This invention relates generally to construction mats.
Construction mats are often utilized in gas and oil drilling and completion rig sites, as work platforms, wet job sites, as access roads in difficult terrain or environmentally sensitive environments, such as wet lands. The mats are typically made up of several heavy beams that are tied together by a series of metal rods. The beams are often made of timber (e.g., red oak or mixed hardwood) which is readily available and inexpensive, but has a tendency to become water logged and heavy and are prone to fungus and insect attack, rotting and deterioration, especially in extremely harsh, wet applications, greatly limiting their useful service life. The timber beams also lose their strength and integrity in wet conditions and can be quickly eroded under the load and abuse of heavy equipment propelled by caterpillar tracks. The tracks dig into the wood beams and gouge and shred the wood fiber, which is greatly magnified in wet operating conditions.
Mats made with composite beams (such as recycled plastics-based materials) are an alternative to wood mats and are less prone to wear and deterioration, especially in wet, harsh outdoor conditions, but may lack the beam strength of hardwood beams.
A mat constructed according to one preferred embodiment of the invention comprises a plurality of beams fabricated of plastics-based material that may be a composite plastics or just one or more plastics and arranged side-by-side. The mat further includes a plurality of flitch plates that are arranged between at least some of the beams. The beams and flitch plates are tied together with a plurality of cross rods. The flitch plates are made of a material that is stiffer than that of the beams and is likewise moisture resistant to enhance the overall structural rigidity and beam strength beyond what the beams alone would provide.
The structural reinforced plastics-based mat constructed accordingly has the advantage of being lighter, stronger and longer lasting than timber construction mats and it does not lose strength in prolonged wet conditions, nor does it absorb water, rot or otherwise deteriorate. The mat can be pre-engineered to the strength and load requirements of a particular job and will maintain its properties throughout its service life, unlike wood.
The structural reinforced mat constructed according to the invention is about 25% lighter than a mat of comparable beam size made of timber. This leads to a surprising and beneficial reduction in transportation costs and increased ease of handling on the job site. For example, a 12″ thick timber mat for standard heavy construction, when dry, is about 40% heavier than a 7″ mat made according to the invention. A structural reinforced composite mat made according to the invention surprisingly exceeds the load capacity of 12″ timber mats. For example, a 12″ thick dry use structural red oak mat (E=1,200,000 psi, Fb=1350, Fc perp=820 psi) performs very similar to a 7″ structural reinforced composite mat made according to the invention with full soil support at a significantly lighter weight per foot. And this is a best case scenario for wood, as it assumes a dry, select red oak, with the expectation that the weight of the timber mat would greatly increase when used in a wet environment while its structural properties would greatly diminish due to moisture, decay and track erosion, none of which would be experienced by the structural reinforced mat which would maintain its properties irrespective of environment.
Another advantage of the structural reinforced mat is that the beams can be made from recycled plastics materials, unlike select timber beams which must be harvested from forests. The service life of the structural reinforced mat is estimated to be at least 5 times greater than an equivalent timber mat. And at the end of their useful life, structural reinforced mats can be recycled to make new mats.
Yet another advantage is that the structural reinforced mats are resistant to salt and most chemicals and do not absorb, retain or release chemicals or liquids as can often happen with timber mats. This can be particularly important when mats are to be reused in environmentally sensitive areas where environmental contamination is of concern. The structural reinforced mats can be repeatedly washed for reuse to remove any contaminants without any effect on the integrity of the mats.
These and other features and advantages of the invention will be better understood when considered in connection with embodiments of the invention illustrated in the following figures and described in greater detail below:
A structural reinforced mat constructed according to an embodiment of the invention is generally shown in perspective view in
The mat 10 has a top surface 12, a bottom surface 14, longitudinally opposite ends 16 and laterally opposite sides 18. The mat 10 has an overall length dimension Lmat extending between the two ends 16, an overall width dimension Wmat extending between the two sides 18, and an overall thickness Tmat dimension extending between the top 12 and bottom 14 surfaces. An exemplary mat 10 may have an overall Tmat×Wmat×Lmat measurement of 9 inches×51 inches×24 feet. All of these dimensions can vary depending upon the needs of a particular application. A mat according to an alternative embodiment (
Throughout the figures, it will be appreciated that dimensional references are exemplary in nature, and that the arrangements illustrated in the figures may be applied to mats having other dimensions.
