Structural reinforcement

Abstract
A structural reinforcement for a hollow member comprising a rigid reinforcing member having a shape that substantially conforms to the cross section of the hollow member to be reinforced with an expandable adhesive material over at least a portion of the surface of the structural reinforcement having one or more extensions on its external surface which control and direct the direction in which the adhesive material expands to bond the reinforcing member to the internal surface of the hollow member, some of the extensions also provide improved reinforcement.
Description
FIELD OF THE INVENTION

The present invention relates to reinforcing materials and in particular to reinforcing materials that can be provided in hollow cross-sectional members particularly to provide reinforcement to improve the structural integrity of vehicles or other articles.


BACKGROUND OF THE INVENTION

The trends in motor vehicle design are towards lighter vehicles to improve fuel consumption. At the same time, auto manufacturers continue to demand more rigorous structural performance standards. The use of lighter materials such as aluminum to produce the hollow cross-sectional members that are used as vehicle sub frames has lead to the desire for additional reinforcement. There is a need for reinforcement in various locations in the vehicle structure including the sub frame and upper structure, the form of reinforcement required can vary from one location in the vehicle to another and from vehicle to vehicle. The present invention therefore improves the strength of vehicles structures made from existing materials and enables vehicle structures based on lighter materials to contribute to safety requirements.


There are five main types of applications where structural reinforcement is desired in vehicles. In one, control over vehicle body deformation is attractive for assisting in accident management. In another, it is desirable for increased energy absorption to enhance performance after yield of a structure. The reduction of mechanical constraints such as compression, shear torsion and flexing, or body movement in the vehicle structure particularly to improve durability and reduce stress effects and point mobility issues requiring the reduction of resonance by the provision of stiffening. The need for reinforcement is present irrespective of the materials that are used to produce the vehicle structure and the need varies from material to material and according to the nature of the reinforcement that is being provided. The reinforcing parts can also reduce the noise created by the motion of a vehicle by providing a sound deadening effect as a result of blocking air paths in cavities.


It is known to provide foamable plastic mouldings within hollow cross sections of vehicles which can be foamed upon application of heat, such as is provided by the curing step in an electrocoat process, to provide a foamed baffle that fills the cross-section to provide sound adsorption. Such systems are described in European patent applications 0383498 and 0611778. The foam baffle provides sound deadening and vibration resistance. In these systems the entire insert is foamable and it is proposed that the foamable material be chosen so that it will foam during the curing process, which follows the electrocoat process typically used in vehicle manufacture to provide resistance to metal corrosion. The materials of these patents are not however reinforcing materials but are used to provide acoustic baffles and seals.


In the electrocoat process a vehicle structure is immersed in a bath of coating fluid from which an anticorrosion coating is deposited on the metal by electrolysis. The vehicle metal structure is subsequently heated to bake the coating on the metal. The electrocoat process is typically applied to complete vehicle structures in which hollow sections have been capped. Accordingly reinforcing structures are preferably provided within hollow sections prior to the electrocoat. It is therefore important that the reinforcing structure have minimal impact on the operation and efficiency of the electrocoat process.


Where reinforcing materials have been provided they have either been stuck to the metal structure prior to subjecting the vehicle structure to the electrocoat process or have been provided after the electrocoat process. The former technique has the problem that it is not possible to perform the electrocoat over the entire surface, which can lead to local areas of corrosion. The latter technique is cumbersome and requires the provision of fastening means after electrocoating, which can damage the electrocoat and again lead to local areas of corrosion.


It is also known to provide structural reinforcement inside the structural members of automobile frames by the provision of metallic or plastic reinforcing members that are bonded to the inner surface of the structural member by means of a structural foam. For example, PCT Publications WO 99/61280 and WO 97/43501 disclose metallic reinforcing members bonded to the internal surface of an automobile structural member by a structural foam and our co-pending UK Application 0106911.1 and U.S. application Ser. Nos. 09/676,335 and 09/502,686 disclose moulded plastic, particularly glass reinforced nylon mouldings bonded to the internal surface of an automobile structure by a structural foam.


In the production of these reinforced structural members the metallic or moulded member is coated with an expandable adhesive material. The expandable adhesive material being such that it will expand at temperatures to which the automobile is exposed during manufacture such as in the curing stage of the electrocoat process or in the paint oven. The reinforcing member is therefore placed within the cavity of the vehicle with the coating of the expandable adhesive material being in an unfoamed state. During the automobile manufacture the expandable adhesive material will be brought to its expansion temperature and will expand to fill the gap between the inner surface of the vehicle structural member and the reinforcing member to bond the reinforcing member to the inner surface of the vehicle structural member. In this way a light and strong structural reinforcement is provided.


Despite these techniques there is a continuing need to provide greater reinforcement and at the same time provide lighter weight vehicles, which in turn requires lighter weight reinforcing members. Accordingly, there is a need to reduce the weight and thus the amount of material used in the reinforcing members. Furthermore, there is an economic need to reduce the amount of expandable adhesive material that is used, consistent with achieving the desired degree of reinforcement.


The present invention is aimed at providing such improved structural reinforcement systems.


