The invention relates to structural building systems, and more specifically to structural frames for buildings and to kits therefor.
Structural frames form the backbone of most modern building structure. A structural frame, also known as a structural system, generally includes a plurality of structural members which are interconnected to resist and support loads.
Depending on the design, size and requirements of the building, different types of structural frames may be used.
Some structural frames include steel columns and steel horizontal support beams which are adapted to receive horizontal floor slabs made of concrete. This configuration is often used in the construction of high-rise buildings, for example. In this type of construction, a floor base made of metal or other material is placed on the horizontal beam and concrete is poured directly on the base to form the floor slabs. The steel columns may further be encased in concrete.
Unfortunately, this type of frame requires a relatively large quantity of fresh concrete to be transported from its manufacturing site to the construction site, usually in specialized vehicles, which increases the costs of construction.
Moreover, once the concrete has been poured, it must be cured for a certain period of time, which further increases the time required to construct the building. The exterior conditions on the construction site such as the temperature and humidity can also affect the cure time and the quality of the poured concrete. In some circumstances, these conditions could even make the structural frame unsafe.
To address some of the shortcomings of using this type of system, some structural systems include components which are prefabricated. For example, concrete slabs could be precast in manufacturing plants in controlled conditions to allow the quality of the concrete to be maximized. Unfortunately, when the slabs are provided at the construction site and placed next to each other, some amount of concrete may still need to be poured over the slabs to assemble them together.
Other systems include recessed bolts which connect together adjacent slabs at the interface between the slabs. Unfortunately, this type of connection may create local stress concentration near the edges of the slabs. Moreover, the slabs still need the horizontal support beams to prevent the slabs from failing in bending under vertical loads.
Chinese Patent No. CN2752360 discloses a system which includes a plurality of columns and precast slabs which are disposed horizontally next to each other and between the columns to define floors of a building structure. The precast slabs are generally held between adjacent columns, although rectangular insert pieces may be used instead of columns when vertical support is not required. Cable assemblies are run through the columns and tensioned to hold the slabs between the columns. Specifically, each cable assembly includes an upper cable and a lower cable disposed below the upper cable. Unfortunately, this configuration may not provide adequate rigidity to the assembled floors.
Furthermore, this system uses symmetrical slabs adapted to be positioned away from the perimeter of the building structure and asymmetrical slabs adapted to be positioned at the perimeter of the building structure. The asymmetrical slabs include internal perimeter channels which are adapted to be positioned along the perimeter of the building structure to house cables extending along the perimeter of the building structure and thereby prevent the cables from being exposed to the exterior of the building structure. Holes are also provided on the asymmetrical slabs to allow grout to be poured in the channels and on the cables once the cables are tensioned. The use of different types of slabs depending on their position in the building renders this system relatively complex and costly. Moreover, the grout may not be properly poured over the cables in the channels since the only access to the channel is provided through a relatively small hole.
It would therefore be desirable to provide a structural frame which tends to overcome at least one of the above-identified drawbacks.
According to one aspect, there is provided a structural frame for a building, the structural frame comprising: a plurality of rectangular columns including a first column and a second column adjacent the first column, the first and second columns being spaced from each other by a first distance, the first column having a first vertical center plane and the second column having a second vertical center plane; at least one precast concrete floor slab having opposite first and second sides and opposite third and fourth sides defining four corners therebetween, the floor slab further having first and second corner indents located in two adjacent corners, each corner indent being sized and shaped to receive one of the first and second columns, the first and second corner indents extending inwardly from the first side towards the second side to define a first elongated edge beam therebetween, the first elongated edge beam having a length corresponding to the first distance between the first and second columns, the first elongated edge beam being disposed between the first and second columns such that the first and second columns are received in the first and second corner indents and that the first elongated edge beam abuts the first and second columns; and a first tendon assembly extending between the first and second columns, the first tendon assembly being adapted to be tensioned to thereby compress the first elongated edge beam between the first and second columns, the first tendon assembly including at least one left cable and at least one right cable located symmetrically on either sides of at least one of the first and second vertical center planes.
In one embodiment, the at least one precast concrete floor slab includes a first slab and a second slab adjacent the first slab and spaced from the first floor slab to define an elongated space therebetween, the first tendon assembly extending within the elongated space between the adjacent columns.
In one embodiment, the structural frame further includes grout received in the elongated space for encasing the first tendon assembly.
In one embodiment, the structural frame further includes a plurality of column reinforcement members, each column reinforcement member including a female connector extending through a corresponding one of the first and second adjacent columns and a rod portion engaging the female connector and extending into the elongated space to anchor the corresponding adjacent column to the grout in the elongated space.
