Structural Biology Studies of a Large DNA Repair Complex

Information

  • Research Project
  • 10241283
  • ApplicationId
    10241283
  • Core Project Number
    R35GM128906
  • Full Project Number
    5R35GM128906-04
  • Serial Number
    128906
  • FOA Number
    PAR-17-190
  • Sub Project Id
  • Project Start Date
    9/1/2018 - 5 years ago
  • Project End Date
    8/31/2023 - 9 months ago
  • Program Officer Name
    REDDY, MICHAEL K
  • Budget Start Date
    9/1/2021 - 2 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    04
  • Suffix
  • Award Notice Date
    8/23/2021 - 2 years ago
Organizations

Structural Biology Studies of a Large DNA Repair Complex

Our research program revolves around understanding the relationship between structure, dynamics, and function. We are particularly interested in understanding this relationship in large macromolecular assemblies, which have been recalcitrant to detailed structure and dynamics studies in the past. Our strategy is to couple high-resolution methyl-based nuclear magnetic resonance (NMR) spectroscopy, which is capable of probing proteins and their complexes up to ~1 MDa in size, with biochemical and biophysical techniques to better understand function. Our current focus is the universally conserved and essential DNA double strand break (DSB) repair complex Mre11-Rad50-Nbs1 (MRN). This protein complex is at the heart of detecting DNA DSBs and initiating the process of their repair. Several disease mutations have been noted in MRN, which give rise to immunodeficiency, developmental and neurodegenerative disorders, and a predisposition to certain cancers. Other sporadic mutations in Mre11 and Rad50 have been found in a number of different cancers. Bacterial and archaeal model systems, which lack Nbs1, have been the focus of the existing body of X-ray crystallography and biochemical studies that suggest a role for protein motions in choreographing the various functions of the Mre11- Rad50 (MR) core complex. Yet, many questions still remain about the interplay of protein structures and motions and how these relate to and control MR activity. Over the next five years, our goal is to determine solution state models of key MR assemblies complete with substrate DNAs that mimic different types of DNA DSBs and to characterize the protein dynamics that occur within these complexes. The NMR-based studies will be complemented with a variety of in vitro biophysical and biochemical techniques to further probe domain motions and the wide array of MR activities, as well as in vivo studies in yeast to place these motions and activities into the context of overall DNA DSB repair. We will also extend these studies to include disease mutations within MR, which will not only allow us to understand how these alterations corrupt MR function and lead to disease but will also provide additional avenues for probing the structures, dynamics, and functional relationships within this complex. Our long-term goals seek to move beyond the core MR complex. Although the MR studies proposed herein will be performed on the simplified construct of Rad50, which has been used in all previous x-ray crystallographic studies of MR, we aim to perform, for the first time, similar studies using full-length Rad50. In total, our research program aims to better understand how macromolecular assemblies use protein motions to regulate their functions, and in the process of applying our program to MRN, we will determine the effect that large and small scale motions have in controlling the first steps in MRN-mediated DNA DSB repair.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R35
  • Administering IC
    GM
  • Application Type
    5
  • Direct Cost Amount
    249178
  • Indirect Cost Amount
    110538
  • Total Cost
    359716
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIGMS:359716\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZGM1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    TEXAS TECH UNIVERSITY
  • Organization Department
    CHEMISTRY
  • Organization DUNS
    041367053
  • Organization City
    LUBBOCK
  • Organization State
    TX
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    794091035
  • Organization District
    UNITED STATES