In cold-formed steel framing one may use very thin structural framing members to form the interior of structures. The structural framing members may comprise “c-shaped” channels with thicknesses less than about 0.035″ (0.089 cm) in metal thickness. While these structural framing members may have sufficient strength for their application in interior walls, ceilings, soffits, etc., their relatively small thicknesses may create difficulty during installation. Handling of the structural framing members may become increasingly difficult because of the twist and bow created by the weight of the structural framing members as the length of the structural framing members increases. By way of example only, this difficulty may increase in structural framing members having lengths of 15 feet (4.572 meters) or greater.
Additionally, when installing other components, such as gypsum panels, the structural framing members may flex. The flexing of structural framing members may make it difficult to install fasteners to connect the components to the structural framing members. Specifically, in structural framing members comprising c-shaped channels the fasteners may be installed in the flanges (legs) of the channel. Due to the relatively small thickness of the cross-section of the structural framing member, the flanges may flex under the force applied by the fastener during installation. In addition, the web portion of the c-shaped channel may also flex during fastener installation. Flexing of the web portion may significantly contribute to rotation of the flanges during fastener installation.
While numerous types of structural framing members have been made and used, it is believed that no one prior to the inventors has made or used the invention described herein.
Embodiments of the present invention may include structural framing members having increased stiffness to help prevent deflection and/or improve performance during handling and installation. Some embodiments may include diamond or other shaped embossments regularly spaced in the web portion of the structural framing member. Some embodiments may also include one or more longitudinally extending stiffeners formed in the flanges of the structural framing member. Still other embodiments may include one or more longitudinally extending offsets formed in the web of the structural framing member.
While the specification concludes with claims that particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements. The drawings and detailed description which follow are intended to be merely illustrative and are not intended to limit the scope of the invention as set forth in the appended claims.
The following description should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which includes by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive. It should therefore be understood that the inventor contemplates a variety of embodiments that are not explicitly disclosed herein.
As used herein, the term “structural framing member” shall be read to include, but not be limited to studs, track members, runners and other framing members used to form part of a structure, including both load-bearing and non-load bearing portions of a structure.
It will be appreciated that the dimensions and specifications provided in the written description in this application are merely examples of suitable dimensions and specifications. In addition to any specific ranges disclosed herein, the disclosed dimensions may vary within generally accepted manufacturing tolerances, including those in accordance with ASTM C645 and IBC 2006, which are well-known to those of ordinary skill in the art. The disclosed dimensions and specifications should not be used to limit the scope of the present invention. The inventors have contemplated that structural framing members embodying the present invention may have any suitable dimensions and specifications. By way of example only, the width of the flanges, the depth of webs, the depth of the return lips, the general radii, the corner dimensions and the thickness of the structural framing members may be varied in different embodiments.
Each flange 14, 16 may have an outside width W between about 1″ (2.540 cm) and about 1.625″ (4.128 cm), and preferably a width W of about 1¼″ (3.175 cm). Other suitable widths W may be used depending on the particular application for a particular stud. One or both flanges 14, 16 may include a knurled portion, although this is not required. In some embodiments, the knurled portion may include 7 or 9 rows of knurling, although any suitable amount of knurling may be used.
Each return lip 18, 20 may comprise a depth d of about ⅛″ (0.318 cm) to about ½″ (1.270 cm) or any other depth appropriate for a particular application using the stud. In a preferred embodiment, each return lip 18, 20 comprises a depth d of about ¼″ (0.635 cm). As shown, each flange 14, 16 extends generally perpendicularly from a respective side edge of the web 12. Preferably, the angle between each flange 14, 16 and the web 12 ranges from about 85 degrees to about 95 degrees, and even more preferably the angle between each flange 14, 16 and web 12 is about 90 degrees, although this is not required. Each flange 14, 16 comprises a free end that is bent inwardly to form the pair of return lips 18, 20. In this embodiment, the return lips 18, 20 are formed such that each return lip 18, 20 extends generally parallel to the web 12 and generally perpendicular to the flange 14, 16. Of course, other suitable configurations for return lips 18, 20 may be used depending on the particular application in which the stud is being used. Preferably, the angle between each return lip 18, 20 and its respective flange 14, 16 ranges from about 45 degrees to about 100 degrees, and even more preferably the angle between each return lip 18, 20 and its respective flange 14, 16 is about 90 degrees, although this is not required. The corners of stud 10 may be curved with maximum inside radii ranging from about 0.020″ (0.051 cm) to about 0.100″ (0.254 cm). In a preferred embodiment, the maximum inside radii for the corners of stud 10 may be about 0.040″ (0.102 cm), however any other suitable maximum radii may be used depending on the particular application in which the stud is being used.
