Structural foam

Information

  • Patent Grant
  • 6777049
  • Patent Number
    6,777,049
  • Date Filed
    Thursday, November 8, 2001
    22 years ago
  • Date Issued
    Tuesday, August 17, 2004
    20 years ago
Abstract
A structural reinforcement for a hollow member comprising a rigid reinforcing member having a shape that substantially conforms to the cross section of the section of the hollow member to be reinforced with an expandable adhesive material over at least a portion of the surface of the rigid reinforcing member sufficient to bond the reinforcing member to at least two nonparallel internal surfaces of the structure.
Description




FIELD OF THE INVENTION




The present invention relates to reinforcing materials and in particular to reinforcing materials that can be provided in hollow cross-sectional members particularly to provide reinforcement to improve the structural integrity of articles.




BACKGROUND OF THE INVENTION




The trends in motor vehicle design are towards lighter vehicles to improve fuel consumption. At the same time, auto manufacturers continue to demand more rigorous structural performance standards. The use of lighter materials such as aluminum to produce the hollow cross-sectional members that are used as vehicle sub frames has lead to the desire for additional reinforcement. There is a need for reinforcement in various locations in the vehicle structure including the sub frame and upper structure and the form of reinforcement required can vary from one location in the vehicle to another and from vehicle to vehicle. The present invention therefore improves the strength of vehicles structures made from existing materials and enables vehicle structures based on lighter materials to satisfy safety requirements they are otherwise unable to satisfy.




The electrocoat process used in vehicle manufacture is a process in which the vehicle structure is passed through a bath of anticorrosion fluid and the vehicle is used as an electrode whereby an anticorrosion coating is deposited from the fluid onto the vehicle structure by electrolysis. The invention further provides a system whereby reinforcement can be provided whilst ensuring effective provision of an anti-corrosion coating on the inner surface of the hollow cross-sectional member by the electrocoat process.




There are four main types of applications where structural reinforcement is desired in vehicles. In one, control over vehicle body deformation is attractive for assisting in accident management. In another, it is desirable for increased energy absorption to enhance performance after yield of a structure. The reduction of flexing or body movement in the vehicle structure particular to improve durability and reduce stress effects and point mobility issues requiring the reduction of resonance by the provision of stiffening. The need for reinforcement is present irrespective of the materials that are used to produce the vehicle structure and the need varies from material to material according to the nature of the reinforcement that is being provided. The reinforcing parts can also reduce the noise created by the motion of a vehicle by having a sound deadening effect as a result of blocking air paths in cavities.




It is known to provide longitudinal reinforcing structures within the hollow cross sections of vehicles. For example, PCT Publication WO97/43501 provides a beam, which can be mounted within the cross section to provide reinforcement along one axis in a hollow structure. The beam is provided with an expandable adhesive on two surfaces, which can be foamed upon heating to bond the beam to two opposed walls of the cross section. This technique is not suitable for use in an electrocoat process commonly encountered in automotive applications. Furthermore, the beam will only provide significant reinforcement along the axis of the beam. In WO97/43501 the beam with foamable material on opposed surfaces is placed in the cavity and subsequently foamed under the action of heat. This will result in uneven foaming and to non-uniform foam structures since on the underside the foam must raise the weight of the beam whereas expansion on the topside is free.




It is also known to provide foamable plastic mouldings within the hollow cross sections which can be foamed upon application of heat, such as is provided by the baking step in the electrocoat process, to provide a foamed baffle that fills the cross-section to provide sound adsorption. Such systems are described in European patent applications 0383498 and 0611778. The foam baffle provides sound deadening and vibration resistance. In these systems the entire insert is foamable and it is proposed that the foamable material be chosen so that it will foam during the baking process, which follows the electrocoat process typically used in vehicle manufacture to provide resistance to metal corrosion. The materials of these patents are not however reinforcing materials but are used to provide acoustic baffles and seals.




In the electrocoat process a vehicle structure is immersed in a bath of coating fluid from which an anticorrosion coating is deposited on the metal by electrolysis. The vehicle metal structure is subsequently heated to bake the coating on the metal. The electrocoat process is typically applied to complete vehicle structures in which hollow sections have been capped. Accordingly reinforcing structures are preferably provided within hollow sections prior to the electrocoat. It is therefore important that the reinforcing structure have minimal impact on the operation and efficiency of the electrocoat process.