In one embodiment, the first adjacent column includes a first perimeter column located on a perimeter of the building and the second adjacent column includes a central column located in the building away from the perimeter of the building.
In one embodiment, the plurality of columns includes a second perimeter column adjacent the central column, the second perimeter column being located opposite the first perimeter column and in alignment with the first perimeter column and the central column, the first tendon assembly being secured to the first and second perimeter columns and extending between the first and second perimeter columns through the central column.
In one embodiment, the at least one precast concrete floor slab further includes a third corner indent adjacent the second corner indent, the second and third corner indent extending inwardly from the third side towards the fourth side to define a second elongated edge beam therebetween, the second elongated edge beam having a length corresponding to the first distance between the first and second columns.
In one embodiment, the plurality of columns further includes a third column adjacent the second column, the first and second columns being aligned along a first axis and the second and third columns being aligned along a second axis perpendicular to the first axis, the second and third column being spaced apart by the first distance to receive the second elongated edge beam therebetween.
In one embodiment, the structural frame further includes a second tendon assembly extending between the second and third columns, the second tendon assembly being adapted to be tensioned to thereby compress the second elongated edge beam between the second and third columns.
In one embodiment, the structural frame further includes a perimeter beam having a length corresponding to the first distance between the first and second columns, the perimeter beam being adapted to be received between the first and second columns so as to be compressed between the first and second columns when the first tendon assembly is tensioned.
In one embodiment, the perimeter beam has a rectangular cross-section.
In one embodiment, each slab includes a plurality of ribs extending below the top face between opposite sides of the slab for providing rigidity to the slab.
In one embodiment, the plurality of ribs includes first and second parallel ribs and third and fourth parallel ribs extending perpendicularly to the first and second parallel ribs.
In one embodiment, the at least one left cable and the at least one right cable are made of structural steel.
In one embodiment, the at least one left cable and the at least one right cable include a pair of spaced-apart upper cables and a pair of spaced-apart lower cables located below the upper cables.
According to another aspect, there is also provided a method for constructing a structural frame for a building, the method including: providing a plurality of precast columns; positioning the columns so as to define a perimeter of the structural frame; providing a plurality of precast concrete floor slabs, each slab having opposite first and second sides and opposite third and fourth sides defining four corners therebetween, the floor slab further having first and second corner indents located in two adjacent corners, each corner indent being sized and shaped to receive one of the first and second columns, the first and second corner indents extending inwardly from the first side towards the second side to define an elongated edge beam therebetween, the elongated edge beam having a length corresponding to the first distance between the first and second columns, the elongated edge beam being disposed between the first and second columns such that the first and second columns are received in the first and second corner indents and that the elongated edge beam abuts the first and second columns; positioning the slabs horizontally adjacent each other to define a floor of the structural frame such that the elongated edge beams extend between two adjacent ones of the columns; providing at least one tendon assembly extending between the adjacent columns; tensioning the at least one tendon assembly to thereby compress the elongated edge beams between the adjacent columns.
In one embodiment, the method further comprises: applying grout over the at least one tensioned tendon assembly.
According to yet another aspect, there is further provided a kit for constructing a structural frame of a building, the kit comprising: a plurality of rectangular columns including a first column and a second column adapted to be disposed adjacent the first column such that the first and second columns are spaced from each other by a first distance; at least one precast concrete floor slab having opposite first and second sides and opposite third and fourth sides defining four corners therebetween, the floor slab further having first and second corner indents located in two adjacent corners, each corner indent being sized and shaped to receive one of the first and second columns, the first and second corner indents extending inwardly from the first side towards the second side to define a first elongated edge beam therebetween, the first elongated edge beam having a length corresponding to the first distance between the first and second columns, the first elongated edge beam being disposed between the first and second columns such that the first and second columns are received in the first and second corner indents and that the first elongated edge beam abuts the first and second columns; and a first tendon assembly adapted to extend between the first and second columns, the first tendon assembly being adapted to be tensioned to thereby compress the first elongated edge beam between the first and second columns.
Having thus generally described the nature of the invention, reference will now be made to the accompanying drawings, showing by way of illustration a preferred embodiment thereof and in which:
Further details of the invention and its advantages will be apparent from the detailed description included below.
In the following description of the embodiments, references to the accompanying drawings are by way of illustration of an example by which the invention may be practiced. It will be understood that other embodiments may be made without departing from the scope of the invention disclosed.
Referring first to
It will be appreciated that the number of floors and the number of slabs making up each floor in this embodiment are illustrative only. The structural frame 100 is scalable such that in other alternative embodiments, the number of floors and slabs in each floor could be changed to suit a particular application.
