This application is a U.S. National Phase Application of PCT International Application PCT/JP2012/004973.
The present invention relates to a strobe device used for taking pictures or other purposes.
Conventional well-known strobe devices include the following components: a flash discharge tube having an anode on one side and a cathode on the other side; a reflector storing a part of the flash discharge tube; and a trigger coil having a cylindrical core and primary winding and secondary winding wound around the core.
In the above strobe devices, the trigger coil is disposed near the reflector, and the trigger coil has a secondary terminal (output terminal), which is in contact with the reflector (see, for example, Patent Literatures 1 and 2). According to these Patent Literatures, this configuration eliminates the need to provide a lead wire connecting the reflector and the trigger coil, thereby eliminating illumination failure due to the imperfect contact of the lead wire.
In the strobe device of Patent Literature 1, the trigger coil is disposed behind the reflector, whereas in the strobe device of Patent Literature 2, the trigger coil is disposed under the reflector.
Because of these arrangements, the strobe devices of Patent Literatures 1 and 2 are far from being compact.
The present invention is directed to provide a strobe device including the following components: a flash discharge tube having an anode on one side thereof and a cathode on the other side thereof; a conductive reflector composing a trigger external electrode, which is in in contact with a part of the flash discharge tube and stores the part; a trigger coil having a hollow core, and a primary winding and a secondary winding wound around the core; and a conductor connecting the secondary winding of the trigger coil and the reflector. The trigger coil has an end of the flash discharge tube inserted into the core, and includes, at an end thereof adjacent to the reflector, a secondary terminal connected to the secondary winding. The reflector has a bottom in contact with the outer peripheral surface of the flash discharge tube, the outer peripheral surface covering at least the region extending from the anode to the cathode. The conductor has a first contact portion in contact with the secondary terminal of the trigger coil, and a second contact portion in contact with the bottom of the reflector.
This configuration provides a compact and thin strobe device.
A strobe device according to an exemplary embodiment of the present invention will now be described with reference to drawings. Note that the present invention is not limited to the following exemplary embodiment.
The strobe device according to the exemplary embodiment of the present invention will now be described with reference to
First, the schematic configuration of the strobe device of the exemplary embodiment of the present invention will be described with reference to
As shown in
As shown in
Base 6 is made of an insulating material such as polycarbonate. As shown in
Optical panel 8, which is made of a light transmitting material such as PMMA, covers reflector 3 so as to store it.
As shown in
The following is a detailed description, with reference to
As shown in
Bottom 14 of reflector 3 is formed of base portion 18 and extension 19. Base portion 18 is configured to be in contact with the outer peripheral surface of flash discharge tube 2 so as to cover the region extending from anode 10 to cathode 11. Base portion 18 has a shape of an arc having substantially (or exactly) the same radius as glass bulb 9 so that base portion 18 can be in surface contact with the outer peripheral surface of glass bulb 9. This configuration allows base portion 18 to function as a reflective plate for reflecting the light emitted from flash discharge tube 2, and also as a trigger external electrode of flash discharge tube 2.
Extension 19 extends from base portion 18 of bottom 14 toward other side 2B of flash discharge tube 2 in the axial (longitudinal) direction so as to be in contact with the outer peripheral surface of flash discharge tube 2, thereby covering metal sintered body 13 of cathode 11. Extension 19 has a shape of an arc having substantially (or exactly) the same radius as glass bulb 9 so as to be in surface contact with the outer peripheral surface of glass bulb 9. This configuration allows extension 19 to function as a trigger external electrode of flash discharge tube 2 in the same manner as base portion 18.
As shown in
Trigger coil 4 further includes primary terminal 23 connected to one end 21A of primary winding 21; common terminal 24 connected to other end 21B of primary winding 21 and to one end 22A of secondary winding 22; and secondary terminal 25 connected to other end 22B of secondary winding 22. Common terminal 24 is electrically connected also to cathode 11 of flash discharge tube 2.
As best shown in
As shown in
Next, the configuration of conductor 5 of strobe device 1 according to the exemplary embodiment will now be described in detail based on
As shown in
First contact portion 27 of conductor 5 has insertion portion 29 of, for example, a substantial (or exact) U shape so as to pass flash discharge tube 2 through it and into trigger coil 4. First contact portion 27 of conductor 5 has a curved shape such as an arc, and the convex portion of the curve is in contact with secondary terminal 25 of trigger coil 4.
Second contact portion 28 of conductor 5, on the other hand, has a belt shape extending in the axial (longitudinal) direction of flash discharge tube 2 and is curved like an arc protruding toward bottom 14 of reflector 3.