Where reinforcing materials have been provided they have either been stuck to the metal structure prior to subjecting the vehicle structure to the electrocoat process or have been provided after the electrocoat process. The former technique has the problem that it is not possible to perform the electrocoat over the entire surface, which can lead to local areas of corrosion. The latter technique is cumbersome and requires the provision of fastening means after electrocoating, which can damage the electrocoat and again lead to local areas of corrosion.




There is therefore a need to provide structural reinforcement for the hollow cross-sections of vehicles, which is easily supplied, works well within the bounds of the electrocoat process and provides effective reinforcement to the vehicle both during operation and as crash protection.




The present invention therefore provides a structural reinforcement for a hollow member comprising a rigid reinforcing member having a shape that substantially conforms to the cross section of the section of the hollow member to be reinforced with an expandable adhesive material over at least a portion of the surface of said rigid reinforcing member sufficient to bond the reinforcing member to at least two non parallel internal surfaces of the structure.




In one aspect of the invention, the dimensions of the rigid reinforcing member and the thickness and nature of the expandable material are important to the achievement of the desired structural reinforcement. The exterior shape of the reinforcing member should conform substantially to the cross section of the section of the structure it is designed to reinforce. The shape may vary along the length of the reinforcing member as the dimensions of the cross section of the structure change. The size of the reinforcing member including the expandable adhesive material should be such that there is a small clearance between the extremity of the reinforcing member and the interior walls of the structure it is to be reinforced (e.g., the frame of the vehicle) to allow for passage of the electrocoat fluid. Preferably, the reinforcing member has a cellular, honeycomb or ribbed internal structure to provide reinforcement along several different axes.




In a preferred embodiment the structural reinforcing member is provided with small lugs, which enable it to stand away from the interior walls of the sections of the structure to be reinforced. In this way fastening devices are not required and the area of contact between the structural reinforcing member and the interior walls of the structure is minimized. In a preferred embodiment, the clearance between the extremity of the reinforcing member and the interior walls of the structure (e.g., frame of the vehicle) must be wide enough to enable the liquid used in any coating (such as the electrocoat bath) to flow between the reinforcing member and the interior walls of the sections of the structure in sufficient quantity to enable an effective coating (e.g., anti-corrosion coating) to be deposited. On the other hand, the clearance must not be too wide since this can result in a lack of rigidity in the structure when the expandable adhesive is foamed to fill the clearance and bond the structural reinforcing member to the interior walls of the structure. Preferably, the clearance is no more than 1 centimeter and is more preferably 3 to 10 millimeters. The clearance around the whole structure enables a more uniform foam structure to be obtained.




The rigid reinforcing member may be made from any suitable material, for example it may be made of metal or plastic and the material will be chosen according to the preferred fabrication method. This in turn is driven by economics and the complexity of the cross section to be reinforced. Reinforcing members for simple cross sections may be prepared by extrusion whilst injection moulding may be required for more complex structures. Metal members may be produced by stamping and/or forming. Where extrusion is used the members may be of metal or thermoplastics; where injection moulding is used thermoplastics are preferred. Polyamides, particularly glass filled polyamides are suitable materials due to their high strength to weight ratio. Alternatively injection moulding or die casting of metal alloys (either densified or foamed) may be employed. It is preferred that the moulding is provided with means enabling fluid drainage. For example, holes may be provided in the moulding to allow the drainage of water, which may condense in the structure over time.




The preferred shape and structure of the reinforcing member will depend upon where it is to be located in the structure and the function it is to perform. For example, if it is to be located in the front longitudinal section of a vehicle it will be designed for crash or impact resistance. On the other hand, it may be designed to reduce point mobility such as for example at the base of side and rear pillars. This is particularly important with high-sided vehicles where the reinforcement potentially can help reduce or prevent vehicle sway thus reducing metal fatigue. Other applications include the resistance of deformation of the rear longitudinal section, in particular to help prevent upward deformation from certain rear impacts. Other parts of the vehicle which may be reinforced by the techniques of the present invention include roof structures, pillars, frame cross members and window frames particularly rear window frames.