Specifically, the plurality of columns 102 includes a plurality of spaced apart perimeter or edge columns, identified generically with reference numeral 106, disposed in a generally rectangular pattern along the outer edges of the structural frame 100 to define a perimeter of the building and a central column 108 located generally at a center between the perimeter columns 106.
The columns 106 include first, second, third and fourth corner columns 106a, 106b, 106c, 106d and first, second, third and fourth intermediate or side columns 106e, 106f, 106g, 106h. The first side column 106e is located generally halfway between the first and second corner columns 106a, 106b. The second side column 106f is located generally halfway between the second and third corner columns 106b, 106c. The third side column 106g located generally halfway between the third and fourth corner columns 106c, 106d. The fourth side column 106h located generally halfway between the fourth and first corner columns 106d, 106a. This embodiment therefore shows eight (8) perimeter columns 106. However, in other embodiments, a greater or lower number of columns may be used depending of the size of the structural frame and the number of slabs used.
Each column 102 includes a bottom end 110 and a top end 112 opposite the bottom end 110. In the illustrated embodiment, the bottom end 110 of the column 102 is secured to a column footing 114 which is positioned and buried under a ground surface. Alternatively, the bottom end 110 of the column 102 could be secured to another type of foundation structure which a skilled person would consider to be appropriate.
In one embodiment, the columns 102 are made of precast concrete. Alternatively, the columns 102 may be made of a different structural material having generally the same properties as precast concrete.
Preferably, each column 102 has a square cross-section area that measures between about 340 mm by 340 mm to about 500 mm by 500 mm. Alternatively, the columns 102 could be fabricated with different dimensions and could have a rectangular cross-section or any other cross-section that a skilled addressee would consider to be appropriate.
In the illustrated embodiment, each column 102 is made of a plurality of column portions, generally identified with the reference numeral 116, which are disposed or stacked on top of each other. It will be appreciated that this configuration enables additional column portions to be easily added on top of the columns 102 to add additional floors to the structural frame. In this embodiment, the plurality of column portions includes three column portions—a top column portion 116a, a bottom column portion 116b and a middle column portion 116c extending between the top and bottom column portions 116a, 116b. In another embodiment, the columns 102 could include a different number of column portions, and/or the column portions could have various heights and configurations. For example, some or all columns in the structural frame 100 could be one, two or three stories high. It will be understood that the height of a column portion could be selected according to various factors such as the height of the building, requirements related to the transportation of the column portions and the lifting capacity of a crane or cranes used to assemble the structural frame 100.
In the illustrated embodiment, the column portions 116a, 116b, 116b are further connected together to form a single, elongated body. More specifically, the top column portion 116a could be secured to the middle column portion 116 by vertical rebar, not shown, extending between the top column portion 116a and the middle column portion 116 within the column portions 116a, 116c. The middle column portion 116c could be secured to the bottom column portion 116b in a similar manner. Alternatively, the column portions 116a, 116b, 116c could be secured together using other securing techniques which a skilled addressee would consider to be appropriate.
Still referring to
In the following description, only the top floor 150a will be described, the upper intermediate, lower intermediate and bottom floors 150b, 150c, 150d being generally similar to the top floor 150a.
The top floor 150a includes first, second, third and fourth slabs 300, 302, 304, 306 disposed generally adjacent each other in a two-by-two grid configuration in a common top floor plane P1. Each slab 300, 302, 304, 306 is generally rectangular and includes first and second inner sides 308, 310 which extend perpendicularly to each other and first and second outer sides 312, 314 which also extend perpendicularly to each other. The first and second inner sides 308, 310 of each slab 300, 302, 304, 306 are located towards the other slabs 300, 302, 304, 306, while the first and second outer sides 312, 314 are located away from the other slabs 300, 302, 304, 306 and towards an exterior of the structural frame 100. For example, the first and second inner sides 308, 310 of the first slab 300 are located respectively towards the second and third slabs 302, 304 which are located next to the first slab 300.
It will be appreciated that in this configuration, the slabs 300, 302, 304, 306 are mirror images of each other about a first horizontal central axis H1 extending between the first and third side columns 106e, 106g, and are also mirror images of each other about a second horizontal central axis H1 extending between the second and fourth side columns 106f, 106h, as shown in
Now referring to
As shown in
When seen from above, the elongated spaces 320 therefore radiate outwardly from the central column 108 towards the side columns 106e, 106f, 106g, 106h. Specifically, each elongated space 320a, 320b, 320c or 320d has an inner end 322 located adjacent the central column 108 and an outer end 324 located adjacent a corresponding one of the side columns 106e, 106f, 106g or 106h. For example, the inner end 322 of the first elongated space 320a is located adjacent the central column 108 while the outer end 324 of the first elongated space 320a is located near the first side column 106e.