The present invention therefore provides a structural reinforcing member for reinforcing a hollow structural member comprising a reinforcing member having on the surface thereof an expandable adhesive material wherein the surface of the reinforcing member is provided with one or more extensions which approach the internal surface of the hollow structural member when placed within the hollow structural member wherein the expandable adhesive material is located against at least one of said extensions so that the extensions guide the expansion of the expandable adhesive material.


The provision of the extensions on the mouldings according to the present invention can serve a dual function. Some or all of the extensions can provide local areas of the reinforcing member (potentially of increased section thickness relative to adjoining sections) which when in place are closer to the inner surface of the hollow structural member than the remaining bulk of the reinforcing member. In this way the extensions may be located and designed to help reduce deformation of the hollow structural member on impact. At least one of the extensions also locally directs the expansion of the expandable adhesive material to ensure that there is adhesion between the reinforcing member and the internal surface of the structural member where adhesion is required. This in turn enables selective use of the expandable adhesive material and can obviate the need to coat the entire surfaces of the reinforcing member that face the internal surfaces of the hollow structural member with the expandable adhesive material. It may also be possible to achieve localized sections of increased density of the expandable adhesive material, upon expansion.


The dimensions of the rigid reinforcing member and the thickness and nature of the expandable adhesive material are important to the achievement of the desired structural reinforcement. The exterior profile shape of the reinforcing member should conform substantially to the cross section of the hollow structural member it is designed to reinforce. The shape may vary along the length of the reinforcing member as the dimensions of the cross section of the hollow structural member change. The size of the reinforcing member including the expandable adhesive material should be such that there is a small clearance between the extremity of the reinforcing member and the interior walls of the hollow structural member to allow for passage of any coating, such as an electrocoat fluid. Preferably, the reinforcing member has a cellular, honeycomb or ribbed internal structure to provide reinforcement along several different axes at minimum weight.


The extensions that are provided on the external surface of the structural reinforcing member may be ribs, raised embossments or they may be part of a stamped area. The extensions may be integral with a moulding if the parts are produced by injection moulding or may be stamped or otherwise formed on metal reinforcing members. Alternatively, the extensions may be attached subsequent to the formation of the reinforcing member. The positioning of the extensions on the external surface of the reinforcing member will be determined by the shape of the member and the position in which it is to be placed within the hollow structural member which may be determined by the nature of the impact deformation that the reinforcing member is required to resist.


In a preferred embodiment the structural reinforcing member is also provided with small lugs, which enable it to stand away from the interior walls of the hollow structural member. In this way fastening devices are not required and the area of contact between the structural reinforcing member and the interior walls of the hollow structural member can be minimised. In this preferred embodiment the clearance between the extremity of the foamable adhesive material on the reinforcing member and the interior walls of the structural member can be determined to be wide enough to enable the liquid used in the electrocoat bath to flow between the reinforcing member and the interior walls of the hollow structural member in sufficient quantity to enable an effective anti-corrosion or other coating to be deposited. On the other hand, the clearance can be determined so as not be too wide so as to not benefit from the advantages of the invention, when the expandable adhesive has expanded to fill the clearance and bond the structural reinforcing member to the interior walls of the structural member. Preferably, the clearance is no more than about 1 centimeter and is more preferably about 2 to 10 millimeters, and still more preferably about 3 to 7 millimeters. In one embodiment, a substantially uniform clearance around the whole structure enables a more uniform foam structure to be obtained.


The rigid reinforcing member may be made from any suitable material, for example it may be made of metal or plastic and the material will be chosen according to the preferred fabrication method. The plastic may be thermoplastic or thermosetting. This in turn is driven by economics and the complexity of the cross section to be reinforced. Reinforcing members for simple cross sections may be prepared by extrusion whilst injection moulding may be required for more complex structures. Metal members may be produced by stamping and/or forming. Where extrusion is used the members may be of metal or thermoplastics; where injection moulding is used thermoplastics are preferred, where compression moulding is used thermoplastic or thermosetting material may be used. Polyamides, particularly glass filled or carbon fibre filled polyamides are suitable materials particularly for injection mouldings due to their high strength to weight ratio. Alternatively injection moulding or die casting of metal alloys may be employed. Foamed metals are also possible. It is preferred that the moulding is provided with means enabling fluid drainage. For example, holes or channels may be provided in the moulding to allow the drainage of water, which may condense in the structure over time.


As discussed herein, the present invention finds suitable application in a number of different environments. The invention is particularly useful for the provision of reinforcement in automotive vehicles, particularly to help provide energy distribution control in response to a force. The preferred shape and structure of the reinforcing member will depend upon where it is to be located in the vehicle structure and the function it is to perform. For example, if it is to be located in the front longitudinal section of the vehicle it might be designed for impact resistance. On the other hand, it may be designed to reduce point mobility such as for example at the base of side and rear pillars in the vehicle. The reduction of point mobility is particularly important with high-sided vehicles where the reinforcement can help reduce or prevent vehicle sway thus potentially reducing metal fatigue. Other applications include the resistance of deformation of the rear longitudinal section, in particular to prevent upward deformation from rear impact. Other parts of a vehicle which may be reinforced by the techniques of the present invention include roof structures, pillars, frame cross members such as the engine cradle and window frames particularly rear window frames.