Each flange 14, 16 may be configured to receive building materials, such as gypsum panels, during construction of a building or other structure. An embodiment of a framing system 400 comprising panels 460 attached to flanges 414, 416 of a plurality of studs 410 is shown in
As shown in
It will be appreciated that alternate embodiments may comprise alternate numbers of longitudinally extending stiffeners and/or longitudinally extending stiffeners with other cross-sections depending on the particular application in which the stud is being used. By way of example only, alternate cross-sections of the longitudinally extending stiffeners may include but are not limited to semi-circular, square, and other curved shapes. In this embodiment, longitudinally extending stiffeners 22, 24, 26 each comprise similar cross-sections. In other embodiments, at least one of the longitudinally extending stiffeners may comprise a different cross-section from at least one other longitudinally extending stiffener. Longitudinally extending stiffeners 22, 24, 26 may extend generally along the entire length of the flange 14, 16, or, alternatively along a portion that is less than the entire length of the flange 14, 16. As shown, longitudinally extending stiffeners 22, 24, 26 are generally parallel to each other. In other embodiments (not shown), two or more longitudinally extending stiffeners may comprise a generally non-parallel configuration such that the longitudinal axes of two or more longitudinally extending stiffeners intersect with each other. In the illustrated embodiment, longitudinally extending stiffeners 22, 24, 26 are generally continuous, linear stiffeners. In other embodiments (not shown), one or more longitudinally extending stiffeners may comprise a generally non-continuous (e.g. broken) or non-linear (e.g. curvilinear) stiffener. In this embodiment, longitudinally extending stiffeners 22, 24, 26 extend either generally along or generally parallel to the longitudinal axis of the respective flange 14, 16. In other embodiments (not shown), one or more longitudinal flanges may be oriented at an angle to the longitudinal axis of the respective flanges. In addition, the depth and radii of longitudinally extending stiffeners 22, 24, 26 may vary based on the particular application in which the stud is being used.
In this embodiment, the closed portion of each longitudinally extending stiffener 22, 24, 26 extends inwardly from the flange 14, 16 towards interior cavity 55 and the opening of each longitudinally extending stiffener 22, 24, 26 is outwardly oriented. In an alternate embodiment, each longitudinally extending stiffener may be configured such that the closed portion of each longitudinally extending stiffener extends outwardly from the flange, and the opening of each longitudinally extending stiffener is inwardly oriented toward the interior cavity of the stud. In yet another alternate embodiment including two or more longitudinally extending stiffeners, at least one longitudinally extending stiffener may be configured such that its closed portion extends outwardly from the flange and its opening is inwardly oriented toward the interior cavity of the stud, while at least one other longitudinally extending stiffener is configured such that its closed portion extends inwardly from the flange toward the interior cavity of the stud and its opening is outwardly oriented.
In some embodiments, the longitudinally extending stiffener 22 closest to web 12 may be spaced apart from web 12 a distance within the range of about 0.125″ (0.318 cm) to about 0.375″ (0.953 cm). In addition, in some embodiments, the longitudinally extending stiffeners 22, 24, 26 may each be spaced apart from each other a distance within the range of about 0.25″ (0.635 cm) to about 0.75″ (1.905 cm). In the illustrated embodiment, the longitudinally extending stiffener 22 closest to web 12 is spaced apart from web 12 a distance of about ¼″ (0.635 cm) and the longitudinally extending stiffeners 22, 24, 26 are each spaced approximately ⅜″ (0.953 cm) apart from each other, but other spacing may be utilized depending on the particular application. The spacing of the longitudinally extending stiffeners 22, 24, 26 may facilitate installation of panels or other building materials. For example, in this embodiment, the center of the middle longitudinally extending stiffener 24 corresponds to the longitudinal centerline of each flange 14, 16. As a result, during installation of panels, users can ensure that the joint between adjacent panels is aligned with the longitudinal centerline of the respective flange 14, 16 by aligning the adjacent edges of the panels with the middle longitudinally extending stiffener 24. Of course, this particular spacing, arrangement and alignment is not required.