In the illustrated embodiment, the structural frame 100 further includes a first inner tendon assembly 330 and a second inner tendon assembly 332 which extend within the elongated spaces 320a, 320b, 320c, 320d between opposite side columns 106e, 106f, 106g, 106h. The inner tendon assemblies 330, 332 are elongated structural elements, such as cables, which are adapted to be tensioned to compress the slabs 104 between the columns 102 and thereby tie the slabs 104 together, as will be explained further below.
More specifically, the first inner tendon assembly 330 extends generally parallel to the top floor plane P1 between the first side column 106e and the third side column 106g. The first inner tendon assembly 330 is received within the first and second elongated spaces 320a, 320b and extends through the central column 108, generally along the first horizontal central axis H1. Specifically, the central column 108 includes a first horizontal opening, not shown, which is aligned with the first and second elongated spaces 320a, 320b and which allows the first inner tendon assembly 330 to pass through.
The second inner tendon assembly 332 extends generally parallel to the top floor plane P1 between the second side column 106f and the fourth side column 106h. The second inner tendon assembly 332 is received within the third and fourth elongated spaces 320c, 320d and extends through the central column 108, generally along the second horizontal central axis H2. The central column 108 further includes a second horizontal opening, not shown, which is aligned with the first and second elongated spaces 320a, 320b and which allows the second inner tendon assembly 332 to pass through.
Specifically, the inner tendon assemblies 330, 332 are secured to the opposite side columns 106e, 106g or 106f, 106h and are tensioned to create a force, represented in
As best shown in
According to this configuration, when the inner tendon assemblies 330, 332 are tensioned, the slabs 300, 302, 304, 306 are compressed between the columns 102. In this configuration, the slabs 300, 302, 304, 306 are therefore held tightly between the columns 102 and thereby prevented from moving. It will also be appreciated that the compression created by the tendon assemblies on the slabs 300, 302, 304, 306 will further reduce or even eliminate the bending in the slabs 300, 302, 304, 306, especially at or around the interface between the slabs 300, 302, 304, 306 and the columns 102.
Alternatively, instead of being secured to opposite side columns 106e, 106g or 106f, 106h, each one of the first and second inner tendon assemblies 330, 332 could include a first tendon assembly portion extending between the central column 108 and a first side column 106e, 106f, 106g or 106h and a second tendon assembly portion extending between the central column 108 and a second side column 106e, 106f, 106g or 106h opposite the first side column 106e, 106f, 106g or 106h.
Referring to
In the illustrated embodiment, each perimeter beam 120 further has a generally rectangular cross-section. Alternatively, the perimeter beams 120 could have any other cross-sectional shape that a skilled person would consider to be appropriate. For example, the shape and configuration of perimeter beams 120 could be selected in order to accommodate a desired exterior cladding or other exterior architectural elements of the building.
Moreover, the perimeter beam may be made of precast concrete, but could alternatively be made of a similar material having similar properties as precast concrete.
Still in the illustrated embodiment, each perimeter beam 120 is parallel to, and spaced apart from, a corresponding outer side 312 or 314 and is spaced from the corresponding outer side 312 or 314 to define a perimeter elongated space between the corresponding slab 300, 302, 304, 306 and the perimeter beam 120. For example, the first perimeter beam 340a is spaced from the first outer side 312 of the first slab 300 to define a first perimeter elongated space 350a and the second perimeter beam 340b is spaced from the first outer side 312 of the second slab 302 to define a second perimeter elongated space 350b.
The perimeter elongated spaces 340a, 340b are generally similar to the inner elongated spaces 320a, 320b, 320c, 320d and are adapted to receive a plurality of perimeter tendon assemblies—first, second, third and fourth tendon assemblies 360, 362, 364, 366—extending generally parallel to the top floor plane P1 between corner columns 106a, 106b, 106c, 106d through side columns 106e, 106f, 106g, 106h. For example, the first perimeter elongated space 350a and the second perimeter elongated space 350b are aligned with each other and are adapted to receive the first perimeter tendon assembly 360 which extends between the first corner column 106a and the second corner column 106b.
As best shown in
The perimeter tendon assemblies 360, 362, 364, 366 are substantially similar to the inner tendon assemblies 330, 332 and are adapted to be tensioned to create a compressive force field, represented in
Moreover, both the slabs 104 and the perimeter beams 120 are sized and shaped so as to be partially received between adjacent perimeter columns 106. In this configuration, the perimeter elongated spaces 350 therefore have a third width W3 which is less than the first width W1 of the columns 102.