As shown in
As described above, base 6 includes holding portion 30 for holding second contact portion 28. Holding portion 30 sandwiches second contact portion 28 between bottom 14 of reflector 3 and itself.
The strobe device of the exemplary embodiment is configured as described above. The operation and action of strobe device 1 of the exemplary embodiment will now be described as follows.
First, a driving voltage is applied from an external driving circuit (not shown) to anode 10 and cathode 11 of flash discharge tube 2 via anode terminal 32 and common terminal 24, which are external terminals of strobe device 1.
At the same time as the application of the voltage or after a predetermined amount of time, a pulse-like voltage is applied from the external driving circuit (not shown) to primary winding 21 of trigger coil 4 via primary terminal 23 and common terminal 24, which are external terminals of strobe device 1. The voltage applied to primary winding 21 is, for example, boosted at secondary winding 22. The boosted voltage is applied as a trigger pulse to bottom 14 of reflector 3 from secondary terminal 25 of trigger coil 4 via first and second contact portions 27 and 28 of conductor 5.
This activates and ionizes the rare gas filled in glass bulb 9 near the inner periphery of glass bulb 9 which is in contact with base portion 18 and extension 19 of bottom 14 of reflector 3.
Cathode 11 also emits electrons toward anode 10 so as to promote the ionization of the rare gas, making the rare gas more conductive. This causes a sudden large current flow from anode 10 to cathode 11, allowing flash discharge tube 2 to emit light to illuminate the outside.
At this moment, the trigger pulse is applied also to extension 19 of bottom 14 of reflector 3 covering metal sintered body 13 of cathode 11. The pulse application allows electrons emitted from cathode 11 to stably form a discharge path starting from the vicinity of cathode 11. This reduces variations in the amount of light emitted from flash discharge tube 2, thereby irradiating the subject in a stable manner.
The present invention is not limited to the above-described exemplary embodiment and can be properly changed within the range not deviating from the spirit of the present invention. It also goes without saying that the configuration and methods of the following various modified examples can be arbitrary selected and adopted into the above-described exemplary embodiment.
For example, flash discharge tube 2 has no thin-film transparent electrode on its surface in the exemplary embodiment, but may alternatively have a thin-film transparent electrode such as an ITO or NESA film formed thereon. In this case, too, at least the region extending from anode 10 to cathode 11 of flash discharge tube 2, and metal sintered body 13 can be covered by bottom 14 of reflector 3, which is in contact with the outer peripheral surface of the glass bulb of flash discharge tube 2 having the thin-film transparent electrode formed thereon. This reduces variations in the amount of light emitted from flash discharge tube 2, thereby irradiating the subject in a stable manner.
Extension 19 of reflector 3 is arc-shaped in the exemplary embodiment, but may alternatively be, for example, flat-shaped. In this case, too, the discharge path of the electrons emitted from cathode 11 can be formed stably from the vicinity of cathode 11.
First contact portion 27 of conductor 5 is a substantial U shape with insertion portion 29 inside in the exemplary embodiment, but may alternatively be, for example, a ring shape, that is, a substantial (or exact) O shape with insertion portion 29 as an opening in the center. This improves the accuracy of positioning first contact portion 27 relative to flash discharge tube 2.
Second contact portion 28 of conductor 5 is curved like an arc in the longitudinal direction in the exemplary embodiment, but may alternatively have, for example, a plurality of peaks and troughs in the longitudinal direction, that is, corrugated. This configuration improves the contact between bottom 14 of reflector 3 and glass bulb 9 of flash discharge tube 2.
As described hereinbefore, strobe device 1 of the present invention includes flash discharge tube 2 having anode 10 on one side thereof and cathode 11 on the other side thereof; conductive reflector 3 composing a trigger external electrode, which is in contact with a part of flash discharge tube 2 and stores the part; trigger coil 4 having hollow core 20, and primary winding 21 and secondary winding 22 wound around core 20; and conductor 5 connecting secondary winding 22 of trigger coil 4 and reflector 3. Trigger coil 4 has an end of flash discharge tube 2 inserted into core 20, and includes, at an end thereof adjacent to reflector 3, secondary terminal 25 connected to secondary winding 22. Reflector 3 has bottom 14 in contact with the outer peripheral surface of flash discharge tube 2, the outer peripheral surface covering at least the region extending from anode 10 to cathode 11. Conductor 5 has first contact portion 27 in contact with secondary terminal 25 of trigger coil 4, and second contact portion 28 in contact with bottom 14 of reflector 3.
