with the magnetic field of the magnet 88 on the guide arm 18. This interaction creates a torque in the wire producing a signal by the arm 18. The electronics of the transducer 90 calculate how long in time it was from when the current pulse was sent down the wire to when the reaction signal in the wire is sensed. From this information, the position of the guide arm 18 is discerned and the distance is calculated from the present “0” and a numeric value is displayed on the display of the control panel 92. The electronics can be designed to discern which magnet 88 from which to read the electric field-magnet field location signal. The operator then has a precise position reading and can adjust the arms 18 as necessary by rotating appropriate crank shafts 32.
As shown in
As shown in
In one embodiment, the apparatus 2, including between one to eight guide arms 18, friction drive systems, horseshoe-type friction brake systems 38, linear bearings 22 and magnets 88, plus the transducer 90, guide rollers 112 and track brackets 114, and other necessary components, but not including the extension member 14, upright support towers 10, or guide track 110, can weigh 130 lbs to 165 lbs, depending on the number of guide arms and related systems installed.
In some embodiments, the installation of the apparatus 2 with the substrate tracking and adjustment system 100 into the operational position within a substrate processing machine 4 can be accomplished by first installing the guide track 110 and the actuator-track bracket 116 onto a stationary structural component of the substrate processing machine 4 via one or more tack brackets 114. Next, with the guide rollers 112 and liner actuator 106 pre-mounted on the frame 16, the apparatus 2 can be wheeled on two upright support towers 10, as shown in
As the substrate 6 passes through the substrate processing machine 4 in the same direction as the strip material 8 application, the substrate sensor 102 can detect the transversal position of the substrate 6. The substrate sensor 102 can then transmit the substrate position information to a controller 104. The control panel 92 can then compare the substrate position to the frame's preset position. If the substrate position is not aligned to the preset frame position, the control panel 92 can send a command signal to the actuator 106 to move the frame 16 to be aligned with the substrate position. As the frame 16 is moved along the guide track 110, each of the guide arms 18 mounted on the frame 16 are simultaneously moved the same distance. This sensing, comparing, and adjusting loop can be done continuously to maintain the frame 16 and guide arms 18 in the desired position in relation to the substrate 6.
Once the apparatus is fully installed into the substrate processing machine, operation can begin. First the strip materials 8 are taken from a bulk source and threaded through or around various strip guides 130 attached to the upright support tower 10, as shown in
To adjust the positioning of each strip of material onto the substrate, the corresponding brake systems 38 are first loosened, if needed, and then the user turns the corresponding drive mechanisms 44, which can be hand cranks, which in turn rotate crank shafts 32 and attached drive pulleys 34. The rotating drive pulleys 34, in coordination with the tail pulleys 46, moves cables 36 about a loop. When the cables 36 move, they pull the connected guide arms 18, winch slide along the frame via the guide rail 20 on bearings 22.
To measure each new position, the magnets 88 of each guide arm interact with the transducer 90 and send a signal to the control panel 92 signifying the location of each guide arm 18 in relation to a predetermined “0” location along the frame. The user can then interface with the buttons 96 and display 94 to select and read the location of each guide arm. If the guide aims are not in the desired positions, the user can then repeat these steps to adjust the guide arm positions to be more precise.
Once all the guide arms 16 are similarly moved to the desired new positions, the brake systems 38 can optionally be applied to hold them in place. The user can also manually hold the drive mechanisms 44 to hold the guide arms 16 in place. The brake systems 38 can be applied by various methods as described above, such as actuating levers or turning nuts. In the embodiment shown in
To be more precise during the application process, the substrate tracking and adjustment system can optionally be used to automatically make transversal adjustments to all the guide arms in unison in reaction to side-to-side changes in the position of the moving substrate.
When another guide arm position change is desired, these steps can repeated to re-adjust the guide arms, for example when there is an order change to manufacture a different product. All these steps can be done without removing the apparatus from the substrate processing machine or stopping the movement of the substrate.
In view of the many possible embodiments to which the principles of the disclosed devices and methods may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the invention.