As best shown in
As further shown in
When the perimeter tendon assemblies 360, 362, 364, 366 are tensioned, the slabs 300, 302, 304, 306 and the perimeter beams 120 are compressed between the columns 106. In this configuration, the slabs 300, 302, 304, 306 and the perimeter beams 120 are therefore held tightly between the columns 106 and thereby prevented from moving by friction of the slabs 300, 302, 304, 306 and the perimeter beams 120 against the columns 106. It will also be appreciated that the compression created by the tendon assemblies on the slabs 300, 302, 304, 306 and the perimeter beams 120 will further reduce or even eliminate the bending in the slabs 300, 302, 304, 306, especially at or around the interface between the slabs 300, 302, 304, 306 and the columns 102.
In one embodiment, instead of including four tendon assemblies 360, 362, 364, 366 which extend along the entire width of the floor 150 between corner columns 106a, 106b, 106c, 106d, each perimeter tendon assembly 360, 362, 364, 366 could include a first tendon assembly portion which extends between one of the side columns 106e, 106f, 106g or 106h and one of the corner columns 106a, 106b, 106c or 106d adjacent the side column 106e, 106f, 106g or 106h.
Turning now to
Alternatively, each tendon assembly 330, 332, 360, 362, 364, 366 could include a different number of cables disposed in one of various other patterns. For example, each tendon assembly 330, 332, 360, 362, 364, 366 could include only two cables—a left cable and a right cable—located symmetrically on either sides of the vertical center plane V1.
In the illustrated embodiment, the tendon assemblies 330, 332, 360, 362, 364, 366 include structural steel cables. Preferably, each cable has a diameter between 15 mm and 20 mm.
Alternatively, the tendon assemblies 330, 332, 360, 362, 364, 366 could include wire, threaded rods or any other type of tendon assemblies which a skilled person would consider to be appropriate.
Turning now to
It will be appreciated that this configuration provides structural strength and improves the slab's resistance to bending, while reducing the weight of the slabs. This configuration further reduces the amount of material required to manufacture the slabs, and therefore the cost of manufacturing the slabs.
Still referring to
Referring specifically to
The slab 104 further includes four rectangular, elongated edge beams 1050, 1052, 1054, 1056 defined between the corner indents 1002, 1004, 1006, 1008. The elongated edge beams 1050, 1052, 1054, 1056 extend outwardly from the slab 104, along the slab plane P2. Specifically, a first elongated edge beam 1050 is defined between the first and second corner indents 1002, 1004, a second elongated edge beam 1052 is defined between the second and third corner indents 1004, 1006, a third elongated edge beam 1054 is defined between the third and fourth corner indents 1006, 1008 and a fourth elongated edge beam 1056 is defined between the fourth and first corner indents 1008, 1002.
It will be appreciated that the elongated edge beams 1050, 1052, 1054, 1056, similarly to the perimeter beams 120, are sized and shaped to be received between adjacent columns. Specifically, the elongated edge beams 1050, 1052, 1054, 1056 have a length L3 which is similar to the distance L1 between adjacent columns 102. It will also be appreciated that the elongated edge beams 1050, 1052, 1054, 1056, being integrally formed with the rest of the slab 104, permits a sturdier connection to the columns than if the slabs 104 were simply rectangular shaped and provided with separate edge beams. Separate edge beams would need to be secured themselves to the slabs 104, which implies the use of additional parts such as fasteners and which may create stress concentration areas in the slab 104.
To construct the frame 100, the columns 102 are first provided and positioned vertically in a desired box pattern relative to each other so as to define a perimeter of the structural frame.
The prefabricated slabs are then provided and positioned to define one or more floors, with the elongated edge beams 1050, 1052, 1054, 1056 being positioned between adjacent columns.
The tendon assemblies can then be provided between the columns 102 and tensioned as described above to thereby compress the elongated edge beams between the adjacent columns and create a robust, solid structural frame.
Referring back to
It will be appreciated that when poured and cured, the grout 750 will encase the tendon assemblies and will protect the tendon assemblies 330, 332, 360, 362, 364, 366 against damage from fire, corrosion and the like. The grout 750 could include high strength grout such as fast hardening, early strength micro-expansion grout or any other type of grout that a skilled person would consider to be appropriate.
It will further be appreciated that the tensioning of the tendon assemblies tends to create a compressive stress field at the contact interface between the precast concrete columns and precast slabs which tends to prevent cracks from forming in the cured grout. This may potentially increase the service life and reliability of the structure.