The expandable adhesive material serves two main functions, it will expand to fill the space between the reinforcing member and the interior of the structure to be reinforced and it will also bond to the interior wall of the structure. Accordingly, expandable adhesive material means that the material can be activated to both expand (typically foam) and to act as an adhesive. Activation therefore enables the expandable material to expand and fill a gap between the reinforcing member and a hollow structure it is designed to reinforce and to bond to the internal surface of the hollow structure. Accordingly the expandable adhesive must expand at the desired temperature and be sufficiently adhesive to firmly bond the reinforcing member inside the vehicle structure. Once foamed it should be sufficiently strong that it does not materially detract from the overall reinforcing effect provided.




Whilst it is not essential it is preferred that prior to activation, the expandable adhesive material is dry and not tacky to the touch. It is preferred that the expandable material is not tacky to the touch since this facilitates shipping and handling and prevents contamination. Examples of preferred foamable materials include foamable epoxy-base resins and examples of such materials are the products L5206, L5207, L5208 and L5209, which are commercially available from L & L Products of Romeo, Mich. USA, and the Betacore Products BC 5204, 5206, 5205 and 5208 available from Core Products, Strasbourg, France. The product should be chosen according to the rate of expansion and foam densities required. It is further preferred that it expand at the temperatures experienced in the electrocoat baking oven, typically 130° C.-150° C.




The expandable adhesive material should be applied to at least a portion of the surface of the rigid reinforcing member that will be adjacent to an interior surface of the section of the structure that is to be reinforced. It is preferred that the foamable material be applied over at least part of all the surfaces of the reinforcing member that are adjacent to the interior surface of the section. This will depend upon the shape of the section to be reinforced but it should be present so that it provides adhesion to two non-parallel surfaces to give rigidity in at least two dimensions. It is preferred that the foamable material be applied over at least part of each of the top and bottom and the sides of the reinforcing member. In this way when the material is foamed it can expand to fill the gap around the entire surface of the reinforcing member that is adjacent to the interior walls. The expandable material may be applied to the rigid reinforcing member by bonding a strip of the material to the member, by extrusion coating or by injection moulding. Where the reinforcing member is made by injection moulding the expandable material may be applied by over-moulding or two shot injection moulding. The material should however be applied under conditions such that no foaming takes place.




It is preferred that the reinforcing member coated with the expandable material is located within the hollow member that it is designed to reinforce in a manner that provides a clearance between the external surface of the coated member and the internal surface of the hollow member. This allows for the passage of coating fluid between the member and the internal surface and also enables a uniform expansion of the foam around the member to provide more uniform reinforcement. Accordingly in a preferred process for providing reinforcement within hollow structures such as a vehicle frame, moulded reinforcing members with the layer of foamable adhesive thereon are installed during assembly of the vehicle frame. Locating lugs are preferably moulded into the reinforcing member or the expandable material so that the reinforcing member sits within the vehicle structure leaving a space between the member and the interior walls of the cavity to be reinforced, in this way there is no need for fastening or bonding means to attach the member to the interior walls. The assembled structure is then subjected to the electrocoat process in which it is passed through a bath of coating material and a corrosion resistant coating is deposited onto the structure by electrolysis. The vehicle structure is then dried in an oven to provide the final coating and the expandable adhesive is preferably chosen so that it is activated by the drying conditions used in the oven employed to bake the coating on the electrocoat process. In this way the expandable material will expand under the drying conditions to provide a foam that fills the space between the member and the interior walls and will produce a strong bond between the reinforcing member and the interior wall. Typically the coated structure is dried at around 165° C. for about 20 minutes and accordingly the adhesive should expand under these conditions. The industry is however looking to use lower drying temperatures and shorter drying times and this may influence the choice of expandable adhesive materials.




If other components for example bolts are to pass through the reinforcing members during subsequent assembly care must be taken to ensure that holes formed in the reinforcing member for the passage of the bolts are not blocked by the foam as it expands.




