The invention relates to a device for adjusting the valve lift of valves in combustion engines and to a method for adjusting the valve lift of valves in combustion engines. Furthermore, the invention relates to combustion engines comprising a device for valve lift adjustment.
Devices for adjusting the valve lift in combustion engines typically comprise a cam shaft driving a valve engagement means, this usually being a roller lever, which cooperates with the valve and moves the latter. More complex devices comprise additional levers being arranged between the valve engagement means and the camshaft. Those levers are typically turning levers, i.e. one-armed levers. An example for such a device is given in EP-A1-01 255 027 which describes a mechanically controllable valve lift adjustment for gas exchange valves of combustion engines wherein a turning lever is driven by a cam shaft and cooperates with a valve engagement means (that means being a roller lever). The turning lever is positioned by a positioning means and pushed back towards the camshaft by a spring. The turning lever also comprises an external roller which rolls over a bearing that is part of the engine.
It is an object of the present invention to provide a device for adjusting the valve lift of valves of combustion engines which has a lower moment of inertia compared to known devices for valve lift adjustment thus helping to improve the efficiency of combustion engines. It is also an object of the invention to provide a device for adjusting the valve lift that allows the realization of high revolutions and/or valve accelerations. Another object of the invention is to provide a device that enables a more fine-tuned and easily achieved adjustment of low valve lifts during the periods of idle strokes in combustion engines. A further object of the invention is to provide a device for the adjustment of the valve lift in combustion engines showing fewer signs of wear compared to other known devices.
Provided by the invention is a device for stroke adjustments of valves (1) of a combustion engine, the device comprising a lever (3) driven by a cam shaft (4), said lever having at least two arms, wherein at least one arm moves on a bearing (5), said lever (3) is pushed against the cam shaft (4) by a biasing means (12) and positioned by at least one positioning means (6) and cooperates with a valve engagement means (2) that cooperates with at least one valve of the combustion engine.
Also provided by the invention is a combustion engine comprising a device as above.
Further provided by the invenition is a lever suitable for the valve lift adjustment device for combustion engines as above having at least two arms one of which comprises a means for bearing the lever rotatably in a bearing that is attached to or part of the engine, the lever further comprises a means for cooperating with a camshaft driving the lever said lever further comprises a means for cooperating with a positioning means displacing the lever, the lever further comprising a means for cooperating with at least one valve engagement means that moves at least one valve of the engine.
Additionally provided by the invention is a method for adjusting the valve lift of valves (1) characterized in that for the adjustment of the valve lift, rocker levers (3, 3a, 3b) are operated, which are positioned by positioning means (6), and which are driven in a path (13) by a cam shaft (4).
The device and method according to the invention provide a controllable and variable, preferably mechanical, adjustment of the valve lift in a combustion engine. The present invention allows the lift of several valves be adjusted independently and variably. The valve lift can be increased or reduced depending on the engine performance (such as for example the revolution and/or the acceleration) required. Suitable combustion engines are engines for motor vehicles, ship or aircraft engines. The engines can be single- or multiple valve engines. The engines can also be single as well as multiple cylinder engines. Typically the valves to be adjusted are gas-exchanges valves, inlet or intake and/or outlet/exhaust valves.
The device according to the invention is particularly suitable for revolutions of from more than 0 to up to 4000, preferably up to 6000 and more preferably up to 8.000 rpm (revolutions per minute).
In the device according to the invention the lever is driven by a camshaft and cooperates with a valve engagement means, driving the same. The valve engagement means cooperates with the valve and moves the latter. By displacing the lever, i.e. varying the position of the pivot of the lever with respect to the valve engagement means the valve lift is adjusted. Displacement of the lever, i.e the positioning of the lever, is achieved by a positioning means.
The device according to the invention comprises a lever having at least two arms. Each of the arms has at least one outer end. The part of the lever between the outer ends of the arms is referred to herein as the body area of the lever.
Preferably, the lever is a rocker lever. A rocker lever is understood herein to mean a lever which turns around a pivot wherein the pivot is not located at or in proximity to the outer ends of the lever. Preferably the pivot of the rocker lever is situated in or substantially in proximity to the center of mass the lever.
The lever has at least two arms, one of them comprising, preferably at the outer end, a means for bearing the lever, preferably rotatably, in a bearing. That means is preferably a roller but can for example also be a suitable shape or rigid contour of the lever allowing a rather frictionless movement of the lever on the bearing. The bearing is preferably attached to the engine or is a part of the engine.
The shape of the bearing determines the path on which the lever moves. The shape of the bearing can be plane, curved or it can be of circular or semi-circular shape.
The lever is driven by action of a camshaft or a means transmitting the driving force of a camshaft, preferably by cooperating with the means bearing the lever in the bearing. The lever may also comprise a means for cooperating with the camshaft. Such a means can for example be a suitable shape or rigid contour of the lever allowing a rather frictionless cooperation. The means can also be a roller. Preferably, the means cooperating with the camshaft are identical to the means bearing the lever in the bearing.
The lever is pushed against the camshaft by a biasing means, which is preferably a spring.
The lever acts on a valve engagement means, preferably by its other arm and preferably by the cooperation of one or more further roller with one or more working curve or further bearing. For this purpose the lever may comprise one or more further roller which cooperates with a working curve or a bearing located on the valve engagement means. The lever may also comprise a working curve or a further bearing with cooperates with a roller on the valve engagement means, which in this case is preferably a roller lever.
In one embodiment of the invention the working curve is divided into curve areas, for example a zero valve lift area and a valve lift area, wherein the areas can be linked by transition curves or radii.