Referring to
Referring now to
Once the grout 750 has been poured, the building can be completed using techniques and components known in the art. For example, precast cladding, made for example of insulated or glass panels, could be positioned around the perimeter of the structural frame to form the exterior of the building. Alternatively, the exterior of the building may be constructed using conventional finishes such as brick or stone, or even stucco. It will be understood that the final exterior design of the building will depend on various factors such as the environment and the budget of the building project.
In one embodiment and especially in relatively tall buildings, a plurality of shear walls may further be disposed between floors of the structural frame 100. Shear walls can be made of concrete which is cast in place at its desired location within the structural frame 100, and may be reinforced with vertical and horizontal rebar. The height and configuration of the shear walls may be selected according to specific design requirements.
Now turning to
In the embodiment illustrated in
Each one of the center slab 1504 and the side slabs 1508a, 1508b, 1508c, 1508d is held and compressed between adjacent columns located at the four corners of the slab 1504, 1508a, 1508b, 1508c or 1508d by a plurality of tendon assemblies, identified generically by reference numeral 1550, similarly to the slabs 104 described above. Specifically, the columns 1501 includes first, second, third and fourth central columns 1510a, 1510b, 1510c, 1510d which are disposed in a rectangular pattern at the four corners of the central slab 1504.
The columns 1501 further include eight (8) perimeter columns—first, second, third, fourth, fifth, sixth, seventh and eighth perimeter columns 1512a, 1512b, 1512c, 1512d, 1512e, 1512f, 1512g, 1512h which are spaced outwardly from the central columns 1510a, 1510b, 1510c, 1510d. Specifically, the first and second perimeter columns 1512a, 1512b are spaced away from the first and second central columns 1510a, 1510b to thereby form a rectangular pattern which is sized and shaped to receive the first side slab 1508a. The third and fourth perimeter columns 1512c, 1512d are spaced away from the second and third central columns 1510b, 1510c to thereby form a rectangular pattern sized and shaped to receive the second side slab 1508b. The fifth and sixth perimeter columns 1512e, 1512f are spaced away from the third and fourth central columns 1510c, 1510d to thereby form a rectangular pattern sized and shaped to receive the third side slab 1508c. The seventh and eighth perimeter columns 1512g, 1512h are spaced away from the fourth and first central columns 1510d, 1510a to thereby form a rectangular pattern sized and shaped to receive the fourth side slab 1508d.
In the embodiment illustrated in
Still in the illustrated embodiment, the slabs 1502 further includes four (4) corner slabs—first, second, third and fourth corner slabs 1514a, 1514b, 1514c, 1514d—which generally extend away from the corners of the central slab 1504 and fill the gap between the side slabs 1508a, 1508b, 1508c, 1508d. More specifically, the first corner slab 1514a is disposed adjacent the first and fourth side slabs 1508a, 1508d, the second corner slab 1514b is disposed adjacent the first and second side slabs 1508a, 1508b, the third corner slab 1514c is disposed adjacent the second and third side slabs 1508b, 1508c and the fourth corner slab 1514d is disposed adjacent the third and fourth side slabs 1508c, 1508d.
Unlike the center slab 1504 and the side slab 1508a, 1508b, 1508c, 1508d, the corner slabs 1514a, 1514b, 1514c, 1514d are cantilevered. More specifically, each corner slab 1514a, 1514b, 1514c, 1514d is held between three columns 1502 instead of four columns 1502.
Referring specifically to
The third corner slab 1514c is generally L-shaped and includes first and second elongated portions 1700, 1702 which are generally perpendicular to each other. The first elongated portion 1700 is located towards the second side slab 1508b and the second elongated portion 1702 is located towards the third side slab 1508c.
The first elongated portion 1700 includes a first inner edge 1704 which is spaced from the second side slab 1508b to define a first elongated space 1706. Similarly, the second elongated portion 1702 includes a second inner edge 1708 which is spaced from the third side slab 1508c to define a second elongated space 1710.
The third corner slab 1514c further includes a rectangular indent 1709 defining first and second indent edges 1711, 1713 which are respectively parallel to the first and second inner edges 1704, 1708.
Still referring specifically to
The third corner slab 1514c further includes a first corner indent 1714 located between the first and second inner edges 1704, 1708 and a second corner indent 1716 located between the first inner edge 1704 and the second outer edge 1714. A first elongated edge beam 1718 is further defined in the first inner edge 1704 between the first and second corner indents 1714, 1716. The first corner indent 1714 is sized and shaped to receive the third central column 1510c and the second corner indent 1716 is sized and shaped to receive the fourth perimeter column 1512d such that the first elongated edge beam 1718 extends between the third central column 1510c and the fourth perimeter column 1512d.