In this configuration, the end of flash discharge tube 2 is inserted into core 20 of trigger coil 4, and secondary terminal 25 electrically connected to secondary winding 22 is disposed at that end, which is adjacent to reflector 3, of trigger coil 4. This configuration allows strobe device 1 to be compact and thin.
Bottom 14 of reflector 3 is in contact with the outer peripheral surface of flash discharge tube 2 so as to cover at least the region extending from anode 10 to cathode 11 of flash discharge tube 2. First contact portion 27 of conductor 5 is in contact with secondary terminal 25 of trigger coil 4. Second contact portion 28 of conductor 5 connected to first contact portion 27 elastically deforms and holds bottom 14 of reflector 3 and flash discharge tube 2 in such a manner that reflector 3 and flash discharge tube 2 are in contact with each other. This ensures the electrical connection between secondary terminal 25 of trigger coil 4 and bottom 14 of reflector 3 via conductor 5. This also greatly reduces the connection distance between flash discharge tube 2 and secondary terminal 25, which outputs a trigger pulse. This configuration eliminates the power loss caused by the resistance of a lead wire used for connection as in the conventional strobe devices.
In strobe device 1 of the present invention, first contact portion 27 of conductor 5 includes insertion portion 29 into which flash discharge tube 2 is inserted, and second contact portion 28 of conductor 5 has a curved belt shape extending in the longitudinal direction of flash discharge tube 2.
In this configuration, flash discharge tube 2 is inserted into insertion portion 29 formed in first contact portion 27 of conductor 5, thereby allowing first contact portion 27 to be positioned relative to flash discharge tube 2. Furthermore, second contact portion 28 of conductor 5 is shaped like a belt extending along flash discharge tube 2 and is also curved in the longitudinal direction of flash discharge tube 2. As a result, second contact portion 28 of conductor 5 can elastically deform, allowing bottom 14 of reflector 3 to be held in contact with flash discharge tube 2.
In strobe device 1 of the present invention, cathode 11 of flash discharge tube 2 includes metal sintered body 13 at an end thereof.
In strobe device 1 of the present invention, flash discharge tube 2 is inserted at a portion thereof into core 20 of trigger coil 4, the portion being on the cathode 11 side of flash discharge tube 2 and not including metal sintered body 13.
In the strobe device of the present invention, bottom 14 of reflector 3 is disposed to further cover metal sintered body 13 of flash discharge tube 2.
Thus, metal sintered body 13 is formed at an end of cathode 11, and the portion of flash discharge tube 2 which does not contain metal sintered body 13 is inserted into core 20 of trigger coil 4. This configuration allows strobe device 1 to be compact and thin.
When a voltage is applied between anode 10 and cathode 11 of flash discharge tube 2, and a trigger pulse is applied to bottom 14 of reflector 3, a uniform electron flow is generated between anode 10 and cathode 11 of flash discharge tube 2. In this case, bottom 14 of reflector 3 which is in contact with the outer peripheral surface of flash discharge tube 2 covers not only the region extending from anode 10 to cathode 11, but also metal sintered body 13 of cathode 11. In this case, the discharge path of the electrons emitted from cathode 11 can be formed stably from the vicinity of cathode 11. This reduces variations in the amount of light emitted from flash discharge tube 2, thereby irradiating the subject in a stable manner.
The compact strobe device of the present invention is useful for irradiating a subject to take pictures of.
Number | Date | Country | Kind |
---|---|---|---|
2011-172785 | Aug 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/004973 | 8/6/2012 | WO | 00 | 1/24/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/021611 | 2/14/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3939379 | Sullivan et al. | Feb 1976 | A |
5999751 | Imamura et al. | Dec 1999 | A |
20050007030 | Ina et al. | Jan 2005 | A1 |
20130215592 | Yoneya et al. | Aug 2013 | A1 |
20130250542 | Man | Sep 2013 | A1 |
20140001947 | Tsuchida | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
05-232551 | Sep 1993 | JP |
10-161204 | Jun 1998 | JP |
10-186466 | Jul 1998 | JP |
11-167147 | Jun 1999 | JP |
11218808 | Aug 1999 | JP |
2002-198197 | Jul 2002 | JP |
2004-334100 | Nov 2004 | JP |
2004-341440 | Dec 2004 | JP |
Entry |
---|
International Search Report for Application No. PCT/JP2012/004973, dated Sep. 18, 2012. |
Number | Date | Country | |
---|---|---|---|
20140167596 A1 | Jun 2014 | US |