Once the panels are aligned with the longitudinal centerline of the respective flange 14, 16, then the panels may be fastened to the respective flange 14, 16 using fasteners, such as screws, aligned with each of the two outside longitudinally extending stiffeners 22, 26. The cross-sectional shape of the two outside longitudinally extending stiffeners 22, 26 may be configured to help grab the tips of fasteners as the tips pierce the panel and contact the flange 14, 16, thereby directing the tips of the fasteners toward the lowest point of the respective longitudinally extending stiffener 22, 26. In addition, the longitudinal shape of each longitudinally extending stiffener may also provide added flexibility by facilitating insertion of fasteners along the entire length of the flange, or at least along the length of the longitudinally extending stiffener, as opposed to prior art dimples which require more precise placement of the fastener tip in order for the dimple to grasp the tip and aid in insertion through the flange. Aligning the fasteners with the two outside longitudinally extending stiffeners 22, 26 may allow each fastener to be placed a consistent distance from the edge of its respective panel, such as the ⅜″ (0.953 cm) minimum edge distance as prescribed in the ASTM regulation described above. In this manner, the middle longitudinally extending stiffener 24 may serve as a locator during installation of panels and the adjacent outside longitudinally extending stiffeners 22, 26 may provide controls for the fastener installation. In situations where intermediate fasteners are used during installation, such as when the fasteners are installed at a standard spacing of 12″ (30.480 cm) on center per ASTM C840, the middle longitudinally extending stiffener 24 may help align the panel with the longitudinal centerline of a respective flange 14, 16.
Longitudinally extending stiffeners 22, 24, 26 in the flanges 14, 16 of the stud 10 may increase the overall stiffness of the stud 10 by placing more material away from the center of gravity, thereby increasing the second moment of inertia of the final product. In other words, as material is shifted away from the central or neutral axis of the stud 10, the stiffness of the stud 10 may be increased. In addition, longitudinally extending stiffeners 22, 24, 26 may also help reduce local buckling, which is a common mode of failure for C-shaped structural framing members, by increasing the section modulus in the same manner that they increase the second moment of inertia. Specifically, longitudinally extending stiffeners 22, 24, 26 may help reduce or restrain local buckling and increase the strength of stud 10 by decreasing the width of the flat area on each flange 14, 16 so that local wave action is restrained. In addition, if longitudinally extending stiffeners 22, 24, 26 are cold formed, then that process may work-harden the steel, which may increase the yield strength of the material and give stud 10 increased strength. Specifically, longitudinally extending stiffeners 22, 24, 26 comprising dimensions within the ranges described above or meeting the other criteria discussed above may provide adequate stiffening while avoiding problems during fabrication. The criteria for determining appropriate shapes and dimensions for longitudinally extending stiffeners 22, 24, 26 will be known to those of ordinary skill in the art.
In the illustrated embodiment, web 12 of stud 10 comprises two longitudinally extending offsets 30, 40 positioned adjacent to the outside sections 15a, 15b of the web 12. In various embodiments, each outside section 15a, 15b may comprise a depth (i.e. the distance between the respective flange 14, 16 and the respective incline portion 34, 44) within the range of about 0.125″ (0.318 cm) to about ½″ (1.27 cm). In a preferred embodiment, outside sections 15a, 15b may each comprise a depth of about ¼″ (0.635 cm). Of course, outside sections 15a, 15b may comprise other suitable dimensions in other embodiments. While the illustrated embodiment comprises two longitudinally extending offsets, the number of longitudinally extending offsets may vary based on the particular application in which the stud is being used. The longitudinally extending offsets 30, 40 may extend generally along the entire length of the web 12, or, alternatively, along a portion that is less than the entire length of the web 12. In various embodiments, lontigitudinally extending offsets 30, 40 may comprise an overall depth d* within the range of about ¼″ (0.635) to about 1″ (2.540 cm). In a preferred embodiment, longitudinally extending offsets 30, 40 may comprise an overall depth d* of about ⅝″ (1.588 cm). Similarly, longitudinally extending offsets 30, 40 may comprise a height (i.e. the distance from inner surface of outside sections 15a, 15b to the inner surface of the raised portion 32, 42) within a range from about 0.020″ (0.051 cm) to about 0.040″ (0.102 cm), and preferably a height of about 0.030″ (0.076 cm). Of course, other suitable dimensions for longitudinally extending offsets may be used in other embodiments. The longitudinally extending offsets 30, 40 may be rectangular shaped and have curved corners, as shown in
In this embodiment, the longitudinally extending offsets 30, 40 are inwardly oriented, such that they extend inwardly from the plane of the web 12 toward the interior cavity 55 of the stud 10. In an alternate embodiment, one or more of the longitudinally extending offsets may be outwardly oriented, such that it extends outwardly from the plane of the web away from the interior cavity of the stud. In yet another alternate embodiment including two or more longitudinally extending offsets, at least one longitudinally extending offset may be inwardly oriented, while at least one other longitudinally extending offset may be outwardly oriented. As shown, longitudinally extending offsets 30, 40 are generally parallel to each other. In other embodiments (not shown), the longitudinally extending offsets may be comprise a generally non-parallel configuration such that the longitudinal axes of the longitudinally extending offsets intersect with each other. In the illustrated embodiment, longitudinally extending offsets 30, 40 are generally continuous, linear structures. In other embodiments (not shown), one or more longitudinally extending stiffeners may comprise a generally non-continuous (e.g. broken) or non-linear (e.g. curvilinear) structures. In this embodiment, longitudinally extending offsets 30, 40 extend either generally along or generally parallel to the longitudinal axis of web 12. In other embodiments (not shown), one or more longitudinally extending offsets may be oriented at an angle to the longitudinal axis of the web.