In the embodiment illustrated in
Referring specifically to
As shown in
The second tendon assembly 1550b extends between the second and fifth side columns 1512b, 1512e through the second and third central columns 1510b, 1510c and connects the first side slab 1508a, the first corner slab 1514b, the central slab 1504, the second side slab 1508b, the third side slab 1508c and the third corner slab 1514c and to each other.
As illustrated in
The fourth tendon assembly 1550d extends between the seventh and fourth perimeter columns 1512g and 1512d through the fourth and third central columns 1510d, 1510c and joins the fourth corner slab 1510d, the fourth side slab 1508d, the third side slab 1508c, the central slab 1504, the third corner slab 1514c and the second side slab 1508b.
The fifth tendon assembly 1550e extends through the first corner slab 1514a, the fourth side slab 1508d and the fourth corner slab 1514d. More specifically, the fifth tendon assembly 1550e is tied at one end 1555 to the first indent edge 1711 of the first corner slab 1514a. It runs through the entire width of the elongated portion 1700 of the first corner slab 1514a and further extends through the eighth perimeter column 1512h, the fourth side slab 1508d and the seventh perimeter column 1512g and into the fourth corner slab 1514d, where the opposite end 1557 of the fifth tendon assembly 1550e is tied to the first indent edge 1711 of the fourth corner slab 1514d.
The sixth tendon assembly 1550f extends through the second corner slab 1514b, the second side slab 1508b and the third corner slab 1514c. More specifically, the sixth tendon assembly 1550f is tied at one end to the first indent edge 1711 of the second corner slab 1514b. It runs through the entire width of the elongated portion 1700 of the second corner slab 1514b and further extends through the third perimeter column 1512c, the second side slab 1508b and the fourth perimeter column 1512d and into the third corner slab 1514c, where the opposite end of the sixth tendon assembly 1550f is tied to the first indent edge 1711 of the third corner slab 1514c. The distribution of the sixth tendon assembly 1550f is similar to that shown in
The seventh tendon assembly 1550g is relatively short and extends between the first and second perimeter columns 1512a and 1512b. In like fashion, the eighth tendon assembly 1550h is also relatively short and extends between the sixth and fifth perimeter columns 1512f and 1512e.
It will be appreciated that when the tendon assemblies 1550a through 1550h are tensioned the cantilevered corner slabs 1514a, 1514b 1514c and 1514d are firmly retained and supported by the surrounding structures. By way of illustration, looking at the first corner slab 1514a, a person skilled in the art will appreciate that the first elongated portion 1700 will be held in compression against the eighth perimeter column 1512h, the central column 1510a, and the first perimeter column 1512a by virtue of the fifth tendon assembly 1550e, the third tendon assembly 1550c and the first tendon assembly 1550a, respectively. This configuration tends to sufficient to hold the first corner slab 1514a in a cantilevered configuration without the aid of a fourth column.
It will also be appreciated that instead of the first outer edge 1712 abutting the fifth perimeter column 1512e, the third corner slab 1514c could instead include a third corner indent adapted to receive the fifth perimeter column 1512e, similarly to the first and second corner indents 1714, 1716.
In the embodiment illustrated in
Referring again specifically to
In one embodiment, the brace members 1754 are secured to the first and second angle members 1750, 1752 after the tendon assemblies 1550 are properly installed and tensioned to further secure adjacent slabs together. This may be particularly useful to secure a cantilevered corner slab to adjacent slabs and to allow the cantilevered corner slab to support loads since the corner slab is only held between three columns instead of four columns.
Although only bracing assemblies 1560 are only illustrated between the corner slabs 1514a, 1514b, 1514c, 1514d and the second and fourth side slabs 1508b, 1508d in
It will be understood that the structural frame could have other configurations than the ones described above. For example, the perimeter beams 120 could be replaced by additional slabs 104 to extend the floor to a size larger than a two-by-two configuration.
Turning now to
Still in the embodiment illustrated in
Referring now specifically to
In this configuration, when the inner tendon assembly 1904 is tensioned, the slabs 104 are therefore compressed between the first perimeter column 1900 and the insert piece 1810 and between the second perimeter column 1902 and the insert piece 1810 and are thereby secured together similarly to the slabs 104 as described above.
Still referring to
It will be appreciated that unlike a central column, the insert piece 1810 does not provide any vertical support to the floor. Therefore, the weight of the floor and loads on the floor may cause a certain amount of sag in the inner tendon assembly 150 at the center of the floor where the insert piece 1810 is located.