The techniques of the present invention may be used for the reinforcement of any construction that is based on a hollow frame structure. Thus, the present invention is not limited to automotive vehicle applications. The structural reinforcement may be employed for reinforcing any of a variety of different structures in which a cavity or wall is available against which the expandable adhesive material may contact and bond. Examples of such applications include reinforcements for household appliances, furniture, storage containers, luggage, seating, building materials or other architectural structures, aerospace structures, marine structures, railway structures, or the like. The techniques are particularly useful in the current trend towards using lighter and sometimes weaker materials in the production of automobile sub frames where there is a greater need for reinforcement to compensate for the reduction in strength of the basic material and yet satisfy the safety requirements. This is particularly the case with the use of aluminum for the production of automotive vehicles.











BRIEF DESCRIPTION OF DRAWINGS




The present invention is illustrated by reference to the accompanying drawings in which





FIG. 1

illustrates a plan view of a first preferred embodiment of a moulding according to the present invention that is designed to limit point mobility;





FIG. 2

illustrates a side view of the moulding in

FIG. 1

;





FIG. 3

illustrates a cross-section of the moulding in

FIG. 1

showing the interior cellular structure of the moulding of the present invention;





FIG. 4

illustrates a plan view of a second preferred embodiment of the moulding of the present invention that is suitable for resisting deformation;





FIG. 5

illustrates the moulding of

FIG. 4

in position on the floor of a vehicle; and





FIG. 6

illustrates an expanded view of the moulding in FIGS.


4


and


5


.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENT




The present invention is illustrated by reference to the accompanying drawings in which

FIG. 1

shows a moulding according to the present invention.





FIG. 1

is of a moulding designed to limit point mobility and prevent what is known as lozenging. The moulding consists of a reinforcing member


1


moulded to conform to the cross section of the front longitudinal section of a vehicle. The reinforcing member consists of a frame with transverse and longitudinal ribs


2


to provide compression strength and torsional resistance. The moulding has been over moulded at the two ends with layers of an expandable adhesive


3


.

FIG. 2

is an end elevation of the moulding showing the lugs


4


which will locate the moulding within the vehicle cross section.

FIG. 3

is a cross section of the moulding shown in

FIG. 1

illustrating the cellular structure.





FIG. 4

shows an alternate form of moulding which is suitable for resisting deformation particularly in the rear longitudinal section of a vehicle. This moulding is especially useful in the preventing the floor bending upwards upon a rear impact.




The moulding shown in

FIG. 4

is a polyamide moulding


5


, which is over-moulded in those areas, which are to be in proximity to the internal surface of the vehicle frame with a foamable structural foam material


6


.




The moulding is designed to provide reinforcement at the position where the rear door pillar of the vehicle joins the vehicle floor frame.

FIG. 5

shows the piece in position on the floor section


7


at the base of the rear door pillar


8


and

FIG. 6

is an expanded view of the moulding lying in position on the floor section


7


.




When the vehicle assembly is completed it can be passed through the electrocoat process and when it is heated to bake the electrocoat coating the foamable structural foam will foam to come into contact with and to bond to the internal surface of the vehicle frame. In this way a firmly bound structural reinforcement is provided which resists upward movement of the floor portion of the vehicle due to rear impact collision.