As shown in
Longitudinally extending offsets 30, 40 may increase the overall stiffness of stud 10 by placing additional mass away from the center of gravity, thereby increasing the second moment of inertia in the strong axis, which is the physical property linked to stiffness. Longitudinally extending offsets 30, 40 may also provide additional strength by locally stiffening the web 12 and increasing the section modulus, which may improve the stud's 10 performance under the failure modes of local and distortional buckling. The strength of the stud 10 may be increased because the formed radius and offsets 30, 40 may increase the strength of the steel and strengthen the plate, which may help prevent a wave from forming in the material of web 12. Overall, the net effect may be increased local buckling strength. Positioning longitudinal offsets 30, 40 as illustrated may reduce local buckling of web 12 because longitudinal offsets 30, 40 are each positioned within a high-stress portion of web 12 near the flange/web intersection. Specifically, longitudinally extending offsets 30, 40 comprising dimensions within the ranges described above or meeting the other criteria discussed above may provide adequate stiffening while avoiding problems during fabrication. The criteria for determining appropriate shapes and dimensions for longitudinally extending offsets 30, 40 will be known to those of ordinary skill in the art.
Longitudinally extending stiffeners 22, 24, 26 and longitudinally extending offsets 30, 40 may be added to stud 10 after embossments 50 (described below) have been formed in web 12, although this is not required. Stud 10 may also undergo roll-forming after embossment.
The embodiments shown in
In the illustrated embodiment, embossments 50 are inwardly oriented such that they extend inwardly from the plane of web 12 into interior cavity 55 of stud 10. In an alternate embodiment, the embossments may be outwardly oriented, such that they extend outwardly from the plane of the web away from the interior cavity of the stud. In yet another alternate embodiment including two or more embossments, at least one embossment may be inwardly oriented, while at least one other embossment may be outwardly oriented. In the illustrated embodiment, embossments 50 comprise a diamond shape, although other suitable shapes may be used depending on the particular application in which the stud is being used. By way of example only, alternate embodiments may include, but is not limited to, embossments comprising one or more of the following shapes: diamond shaped, circular, bar-shaped, oval, chevron-shaped, rectangular, hexagonal, z-shaped, and letter-shaped. As shown, embossments 50 are generally identical shapes and sizes. Alternate embodiments may comprise a plurality of embossments wherein at least some of the embossments are different shapes and/or sizes. Embossments 50 may comprise any suitable length, width, depth, and spacing depending on the particular application in which the stud is being used. In various embodiments, each embossment may comprise a longitudinal width w1 within the range of about 1″ (2.540 cm) to about 3″ (7.620 cm) and a transverse width w2 within the range of about 1″ (2.540 cm) to about 2″ (5.080 cm). By way of example only, in a preferred embodiment, each embossment 50 may comprise a longitudinal width w1 of about 1 9/16″ (3.969 cm) and a transverse width w2 of about 1¼″ (3.175 cm). In addition, the dimensions of the embossments within a single structural framing member may vary by about 25% without affecting the performance of the structural framing member.
Embossments 50 may help locally stiffen the stud and help prevent deflection, thereby improving the stud's 10 performance during handling and installation. The design of features formed in stud 10, including longitudinally extending stiffeners 22, 24, 26, longitudinally extending offsets 30, 40, and embossments 50, including both the overall shapes and the dimensions of each of these features may be impacted by the type of material used to form stud 10. By way of example only, particular shapes and dimensions for the features may be selected in order to allow the stud 10 to be made out of high strength steels (i.e. steels with yield strengths exceeding about 50 ksi (344.738 MPa)). Of course, this is not required and stud 10 may be made out of any suitable material, including but not limited to steel, stainless steel, aluminum, plastics, other polymer-based or reinforced materials, and combinations thereof. By way of example only, the shapes and ranges of dimensions described above for each of the features may allow stud 10 to be made from high strength steels. The height of the features may be limited depending on the material used, because features with large heights may result in cracking of the steel, particularly in high strength steels. The criteria for determining appropriate combinations of shapes and dimensions for features and material for the stud will be known to those of ordinary skill in the art.
