PROJECT SUMMARY/ABSTRACT The CDC recently released a report detailing antibiotic resistant threats in the US. Of particular emphasis in the CDC report is the increased prevalence of multidrug-resistant, Gram-negative bacteria (MDR- GNB) and the need to develop the next generation of antibiotics to combat them. All Gram-negative bacteria rely on a set of homologous, yet highly-specific, outer membrane TonB-dependent transporters (TBDTs) to import critical nutrients from their environment, especially metals like iron, which are bound by high-affinity, metal chelating compounds called siderophores. Recent antibiotic developments have shown that siderophore-antibiotic conjugates can be selectively targeted to specific bacteria, and that this delivery mechanism overcomes several key antibiotic resistance mechanisms. A significant limitation of this delivery system is the low expression levels of the TBDTs. However, a subset of these TBDTs controls their own expression through a cell-surface signaling (CSS) process that up-regulates their own expression. The long- term objective of this proposal is to understand the CSS regulatory process and manipulate TBDT expression to enhance siderophore-antibiotic conjugate therapy for treatment of MDR-GNB infections. The results of this proposal will help elucidate the structural basis for CSS by a Gram-negative bacteria sigma-regulator. As a model system the pseudobactin BN7/8 transport system from Psuedomonas putida that consists of the TBDT, PupB, the inner membrane ?-regulator, PupR, and the cytoplasmic ?-factor, PupI, is being used. To accomplish this proposal's objective the following three specific aims will be pursued: 1) establish that PupR anti-?-factor domain dimerization influences transcriptional activation by PupI, 2) identify the structural determinants and delineate the role of the PupR:PupB periplasmic interactions on the stability of the PupR periplasmic C-terminal CSS domain (CCSSD), and 3) determine changes in the full-length PupB:PupR CCSSD complex in the presence and absence of its cognate siderophore, pseudobactin BN7/8. For the successful completion of these aims a multidisciplinary approach; including X-ray crystallography, small-angle X-ray scattering, molecular biology, cellular assays, and biophysical techniques such as isothermal titration calorimetry and circular dichroism spectroscopy; will be employed. This research will provide critical structural information about a ?-regulator; explain how it interacts with a ?-factor at the inner membrane, and the extent to which periplasmic conformational changes between the TBDT and ?-regulator lead to proteolytic degradation that is important for controlling transcriptional activation.