Claims
  • 1. A structural reinforcement for reinforcing a hollow structural member comprising:a rigid injection molded plastic pre-formed structural reinforcing member comprising two substantially enclosed honeycomb structures at opposite ends of the rigid pre-formed structural reinforcing member and a ribbed intermediate portion, and having an exterior shape conforming substantially to the interior cross section of said hollow structural member, said exterior shape varying in thickness along the length of said structural reinforcing member to mirror the variations of said interior cross section; unfoamed expansive structual adhesive material contained between said structural reinforcing member and said hollow structural member, said adhesive material approaches an internal surface of the hollow structural member; wherein said unfoamed expansive adhesive material is activated to both expand and to act as an adhesive when heated; wherein said unfoamed expansive adhesive material is dry and not tacky to the touch prior to activation of said material; wherein said structural reinforcing member further comprises at least one lug attached to and moulded with said structural reinforcing member and locating said member within said hollow structural member when said structural reinforcing member is placed within said hollow structural member prior to activation of said material, said at least one lug being substantially free of said adhesive material; and wherein said structural reinforcing member is bonded to said internal surface of said hollow structural member after activation of said material.
  • 2. The structural reinforcing member according to claim 1, in which the size of said reinforcing member including the expandable material is that there is a clearance of not more than 1 cm between said reinforcing member and said interior wall of said hollow structural member.
  • 3. The structural reinforcing member according to claim 1, in which the reinforcing member is an injection molded plastic and has a cellular, honeycomb or ribbed internal structure.
  • 4. The structural reinforcing member according to claim 1, in which the reinforcing member is made from a thermosetting resin.
  • 5. The structural reinforcing member according to claim 1, in which the expandable adhesive material is an epoxy-base resin.
  • 6. The structural reinforcing member according to claim 1, in which the expandable material is applied over part of each of the top and bottom and the sides of the reinforcing member.
  • 7. The structural reinforcing member according to claim 1, in which said member is provided with means enabling fluid drainage.
  • 8. A structural reinforcing member of claim 1, in which said expandable adhesive material is applied by over moulding or two shot injection moulding.
  • 9. The structural reinforcing member according to claim 1, in which the expandable material can be activated at a temperature of a curing step in an electrocoat process.
  • 10. The structural reinforcing member according to claim 1, in which the expandable material expands at from 130° C. to 150° C.
  • 11. The structural reinforcing member according to claim 1, in which the reinforcing member is made from filled polyamide.
  • 12. The structural reinforcing member according to claim 11, in which the filler is selected from glass fibre or carbon fibre.
  • 13. A structural reinforcement for reinforcing a base of a hollow pillar of an automotive vehicle, comprising:a rigid pre-formed structural reinforcing member located within the hollow pillar of the automotive vehicle, the reinforcing member comprising: i) a first substantially enclosed honeycomb structure at a first end of a width of the reinforcing member and a second substantially enclosed honeycomb structure at a second end of the width of the reinforcing member wherein the first structure and the second structure extend along a length of the reinforcing member; ii) a ribbed intermediate portion disposed between the first structure and the second structure, the ribbed intermediate portion including a tube extending along the length of the reinforcing member; and iii) an exterior shape with a relatively thin section between two relatively thicker sections