High strength steels may be more difficult to form than lower strength steels because the yield strength and tensile strength of high strength steels are typically very close to each other, which can lead to cracking if the steel is overworked during forming. The design of embossments 50 may help prevent this cracking by distributing the stress during forming across a larger area than conventional embossments. In addition, the design of embossments 50 may allow for a more gradual or gentle draw of the steel during foaming, when compared to other shapes, such as a rectangle with sharp corners. Thus the design of embossments 50 allows the steel to be stretched without permitting the steel to collect along the flat areas prior to and after forming. Allowing the steel to collect in one part of the cross-section may result in the formation of waves in stud 10, an effect commonly known as oil canning. By not permitting the steel to collect along the flat areas, the design of embossments 50 may also help prevent waves from forming in the stud 10. As shown, embossments 50 are designed to stretch the steel without permitting the steel to collect along the flat areas prior to and after forming. As a result embossments 50 may locally strengthen stud 10 and improve the rigidity and strength of stud 10, while also allowing the final formed stud 10 to have generally the same length as the original steel strip used to form stud 10. Embossments 50 may stiffen the web 12 to help prevent buckling when a load is applied to stud 10. The load can either be from pressure applied to the flange 14, 16 or overall loads on stud 10 in the form of lateral pressure, twisting or in-plane movement.
In one exemplary embodiment, a stud generally similar to stud 10 described above is manufactured with the following dimensions within generally accepted manufacturing tolerances, including those in accordance with ASTM C645 and IBC 2006, which are well-known to those of ordinary skill in the art:
Of course, other embodiments may have other suitable dimensions and combinations thereof.
Each flange 114, 116 may have an outside width W′ between about 1″ (2.540 cm) and about 1.625″ (4.128 cm), and preferably a width W′ of about 1¼″ (3.175 cm). Other suitable widths W′ may be used depending on the particular application for a particular stud. One or both flanges 114, 116 may include a knurled portion, although this is not required. In some embodiments, the knurled portion may include 7 or 9 rows of knurling, although any suitable amount of knurling may be used.
Each return lip 118, 120 may comprise a depth d′ of about ⅛″ (0.318 cm) to about ½″ (1.270 cm) or any other depth appropriate for a particular application using the stud. In a preferred embodiment, each return lip 18, 20 comprises a depth d′ of about ¼″ (0.635 cm). As shown, each flange 114, 116 extends generally perpendicularly from a respective side edge of the web 112. Preferably, the angle between each flange 14, 16 and the web 12 ranges from about 85 degrees to about 95 degrees, and even more preferably, the angle between each flange 14, 16 and web 12 is about 90 degrees, although this is not required. Each flange 114, 116 comprises a free end that is bent inwardly to form the pair of return lips 118, 120. In this embodiment, the return lips 118, 120 are formed such that each return lip 118, 120 extends generally parallel to the web 112 and generally perpendicular to the flange 114, 116. Preferably, the angle between each return lip 18, 20 and its respective flange 14, 16 ranges from about 45 degrees to about 100 degrees, and even more preferably the angle between each return lip 18, 20 and its respective flange 14, 16 is about 90 degrees, although this is not required. The corners of stud 110 may be curved with maximum inside radii ranging from about 0.020″ (0.051 cm) to about 0.100″ (0.254). In a preferred embodiment, the maximum inside radii for the corners of stud 110 may be about 0.040″ (0.102 cm), however any other suitable maximum radii may be used depending on the particular application in which the stud is being used.
Flanges 114, 116 and longitudinally extending stiffeners 122, 124, 126 in the alternate embodiment shown in
Web 112 in the embodiment shown in
In the illustrated embodiment, longitudinally extending offset 130 is inwardly oriented, such that it extends inwardly from the plane of the web 12 toward the interior cavity 155 of stud 110. In an alternate embodiment, the longitudinally extending offset may be outwardly oriented, such that it extends outwardly from the plane of the web away from the interior cavity of the stud. In this embodiment, raised portion 132 of longitudinally extending offset 130 is attached to a first lower section 140 via an incline portion 134. The raised portion 132 of the longitudinally extending offset 130 is further attached to a second lower section 142 via a return portion 136. In various embodiments, the angle A′ formed by return portion 136 with raised portion 132 is within the range of about 90 degrees to about 150 degrees. In a preferred embodiment, the angle A′ is about 135 degrees. Incline portion 134 may form a similar angle with raised portion 132, although this is not necessarily required. Of course, in other embodiments, other suitable dimensions for the longitudinally extending offset may be used. As shown, first lower section 140 and second lower section 142 are respectively positioned near opposite side edges of web 112. In one embodiment, first lower section 140 and second lower section 142 may each comprise a depth (i.e. the distance between the respective flange 114, 116 and either incline portion 134 or return portion 136, respectively) within the range of about 0.125″ (0.318 cm) to about ½″ (1.270 cm). In a preferred embodiment, first lower section 140 and second lower section 142 may each comprise a depth of about ¼″ (0.635 cm). Of course, first lower section 140 and second lower section 142 may comprise other suitable dimensions in other embodiments.