The mat 10 includes a plurality of individual beams 20 and at least one and preferably a plurality of flitch plates 22.
The beams 20 each have a thickness dimension Tbeam, a width dimension Wbeam, and a length dimension Lbeam.
The beams are of a plastics (polymer) material, preferably a structural thermoplastic composite olefin polymer. One such material suitable for the beam 20 is a HDPE-based proprietary structural composite plastic beam material available from Axion Structural Innovations, of Zanesville, Ohio. Such plastics material comprises a blend of polypropylene and polyethylene, but predominately polyethylene with 5-50% glass fiber reinforcement, and more preferably 5-25% glass fiber reinforcement. Other HDPE-based plastics materials may also be suitable depending upon the structural load requirements of a particular application, as well as plastics materials in general provided they are able to meet the load and strength and environmental requirements that a particular application may call for. It is thus to be understood that the invention contemplates the usage of a variety of plastics materials as the beam 20 material, particularly when coupled with the structural, load-enhancing flitch plates 22 to be explained in more detail below. The idea is that the composite plastics beam 20 and metallic flitch plates 22 work in synergy to collectively provide a lightweight, strong and water/chemical resistant mat suitably reinforced by the flitch plates 22 to yield the strength and rigidity required of a particular job application for which the mat 10 is to be used. The flitch plates 22 thus open up the possibilities for the types of candidate plastics materials beyond what may be otherwise suitable for mat application on their own without the flitch plates. For example, plastics materials that on their own may not possess the strength or rigidity required for use on their own as beams 20 of a construction mat 10 may well become suitable when paired with one or more flitch plates 22, such that the overall structure is able to meet the requirements of an application.
The dimensions of the individual beams 20 may vary depending upon the requirements of a particular application and the material used for the beams. For example, the beam 20 may have a thickness Tbeam×width Wbeam×length Lbeam of, respectively, 9 inches×7 inches×24 feet. As will be explained below, the beam 20 may be turned on edge such that the T×W×L dimensions are now 7″×9″×20′ as in the embodiment of
It will be appreciated that other cross-section dimensions may be used, such as square cross-sections, or cross-sections in which the thickness is twice as much as the width, or the width is twice as much as the thickness.
In one approach, the flitch plates 22 are fabricated of metal and preferably steel. The grade of steel may be ASTM A36. The flitch plates 22 each have a thickness dimension Tflitch, a width dimension Wflitch, and a length dimension Lflitch. For the 24 foot beam 20 above with a 9″ thickness, the T, W and L dimensions of the flitch plates 22 are, for example, 8.5 inches×0.5 inches×288 inches. For the 7″ beam thickness embodiment of
In another approach, the flitch plate material may be aluminum, galvanized steel, or pultruded fiberglass, with the latter also contemplating other non-metallic fiber-reinforced resinous plate structures, such as carbon fiber reinforced resin, for example. Wood and other materials that are prone to moisture absorption and decay that reduces the expected or entitled service life of the mat are not desirable as flitch plate materials, as are those that do not, when sandwiched between the composite beams, provide a strength and stiffening enhancement to the combined structure.
As illustrated in
It will be appreciated that other arrangements of the beams 20 and flitch plates 22 may be used. For example, the quantity of beams 20 may be increased, along with additional flitch plates to accommodate the additional beams. Alternatively, the same number of beams as in
It will be seen by a comparison of the dimensions of both embodiments of
As illustrated in
With reference to
The beams 20 may all be the same or there may be one or more beams that is shorter, as illustrated in
The flitch plates 22 may be fabricated from steel plate stock of suitable dimensions, examples which were provided above, or from aluminum, galvanized steel, or pultruded fiberglass. The flitch plates 22 may have smooth sides or may, alternatively, have grip-enhancing features, such as knurling, ridges, spikes, protrusions or other textured features that increase the sliding friction when mated with the beams 30, along some or all of the side surfaces as illustrated in
The
The
As shown in
The
In each of the above described alternatives, the previously described features of the flitch plates 22 will also apply to the alternatives, such as the slots 28 and the surface feature 30.
A product comparison of exemplary mats and their physical properties are as follows:
1. Hardwood Lumber Information Source—American Wood Council NDS Supplement 2015 Edition for 5″×5″ and larger timbers. Wet use adjustment factors applied—Fb of 0.85, Fc Perp of 0.67, E of 0.9. Weight and performance varies with moisture content and rate of deterioration.