In the embodiment illustrated in
When tensioned, the lower cables 1916 extend generally horizontally while the upper cables 1914 have a generally parabolic profile with the middle portion of the upper cables 1914 sagging. More specifically, the upper cables 1914 are angled downwardly from the first perimeter column 1900 to the insert piece 1910 and angled upwardly from the insert piece 1910 to the second perimeter column 1902. It will be appreciated that in this configuration, the vertical loads on the floor are fully supported by the tension in the cables 1914, 1916.
In another embodiment, the floor could include a relatively large central opening such as floors of an atrium-type building. In this case, additional tendon assemblies could extend between columns located on the perimeter of the opening and columns located on the perimeter of the building.
In yet another embodiment, instead of being located between perimeter columns, one or more slabs could be cantilevered from a floor. Specifically, the cantilevered slab would include a proximal edge adjacent another slab of the structural frame and a distal edge located away from the structural frame. The cantilevered slab could only include two corner indents 1002, 1004, 1006, 1008 for receiving two adjacent perimeter columns, and a pair of tendon assemblies could extend between the perimeter columns and the distal side of the slab such that tension in the tendon assemblies maintains the cantilevered slab in a generally horizontal position.
It will be appreciated that the configuration described above may greatly facilitate the construction of a building, and thereby reduce the cost and time associated with the construction of a new building. Since the slabs, column portions and perimeter beams are precast remotely from the construction site, they can be easily carried to the construction site and quickly assembled together when provided at the construction site.
The columns, slabs and perimeter beams of the frame described above further define elements of a modular system which can be connected together using the tendon assemblies into a desired configuration. This would allow the columns and slabs to be manufactured in advance according to standard, predetermined dimensions, for example, and provided in specific quantities as a kit for a user to assemble depending on the desired area and configuration of the floor and the desired height of the building, further minimizing the costs of building a building compared to more costly customs designs.
The modularity of the frame also makes the frame described above easy to scale for larger or smaller project. For example, the frame could be used for the construction of an individual house, or a condominium or apartment which could be two (2) to six (6) stories high, a medium to high-rise building which could have a height of 25 stories or more and which could be used for apartments, offices, as a school or a hospital. The structural frame could further be particularly well suited for buildings in which the structure may, for various reasons, be difficult to construct or for buildings which are to be constructed in areas which are relatively far from concrete plants that lack the capability to transport fresh concrete to the construction site.
Moreover, the use of columns and slabs in standard sizes and configurations could further reduce the amount of equipment and tooling needed to manufacture the slabs and columns, thereby minimizing the cost of manufacturing the building frame and therefore further minimizing the cost of building a building. The present frame could therefore be particularly well-adapted to meet high volume constructions needs, but could be used as well to build a limited number of buildings with specific architectures.
Alternatively, instead of providing all of the slabs, columns and perimeter beams as precast components, the structural system could include a combination of precast components and other components which are cast on-site, depending on the specific requirements of the project.
A skilled person will also appreciate that the use of precast slabs with integrated side beams (i.e. the rectangular elongated edge beam 1050, 1052, 1054, 1056) ensures that the side beams, which extend in the same plane as the planar top face 1000 of the slab 104, will be generally the same thickness as the rest of the slab, rather than being too large as is often seen in conventional structural building systems. The integration of the side beams with the slabs further eliminates the need to assemble the side beams with the slabs on the construction site, further facilitating and accelerating the construction of the building frame.
Moreover, the perimeter beams can be easily substituted to edge beams of slabs to define the perimeter of the building structure, thereby eliminating the need to manufacture distinct slabs which would be specifically configured to be used on the perimeter of the building structure. Spacing the perimeter beams from the slabs also creates elongated spaces between the perimeter beams and the slabs to receive the perimeter tendon assemblies. The elongated spaces are open and allow grout to be easily poured over the perimeter tendon assemblies, as opposed to if the perimeter tendons assemblies were enclosed in a closed channel.
It will also be appreciated that the use of at least one left cable and at least one right cable in each tendon assembly further contributes to enhancing the rigidity of the floor subjected to vertical loads and reduces or even eliminates torsion between adjacent slabs.
Finally, the buildings built using this structure tend to be very rigid and sturdy integrated structures with enhanced ability to resist severe weather and other natural disasters such as strong winds, hurricanes, tornadoes and high-intensity seismic activity, as well as being sufficiently fireproof to meet local building requirements. In one embodiment, the buildings constructed using the structural frame described above could have a service life of 50 years or more.