In the embodiment shown in
In one exemplary embodiment, a stud generally similar to stud 110 described above, except that the exemplary embodiment includes a plurality of embossments in the web, is manufactured with the following dimensions within generally accepted manufacturing tolerances, including those in accordance with ASTM C645 and IBC 2006, which are well-known to those of ordinary skill in the art:
Of course, other embodiments may have other suitable dimensions and combinations thereof.
In alternate embodiments, the track member may include one or more punchouts or openings in the web, similar to the punchouts 415 described below, but this is not required. Of course, the shape, size, and location of the punchouts may vary depending on the particular application of the track member.
As shown in
It will be appreciated that alternate embodiments may comprise alternate numbers of longitudinally extending stiffeners and/or longitudinally extending stiffeners with other cross-sections depending on the particular application in which track member is being used. By way of example only, alternate cross-sections of the longitudinally extending stiffeners may include but are not limited to semi-circular, square, and other curved shapes. The longitudinally extending stiffeners 222, 224 may extend generally along the entire length of the flange or, alternatively, along a portion that is less than the entire length of the flange 214, 216. In addition, the depth and radii of the longitudinally extending stiffeners may vary based on the particular application in which the track member is being used. Various characteristics of longitudinally extending stiffeners 222, 224, including but not limited to shape, orientation and configuration, may be varied, as discussed above with regard to longitudinally extending stiffeners 22, 24, 26.
In this embodiment, the closed portion of each longitudinally extending stiffener 222, 224 extends inwardly from the flange 214, 216 towards the interior cavity 255 formed by track member 210 and the opening of each longitudinally extending stiffener 222, 224 is outwardly oriented. In an alternate embodiment, each longitudinally extending stiffener may be configured such that the closed portion of each longitudinally extending stiffener extends outwardly from the flange, and the opening of each longitudinally extending stiffener is inwardly oriented toward the interior cavity of the stud. In yet another alternate embodiment including two or more longitudinally extending stiffeners, at least one longitudinally extending stiffener may be configured such that its closed portion extends outwardly from the flange and its opening is inwardly oriented toward the interior cavity of the stud, while at least one other longitudinally extending stiffener is configured such that its closed portion extends inwardly from the flange toward the interior cavity of the stud and its opening is outwardly oriented. In some embodiments, the longitudinally extending stiffener 222 closest to web 212 may be spaced apart from web 212 a distance within the range of about 0.125″ (0.318 cm) to about ½″ (1.270 cm). In addition, in some embodiments, the longitudinally extending stiffeners 222, 224 may be spaced apart from each other a distance within the range of about ¼″ (0.635 cm) to about ¾″ (1.905 cm). In the illustrated embodiment, the longitudinally extending stiffener 222 closest to web 212 is spaced apart from web 212 a distance of about ¼″ (0.635 cm) and longitudinally extending stiffeners 222, 224 are spaced approximately ⅜″ (0.953 cm) apart from each other, but other spacing may be utilized depending on the particular application.
Longitudinally extending stiffeners 222, 224 in flanges 214, 216 of track member 210 may increase the overall stiffness of track member 210 by placing more material away from the center of gravity, thereby increasing the second moment of inertia of the final product. In other words, as material is shifted away from the central or neutral axis of the track member 210, the stiffness of the track member 210 may be increased. In addition, longitudinally extending stiffeners 222, 224 may also help reduce local buckling by increasing the section modulus in the same manner that they increase the second moment of inertia. Specifically, longitudinally extending stiffeners 222, 224 may help reduce or restrain local buckling and increase the strength of track member 210 by decreasing the width of the flat area on each flange 214, 216 so that local wave action is restrained. In addition, if longitudinally extending stiffeners 22, 24, 26 are cold formed, then that process may work-harden the steel, which may increase the yield strength of the material and give track member 210 increased strength. Specifically, longitudinally extending stiffeners 222, 224 comprising dimensions within the ranges described above or meeting the other criteria discussed above may provide adequate stiffening while avoiding problems during fabrication. The criteria for determining appropriate shapes and dimensions for longitudinally extending stiffeners 222, 224 will be known to those of ordinary skill in the art.
Longitudinally extending stiffeners 222, 224 may be added to track member 210 after the embossments 250 (described below) have been formed in web 212, although this is not required. Track member 210 may also undergo roll-forming after embossment.