2. Design values calculated for beams only. Flitch plates are isotropic and have no grain. Figures shown assuming standard load distribution between beams (Perp Compression=1,200 psi, Allowable Stress=1,100 psi) and steel plates.
3. Composite materials using both beams (E=350,000) and steel flitch plates (E=29,000,000 psi)
4. Calculated E values based on composite action between beams, flitch plates and rods.
It will be seen from the above comparative date that the structural property advantages of a mat constructed according to the invention versus the conventional 12″ red oak or mixed hardwood mat is notable and significant. For example, mats 10 using a 7″ thickness beams (embodiment of
Minimum Allowable Soil Bearing Capacity (PSF), 7″ Embodiment vs. 12″ Oak Mat
As can be seen a 12″ thick dry select structural oak mat performs very similarly to a 7″ thick structural reinforced composite mat 10 according to the invention with full soil support at a significant lighter weight per foot. The above numbers for oak would diminish greatly once the mat becomes wet, absorbs water and advances toward decay. The wood charts above assume a 12% moisture content of the oak (i.e., dry conditions). If the lumber used for the mat is green or used for a prolonged period of time in a saturated environment, the boards will either absorb moisture, lose allowable stress (Fb) as well as stiffness (E) by as much as 67% from the maximum values. This does not happen with the mats 10 constructed according to the invention.
Sometimes preservatives such as creosote, chromated copper arsenate (CCA), ammoniacal copper zinc arsenate (ACZA) and ammoniacal copper arsenate (ACA) are used to treat wood timbers to protect against rot, and these materials may leach out of the lumber and into the environment. This does not happen with the mats 10 made in accordance with the invention since they are not prone to moisture attack and do not require any chemical treatment. The mats 10 according to the invention remain inert and unchanged by the environment they occupy.
A method of constructing or repairing a mat 10 is also provided and includes the steps of arranging a plurality of elongate plastic beams in side-by-side order, arranging a metallic flitch plate between at least one adjacent pair of beams; fastening the beams and at least one flitch plate together in a crosswise direction at a plurality of locations along a length of the mat; and wherein the at least one flitch plate is at least partially recessed below an outer surface of the beams between which it is arranged.
It is to be understood that the above drawings and description is exemplary of the construction and practice of embodiments of the invention and is not limiting of the invention. Rather, the invention is defined in the appended claims which follow.
This U.S. Continuation Application claims the benefit of U.S. Utility application Ser. No. 16/179,123, filed Nov. 2, 2018, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4932178 | Mozingo | Jun 1990 | A |
9315949 | Penland, Jr | Apr 2016 | B1 |
10060079 | Wilson | Aug 2018 | B2 |
10273638 | Penland, Jr. | Apr 2019 | B1 |
20020122954 | Dagher | Sep 2002 | A1 |
20060070346 | Fiutak | Apr 2006 | A1 |
20060265976 | Fiutak | Nov 2006 | A1 |
20070056228 | Penland | Mar 2007 | A1 |
20080292397 | Farney | Nov 2008 | A1 |
20120063844 | Wold | Mar 2012 | A1 |
20130259568 | Bouchard | Oct 2013 | A1 |
20140154462 | Fiutak | Jun 2014 | A1 |
20160115652 | Wold | Apr 2016 | A1 |
20160115653 | Forbes | Apr 2016 | A1 |
20160177515 | Penland, Jr | Jun 2016 | A1 |
20160208444 | Penland, Jr | Jul 2016 | A1 |
20160222597 | Penland, Jr. | Aug 2016 | A1 |
20160258115 | Penland, Jr. | Sep 2016 | A1 |
20160258116 | Penland, Jr. | Sep 2016 | A1 |
20160298302 | Penland, Jr. | Oct 2016 | A1 |
20160355994 | Penland, Jr | Dec 2016 | A1 |
20160362847 | Penland, Jr | Dec 2016 | A1 |
20170089015 | Penland, Jr. | Mar 2017 | A1 |
20170121916 | Penland, Jr | May 2017 | A1 |
20170175341 | Locotos | Jun 2017 | A1 |
20170275829 | Penland, Jr | Sep 2017 | A1 |
20180305873 | Penland, Jr | Oct 2018 | A1 |
20180327980 | Penland, Jr. | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
WO-2008045100 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20220178133 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16179123 | Nov 2018 | US |
Child | 17678128 | US |