along the length for mirroring variations of an interior cross section of said hollow pillar; unfoamed expansive adhesive material located about the first structure and the second structure wherein the reinforcing member is positioned to form a clearance of less than 1 centimeter between the adhesive material and the pillar; wherein the unfoamed expansive adhesive material is activated to both expand and to act as an adhesive when heated; wherein the unfoamed expansive adhesive material is dry and not tacky to the touch prior to activation of said material; wherein the structural reinforcing member further comprises at least one lug attached to the structural reinforcing member and locating the member within the pillar prior to activation of the adhesive material; and wherein the structural reinforcing member is bonded to the internal surface of the hollow structural member after activation of the adhesive material.
  • 14. The structural reinforcing member according to claim 13 wherein the middle portion includes transverse and longitudinal ribs.
  • 15. The structural reinforcing member according to claim 13 wherein the reinforcing member is rigid and provides structural reinforcement in conjunction with the adhesive material.
  • 16. The structural reinforcing member according to claim 13, in which the expandable material can be activated at a temperature of a curing step in an electrocoat process.
  • 17. The structural reinforcing member according to claim 13, in which the reinforcing member is made from a thermosetting resin.
  • 18. The structural reinforcing member according to claim 13, in which the expandable adhesive material is an epoxy-base resin.
  • 19. The structural reinforcing member according to claim 13, in which the expandable material is applied over part of each of the top and bottom and the sides of the reinforcing member.
  • 20. The structural reinforcing member according to claim 13, in which said member is provided with means enabling fluid drainage.
  • 21. The structural reinforcing member according to claim 13, in which the expandable material expands at from 130° C. to 150° C.
  • 22. A structural reinforcing member according to claim 13, in which said expandable adhesive material is applied by over moulding or two shot injection moulding.
  • 23. The structural reinforcing member according to claim 13, in which the reinforcing member is an injection molded plastic.
  • 24. The structural reinforcing member according to claim 23, in which the reinforcing member is made from filled polyamide.
  • 25. The structural reinforcing member according to claim 24, in which the filler is selected from glass fibre or carbon fibre.
  • 26. A structural reinforcement for reinforcing a hollow structural member comprising:a rigid plastic pre-formed structural reinforcing member comprising two substantially enclosed honeycomb structures at opposite ends of the rigid pre-formed structural reinforcing member and a ribbed intermediate portion, and having an exterior shape conforming substantially to the interior cross section of said hollow structural member, said exterior shape varying in thickness along the length of said structural reinforcing member to mirror the variations of said interior cross section; unfoamed expansive structural adhesive material contained between said structural reinforcing member and said hollow structural member, said adhesive material approaches an internal surface of the hollow structural member; wherein said unfoamed expansive adhesive material is activated to both expand and to act as an adhesive when heated; wherein said unfoamed expansive adhesive material is dry and not tacky to the touch prior to activation of said material; wherein said structural reinforcing member further comprises at least one lug attached to and moulded with said structural reinforcing member and locating said member within said hollow structural member when said structural reinforcing member is placed within said hollow structural member prior to activation of said material; and wherein said structural reinforcing member is bonded to said internal surface of said hollow structural member after activation of said material.