The embodiment shown in
Embossments 250 may be inwardly oriented such that they extend inwardly from the plane of web 212 into the interior cavity 255 of track member 210. In an alternate embodiment, the embossments may be outwardly oriented, such that they extend outwardly from the plane of the web away from the interior cavity of the track. In yet another alternate embodiment including two or more embossments, at least one embossment may be inwardly oriented, while at least one other embossment may be outwardly oriented. In the illustrated embodiment, embossments 250 comprise a diamond shape, although other suitable shapes may be used depending on the particular application in which the track member is being used. By way of example only, alternate embodiments may include, but is not limited to, embossments comprising one or more of the following shapes: diamond shaped, circular, bar-shaped, oval, chevron-shaped, rectangular, hexagonal, z-shaped, and letter-shaped. As shown, embossments 250 are generally identical shapes and sizes. Alternate embodiments may comprise a plurality of embossments wherein at least some of the embossments are different shapes and/or sizes. The embossments may comprise any suitable length, width, depth, and spacing depending on the particular application in which the stud is being used. In various embodiments, each embossment may comprise a longitudinal width w1″ within the range of about 1″ (2.540 cm) to about 3″ (7.620 cm) and a transverse width w2″ within the range of about 1″ (2.540 cm) to about 2″ (5.080 cm). By way of example only, in a preferred embodiment, each embossment 250 may comprise a longitudinal width w1″ of about 1 9/16″ (3.969 cm) and a transverse width w2″ of about 1¼″ (3.175 cm). In addition, the dimensions of the embossments within a single structural framing member may vary by about 25% without affecting the performance of the structural framing member.
Embossments 250 may help locally stiffen track member 210 and help prevent deflection, thereby improving track member's 210 performance during handling and installation. The design of features formed in track member 210, including longitudinally extending stiffeners 222, 224 and embossments 250, including both the overall shapes and the dimensions of each of these features may be impacted by the type of material used to form track member 210. By way of example only, particular shapes and dimensions for the features may be selected in order to allow track member 210 to be made out of high strength steels (i.e. steels with yield strengths exceeding about 50 ksi (344.738 MPa)). Of course, this is not required and track member 210 may be made out of any suitable material, including but not limited to steel, stainless steel, aluminum, plastics, other polymer-based or reinforced materials, and combinations thereof. By way of example only, the shapes and ranges of dimensions described above for each of the features may allow track member 210 to be made from high strength steels. The height of the features may be limited depending on the material used, because features with large heights may result in cracking of the steel, particularly in high strength steels. The criteria for determining appropriate combinations of shapes and dimensions for features and material for the track member will be known to those or ordinary skill in the art. As with the design of embossments 50 described above, the design of embossments 250 may help facilitate use of high strength steels. Accordingly, the description of how the design of embossments 50 aids in the use of high strength steels will not be repeated here.
In the illustrated embodiment, web 212 does not include any longitudinally extending offsets. In alternate embodiments, the web of a track member may comprise one or more longitudinally extending offsets. Specifically, in one embodiment, the web of a track member may comprise a single longitudinally extending offset, similar to longitudinally extending offset 130 in stud 110 described above. In another alternate embodiment, the web of a track member may comprise two longitudinally extending offsets, similar to longitudinally extending offsets 30, 40 in stud 10 described above. Of course, in still other alternate embodiments, the web of a track member may comprise any suitable number of longitudinally extending offsets in any suitable arrangement or configuration depending on the particular application of the track member.
In one exemplary embodiment, a track member generally similar to track member 210 described above is manufactured with the following dimensions within generally accepted manufacturing tolerances, including those in accordance with ASTM C645 and IBC 2006, which are well-known to those of ordinary skill in the art:
Of course, other embodiments may have other suitable dimensions and combinations thereof.