The valve engagement means cooperates with at least one valve and moves the latter. Typical valve engagement means are roller levers or drag (turning) levers. It is an advantage of the invention that the device is not limited to one specific typ of valve engagement means, The valve engagement means can for example also be a pivoted rocker lever or a non-rotatable lever moved in a guide.
A positioning means cooperates with the lever and positions the lever and the lever further comprises a means for cooperating with a positioning means displacing the lever.
If the two-or more armed lever comprises at least two rollers, those rollers are preferably aligned along an axis of the lever.
The lever can be made from materials providing a sufficient stiffness. Preferably light materials are used which contribute to reducing the inertia of the lever. Suitable materials are, for example, aluminum, titanium or alloys thereof, steal, steal mixtures, suitable plastics or composite materials. The bearings can be made of the same or different material to the engine and/or the lever.
The lever is positioned by a positioning means for the adjustment of the valve lift. The positioning means act on the pivot of the lever and the lever moves around the positioning means. The positioning means is suitably formed and/or has a suitable contour to facilitate the movement of the lever around the positioning means. The lever comprises a means for cooperating with the positioning means.
Such means may be a suitable shape or rigid contour or a roller, in order to facilitate the movement of the lever along the contour of the positioning means. Such a roller, shape or contour however should not be identical to the one on which the camshaft acts for moving the lever. The positioning means is for example a suitably shaped driven rail that can be brought in various positions, for example, by moving it forward or backward. Depending on the position the positioning means is brought into, the pivot of the lever is displaced with respect to the valve engagement means. The positioning means can be driven and positioned in any suitable manner known to the person skilled in the art, for example, mechanically, hydraulically, pneumatically, electrically, electromagnetically and/or piezo-electrically. The lever is displaced by action of the positioning means in accordance with the requirements as to the performance of the engine. Such requirements can be combustion valves, revolutions and/or turning moments. Preferably, the positioning means in accordance to a required torque.
In one embodiment of the device to the cylinder of the engine comprises more than one valve, for example more than one intake valve per cylinder and each valve cooperates via a valve engagement means with the lever. The levers according to this embodiment may be arranged on a common axis and are positioned preferably by one positioning means per lever such that for each valve the valve lift can be controlled and adjusted individually. For example, for the individual valve lift adjustment of two gas exchange valves, for example two intake or exhaust valves respectively, or one intake and one exhaust valve an arrangement is provided wherein two rollers on two rocker levers are located on a common axis and wherein each of these rollers rolls in a separate bearing and the levers being displaced independently from each other depending on the position of the positioning means.
The device according to the invention and the configuration of the lever allows in particular to achieve high revolutions. The working curve and the contour of the positioning means can be shaped such as to increase the maximum stroke acceleration of the intake or exhaust valve on reducing the valve lift. The device furthermore allows the opening time of the valves being reduced on reducing the valve lift.
One embodiment of the invention is a device for the controllable variable adjustment of the valve lift of gas exchange valves in a combustion engine wherein additional rocker levers are moved in a divided bearing, driven by a cam shaft and positioned by a positioning means. A roller of the rocker lever rolls over a bearing that is attached to or is part of the engine and a second roller rolls over a bearing which is part of a valve engagement means. For adjusting the valve lift the positioning means are driven in a guide according to a required turning moment. The arrangement and the configuration of the rocker lever allows for achieving also high revolutions. By using a rocker lever having two rollers, the moment of inertia can be reduced compared to a turning lever comprising only one roll. Furthermore, the rocker lever can be made of aluminum contributing to a further reduction of the dynamic forces. The embodiment can also be used to adjust low valve lifts during idle stroke periods of a multiple cylinder combustion engine for minute variations for each cylinder since one part of the bearing is a part or an integral part of the valve engagement means.
A further embodiment of the invention is a device for the mechanical adjustment of the valve lift wherein a rocker lever is driven by a cam shaft and biased by a spring and moves with a first roller over a bearing and with a second roller over the contour of an adjustable rail (positioning means) that cooperates with a valve engagement means being a roller lever. The bearing over which the lever moves and the contour of the positioning means may comprise plane surfaces which are, in a preferred embodiment, aligned perpendicularly to each other. A feature of this embodiment is that the opening period of the valve can be reduced by reduction of the valve lift. Preferably, the bearing is curved and the curvature of the bearing is determined by the circular arc around the center point of the roller of the roller lever with which the rocker lever cooperates. The rocker lever comprises a working curve which cooperates with the roller of the roller lever (the valve engagement means). The working curve has a first area and that first area has the curvature of a circular arc around the center point of the first roller.
The working curve and the contour of the positioning means are preferably arranged such that the acceleration of the intake or exhaust valves, respectively, increases with reducing valve lift.
The invention is described in the following by examples. Hereby shows:
The
In the second embodiment according to
A device for the valve lift adjustment of a gas exchange valve 1 of a not shown combustion engine is shown in
Since the roller 9 should not roll on the camshaft 4 and over the bearing 5 in the same time two levers are usually arranged on an axis 15 (
A further embodiment of the invention shown in
Number | Date | Country | Kind |
---|---|---|---|
102 28 022 | Jun 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/06550 | 6/20/2003 | WO | 00 | 3/21/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO04/001198 | 12/31/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4397270 | Aoyama | Aug 1983 | A |
6481399 | Morrn | Nov 2002 | B1 |
6792903 | Morrn | Sep 2004 | B2 |
7044094 | Bosl-Flierl et al. | May 2006 | B2 |
20020162522 | Morrn | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
19509604 | Sep 1996 | DE |
10100173 | Jul 2002 | DE |
10164493 | Jul 2003 | DE |
10235401 | Feb 2004 | DE |
1255027 | May 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20060201459 A1 | Sep 2006 | US |