  • 27. The structural reinforcing member according to claim 26 in which the size of said reinforcing member including the expandable material is such that there is a clearance of not more than 1 cm between said reinforcing member and said interior wall of said hollow structural member.
  • 28. The structural reinforcing member according to claim 26, in which said member is provided with means enabling fluid drainage.
  • 29. A structural reinforcement system, comprising:a rigid pre-formed outer hollow member; a rigid performed internal structure comprising two substantially enclosed honeycomb structures at opposite ends of the rigid pre-formed internal structure and an intermediate plurality of ribs wherein; i) each of the plurality of ribs extends toward the outer hollow portion; and ii) the plurality of ribs is arranged in a criss-cross configuration relative to each other; unfoamed expansive structural adhesive material disposed upon the internal member; wherein at least one said plurality of ribs approaches said adhesive material; wherein said unfoamed expansive adhesive material is activated to both expand and to act as an adhesive when heated; wherein said unfoamed expansive adhesive material is dry and not tacky to the touch prior to activation of said material; wherein said internal member further comprises at least one locator attached to and moulded with said internal structure and locating said internal structure within said hollow structural member when said internal structure is placed within said hollow structural member prior to activation of said material; and wherein said internal structure is bonded to said internal surface of said hollow structural member after activation of said material.
  • 30. The system according to claim 29 wherein the internal structure is formed of a rigid plastic material.
  • 31. The system according to claim 29 wherein the at least one locator is a lug.
  • 32. The system according to claim 29 wherein the hollow member is rectangular in shape.
  • 33. The system according to claim 29 wherein the hollow member is formed of metal.
  • 34. The system according to claim 29 wherein there is a clearance between the internal structure and the outer hollow member.
  • 35. The system according to claim 29 wherein the structural adhesive material is positioned between the outer hollow member and the internal structure.
  • 36. The system according to claim 35 wherein said adhesive material approaches an internal surface of said hollow member.
Priority Claims (1)
Number Date Country Kind
0106911 Mar 2001 GB
US Referenced Citations (109)
Number Name Date Kind
4083384 Horne et al. Apr 1978 A
4463870 Coburn, Jr. et al. Aug 1984 A
4610836 Wycech Sep 1986 A
4695343 Wycech Sep 1987 A
4732806 Wycech Mar 1988 A
4751249 Wycech Jun 1988 A
4769391 Wycech Sep 1988 A
4813690 Coburn, Jr. Mar 1989 A
4822011 Goldbach et al. Apr 1989 A
4836516 Wycech Jun 1989 A
4853270 Wycech Aug 1989 A
4861097 Wycech Aug 1989 A
4867271 Tschudin-Mahrer Sep 1989 A
4901500 Wycech Feb 1990 A
4908930 Wycech Mar 1990 A
4922596 Wycech May 1990 A
4923902 Wycech May 1990 A
4978562 Wycech Dec 1990 A
4995545 Wycech Feb 1991 A
5124186 Wycech Jun 1992 A
5194199 Thum Mar 1993 A
5266133 Hanley et al. Nov 1993 A
5288538 Spears Feb 1994 A
5358397 Ligon et al. Oct 1994 A
5373027 Hanley et al. Dec 1994 A
5506025 Otto et al. Apr 1996 A
5575526 Wycech Nov 1996 A
5660116 Dannawi et al. Aug 1997 A
5755486 Wycech May 1998 A
5819408 Catlin Oct 1998 A
5884960 Wycech Mar 1999 A
5888600 Wycech Mar 1999 A
5894071 Merz et al. Apr 1999 A
5941597 Horiuchi et al. Aug 1999 A
5985435 Czaplicki et al. Nov 1999 A
5992923 Wycech Nov 1999 A
6003274 Wycech Dec 1999 A
6006484 Geissbuhler Dec 1999 A
6033300 Schneider Mar 2000 A
6059342 Karwai et al. May 2000 A
6068424 Wycech May 2000 A
6079180 Wycech Jun 2000 A
6092864 Wycech et al. Jul 2000 A
6096403 Wycech Aug 2000 A
6099948 Paver, Jr. Aug 2000 A
6103341 Barz et al. Aug 2000 A
6103784 Hilborn et al. Aug 2000 A
6131897 Barz et al. Oct 2000 A
6149227 Wycech Nov 2000 A
6150428 Hanley, IV et al. Nov 2000 A
6165588 Wycech Dec 2000 A
6168226 Wycech Jan 2001 B1
6189953 Wycech Feb 2001 B1
6196621 VanAssche et al. Mar 2001 B1
6199940 Hopton et al. Mar 2001 B1
6232433 Narayan May 2001 B1
6233826 Wycech May 2001 B1