In this embodiment, framing assembly 300 is formed by positioning upper track member 330 and lower track member 340 opposite each other such that the interior cavity of upper track member 330 is facing the interior cavity of lower track member 340. In the illustrated embodiment, each stud 310 is positioned such that upper end 312 is received into the interior cavity of upper track member 330 between flanges 334 and 336. Each stud 310 may be configured such that each flange of each stud 310 is adjacent to, and in some embodiments abutting, a corresponding flange 334, 336 of upper track member 330. Similarly, as shown, lower end 314 of each stud is received into the interior cavity of lower track member 340 between flanges 344 and 346. Each stud 310 may be configured such that each flange of each stud 310 is adjacent to, and in some embodiments abutting, a corresponding flange 344, 346 of lower track member 340. In some embodiments, upper end 312 of each stud 310 abuts web 332 of upper track member 330 and lower end 314 of each stud 310 abuts web 342 of lower track member 340, but this is not necessarily required. As shown, when stud 310 is inserted into upper track member 330 and lower track member 340, the web of stud 310 is generally perpendicular to web 332 of upper track member 330 and web 342 of lower track member 340. In addition, in embodiments where stud 310, upper track member 330, and lower track member 340 each comprise one or more longitudinally extending stiffeners in each flange, the longitudinally extending stiffener(s) in the flanges of stud 310 may be generally perpendicular to the longitudinally extending stiffener(s) in flanges 334, 336 of upper track member 330 and the longitudinally extending stiffener(s) in flanges 344, 346 of lower track member 340. Each stud 310 may be secured to upper track member 330 using one or more fasteners inserted through one of the flanges 334, 336 in upper track member 330 and a portion of the adjacent flange in stud 310. Similarly, each stud 310 may be secured to lower track member 340 using one or more fasteners inserted through one of the flanges 344, 346 in lower track member 340 and a portion of the adjacent flange in stud 310. Of course, any suitable type of fastener or other fastening method or device may be used to provide adequate engagement between each stud 310 and upper and lower track members 330, 340. In some embodiments, separate fasteners may not be required to connect studs 310 to upper track member 330 and lower track member 340. In those embodiments, the components of framing assembly 300 (i.e. studs, 310, upper track member 330, and lower track member 340) may be configured to provide a friction fit between components and/or be connected together via the panels, such as gypsum panels, that are installed onto framing assembly 300.
Framing assembly 300 may be used for any suitable part of a structure, including both internal and external walls. The plurality of studs 310 may be spaced apart any suitable distance. In some embodiments, studs 310 may be evenly spaced apart along the length of upper track member 330 and lower track member 340 at intervals of about 8″ (20.320 cm), about 12″ (30.480 cm), about 16″ (40.640 cm), about 19.2″ (48.786 cm), about 24″ (60.960 cm), or about 48″ (121.920 cm) on center. Of course, other suitable spacing of studs 310 for framing assembly 300 may be apparent to those of ordinary skill in the art. In some embodiments, such as framing assembly 400 shown in
As shown in
Framing assembly 400 may be used for any suitable part of a structure, including both internal and external walls. The plurality of studs 410 may be spaced apart any suitable distance. In some embodiments, studs 410 may be evenly spaced apart along the length of upper track member 430 at intervals of about 8″ (20.320 cm), about 12″ (30.480 cm), about 16″ (40.640 cm), about 19.2″ (48.786 cm), about 24″ (60.960 cm), or about 48″ (121.920 cm) on center. Of course, other suitable spacing of studs 410 for framing assembly 400 may be apparent to those of ordinary skill in the art. In the illustrated embodiment, a pair of panels 460 are attached to either side of framing assembly 400. Specifically, a first panel 460 is positioned such that the inner surface of the first panel 460 rests against flanges 414 of studs 410. Similarly, a second panel 460 is positioned such that the inner surface of the second panel 460 rests against flanges 416 of studs 410. In some embodiments, longitudinally extending stiffeners in the flanges 414, 416 of studs 410 may be used to facilitate alignment and/or attachment of the panels 460, as described above. Panels 460 may be attached to studs 410 by passing one or more fasteners through a panel 460 and through a portion of the adjacent flange 414, 416. Of course, any suitable type of fastener or other fastening method or device may be used to provide adequate engagement between each stud 410 and panels 460.
Structural framing members, such as those described above, may be fabricated using a variety of fabrication processes. By way of example only, such structural framing members may be fabricated using a progressive roll-forming process that is known to those of ordinary skill in the art. One exemplary fabrication process may comprise some combination of the following steps. First, a flat continuous strip of steel may be passed between and through a pair of embossing rolls, one male and one female, to form the embossments on the strip. Obviously, this embossment step is not necessary if the structural framing member does not require embossments. The continuous strip may then be passed through a cold forming machine (roll former) where the continuous strip is formed into the final shape by a series of cold forming roller dies. The number of forming roller dies may vary depending on the design of the machine. In addition to being formed into the final shape, the cold forming machine may also form various features into the strip, including but not limited to one or more longitudinally extending stiffeners in the flanges, one or more longitudinally extending offsets in the web, and return lips along the free ends of each flange. The design of a particular structural framing member may require multiple passes through one or more sets of rollers. The strip may be cut to various lengths either before the continuous strip enters the cold forming machine or after the formed strip exits the cold forming machine depending on machine design. The specific features formed into the strip and the overall shape of the structural framing member may vary based on the type of structural framing member being formed and the particular application in which the structural framing member will be used. The structural framing members, which have been cut to length, may be stacked or bundled for storage and/or shipment.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/234,084, filed Aug. 14, 2009, entitled “Improved Structural Framing Member,” the disclosure of which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/45609 | 8/16/2010 | WO | 00 | 2/13/2012 |
Number | Date | Country | |
---|---|---|---|
61234084 | Aug 2009 | US |