6237304 Wycech May 2001 B1
6247287 Takabatake Jun 2001 B1
6253524 Hopton et al. Jul 2001 B1
6263635 Czaplicki Jul 2001 B1
6270600 Wycech Aug 2001 B1
6272809 Wycech Aug 2001 B1
6276105 Wycech Aug 2001 B1
6281260 Hanley, IV et al. Aug 2001 B1
6287666 Wycech Sep 2001 B1
6296298 Barz Oct 2001 B1
6303672 Papalos et al. Oct 2001 B1
6305136 Hopton et al. Oct 2001 B1
6311452 Barz et al. Nov 2001 B1
6315938 Jandali Nov 2001 B1
6319964 Blank et al. Nov 2001 B1
6321793 Czaplicki et al. Nov 2001 B1
6332731 Wycech Dec 2001 B1
6341467 Wycech Jan 2002 B1
6348513 Hilborn et al. Feb 2002 B1
6357819 Yoshino Mar 2002 B1
6358584 Czaplicki Mar 2002 B1
6368438 Chang et al. Apr 2002 B1
6372334 Wycech Apr 2002 B1
6378933 Schoen et al. Apr 2002 B1
D457120 Broccardo et al. May 2002 S
6382635 Fitzgerald May 2002 B1
6383610 Barz et al. May 2002 B1
6389775 Steiner et al. May 2002 B1
6406078 Wycech Jun 2002 B1
6413611 Roberts et al. Jul 2002 B1
6419305 Larsen Jul 2002 B1
6422575 Czaplicki et al. Jul 2002 B1
H2047 Harrison et al. Sep 2002 H
6455146 Fitzgerald Sep 2002 B1
6467834 Barz et al. Oct 2002 B1
6474722 Barz Nov 2002 B2
6474723 Czaplicki et al. Nov 2002 B2
6475577 Hopton et al. Nov 2002 B1
6482486 Czaplicki et al. Nov 2002 B1
6482496 Wycech Nov 2002 B1
6519854 Blank Feb 2003 B2
6523857 Hopton et al. Feb 2003 B1
6546693 Wycech Apr 2003 B2
20010020794 Ishikawa Sep 2001 A1
20010042353 Honda et al. Nov 2001 A1
20020033617 Blank Mar 2002 A1
20020033618 Kwon Mar 2002 A1
20020053179 Wycech May 2002 A1
20020054988 Wycech May 2002 A1
20020074827 Fitzgerald et al. Jun 2002 A1
20030057737 Bock et al. Mar 2003 A1
20030069335 Czaplicki et al. Apr 2003 A1
Foreign Referenced Citations (53)
Number Date Country
19812288 May 1999 DE
19856255 Jan 2000 DE
19858903 Jun 2000 DE
0 383 498 Aug 1990 EP
0611778 Aug 1994 EP
0891918 Jan 1999 EP
0893331 Jan 1999 EP
0893332 Jan 1999 EP
1 122 152 Aug 2001 EP
1 122 156 Aug 2001 EP
0893332 Mar 2002 EP
2 749 263 Dec 1997 FR
2 375 328 Nov 2002 GB
58-87668 Jun 1983 JP
7-117728 May 1995 JP
7-31569 Jun 1995 JP
10-053156 Feb 1998 JP
02001191949 Jul 2001 JP
2002331960 Nov 2002 JP
WO8906595 Jul 1989 WO
WO9532110 Nov 1995 WO
WO9702967 Jan 1997 WO
WO9743501 Nov 1997 WO
9821060 May 1998 WO
WO9836944 Aug 1998 WO
WO9850221 Nov 1998 WO
WO9908854 Feb 1999 WO
WO9928575 Jun 1999 WO
WO9948746 Sep 1999 WO
WO9950057 Oct 1999 WO
9961289 Dec 1999 WO
WO0003894 Jan 2000 WO
WO0012571 Mar 2000 WO
WO0012595 Mar 2000 WO
WO0013876 Mar 2000 WO
WO0013958 Mar 2000 WO
WO0020483 Apr 2000 WO
WO0027920 May 2000 WO
WO0037302 Jun 2000 WO
WO0037554 Jun 2000 WO
WO0039232 Jul 2000 WO
WO0040629 Jul 2000 WO
WO0040815 Jul 2000 WO
WO0043254 Jul 2000 WO
WO0052086 Sep 2000 WO
WO0055444 Sep 2000 WO
WO0046461 Aug 2001 WO
WO0154936 Aug 2001 WO
WO0156845 Aug 2001 WO
WO 0168394 Sep 2001 WO
WO0171225 Sep 2001 WO
WO0183206 Nov 2001 WO
WO 0188033 Nov 2001 WO
Non-Patent Literature Citations (22)
Entry
Search Report dated Aug. 23, 2002.
Written Opinion dated Mar. 28, 2003.
Copending application Ser. No. 09/459,756 filed Dec. 10, 1999.
Copending application Ser. No. 09/502,686 filed Feb. 11, 2000.
Copending application Ser. No. 09/524,961 filed Mar. 14, 2000.
Copending application Ser. No. 09/631,211 filed Aug. 3, 2000.
Copending application Ser. No. 09/858,939 filed May 16, 2001.
Copending application Ser. No. 09/655,965 filed Sep. 6, 2000.
Copending application Ser. No. 09/676,335 filed Sep. 29, 2000.
Copending application Ser. No. 09/676,725 filed Sep. 29, 2000.
Copending application Ser. No. 09/859,126 filed May 16, 2001.
Copending application Ser. No. 10/163,894 filed Jun. 4, 2002.
Copending application Ser. No. 09/906,289 filed Jul. 16, 2001.
Copending application Ser. No. 09/939,152 filed Aug. 24, 2001.
Copending application Ser. No. 60/317,009 filed Sep. 4, 2001.
Copending application Ser. No. 60/318,183 filed Sep. 7, 2001.
Copending application Ser. No. 09/974,017 filed Oct. 10, 2001.
Copending application Ser. No. 60/324,497 filed Sep. 24, 2001.
Copending application Ser. No. 09/982,681 filed Oct. 18, 2001.
Copending application Ser. No. 10/008,194 filed Nov. 8, 2001, which claims priority from European application No. 0111151.7 filed May 8, 2001.
Copending Application Ser. No. 10/233,919 filed Sep. 3, 2002.
Search Report dated Jun. 15, 2001.