The expandable adhesive material serves two main functions, it will expand to fill the space between the reinforcing member and the interior of the hollow member and it will also bond to the interior wall of the hollow member. Accordingly, expandable adhesive material means that the material can be activated to both expand (typically foam) and to act as an adhesive, at the conditions, e.g., temperature, at which it expands. Activation therefore enables the expandable material to expand and fill a gap between the reinforcing member and the hollow structural member it is designed to reinforce and to bond to the internal surface of the hollow structure. Accordingly the expandable adhesive expands at the desired temperature and is sufficiently adhesive to firmly bond the reinforcing member to the interior surface of the hollow structural member.


While it is not essential, it is preferred that prior to activation the expandable adhesive material is dry and not tacky to the touch. This facilitates shipping and handling of the structural reinforcing member and helps prevent contamination. Examples of preferred expandable adhesive materials include foamable epoxy-base resins and examples of such materials are the products L5206, L5207, L5208 and L5209, which are commercially available from L & L Products of Romeo Michigan USA, and the Betacore Products BC 5204, 5206, 5207, 5208 and 5214 available from Core Products, Strasbourg, France. The expandable adhesive material should be chosen according to the rate of expansion and foam densities required. It is further preferred that it expand at the temperatures experienced in a coating bake oven, such as an electrocoat process oven, typically 130° C.-200° C. Alternatively the material may be expanded by infrared high frequency, moisture, microwave or induction heating which are particularly useful in systems which do not employ the electrocoat process.


The expandable material is applied to the surface of the reinforcing member at a location where its direction of expansion is controlled by at least one of the extensions formed on the surface of the reinforcing member. In a preferred embodiment the reinforcing member is provided with two or more ribs and the expandable material is provided between the ribs. In this way the reinforcing member may be located within the hollow structural member so that the extremities of the ribs are close to the inner surface of the hollow structural member, thereby helping to increase the resistance to deformation of the hollow structural member. At the same time at least one of the ribs directs the expansion of the expandable adhesive material through the channel formed between the ribs towards the inner surface of the hollow structural member. In this way an effective bond between the rigid reinforcing member and the hollow structural member may be achieved with a reduced amount of expandable adhesive material.


In an alternative embodiment a series of pairs of ribs may be provided along one or more of the surfaces of the reinforcing member and the expandable material may be located between the ribs of one or more pairs. In this way upon expansion bonds may be formed between the reinforcing member and the inner surface of the hollow structural member at different positions along the length and/or width of the reinforcing member. The number of bond points and their location will depend on the size and shape of the reinforcing member and the forces which it is designed to withstand.


In yet a further embodiment a single extension may be provided and the expandable material located close to the single extension so that its expansion in one direction is controlled by the extension. In this embodiment the size and shape of the cavity between the hollow structural member and the reinforcing member may be such that it controls the expansion of the expandable adhesive material in another direction.


The expandable material should be applied to at least a portion of the surface of the rigid reinforcing member that will be adjacent to an interior surface of the hollow structure that is to be reinforced. This optimum location of the expandable adhesive will depend upon the shape of the hollow structure to be reinforced but it is preferably present so that it provides adhesion to two non-parallel surfaces to give rigidity in at least two dimensions. It is preferred that the expandable adhesive material be applied over at least part of each of the top and bottom and the sides of the reinforcing member. In this way when the material expands it can expand into the gap around the entire surface of the reinforcing member that is adjacent to the interior walls of the hollow structure. The expandable adhesive material may be applied to the rigid reinforcing member by bonding a strip of the material to the member, by for example extrusion coating or by injection moulding. Where the reinforcing member is made by injection moulding the expandable adhesive material may be applied by over-moulding or two shot injection moulding. The material should however be applied under conditions such that substantially no expansion takes place during application. It is also possible to place the reinforcing member in the structural member to be reinforced and to pump liquid expandable material around it.


It is preferred that the reinforcing member coated with the expandable adhesive material is located within the hollow structural member that it is designed to reinforce in a manner that provides a clearance between the external surface of the coated member and the internal surface of the hollow structural member. This allows for the passage of a coating fluid, such as electrocoat fluid, between the hollow structural member and the internal surface and also enables a uniform expansion of the foam around the member to provide more uniform reinforcement.


Accordingly in a preferred process for providing reinforcement within a hollow structural member such as a vehicle frame, moulded reinforcing members provided with extensions and with a layer of expandable material thereon adjacent to extensions are installed during assembly of the vehicle frame. Locating lugs are preferably moulded into the reinforcing member or the expandable material so that the reinforcing member sits within the hollow structural member leaving a space between the member and the interior walls of the hollow structural member to be reinforced. In this way, it is possible to avoid any need for fastening or bonding means to attach the member to the interior walls of the hollow structural member. The assembled structure may then be coated. For instance, the assembled structure may then be subjected to the electrocoat process in which it is passed through a bath of coating material and a corrosion resistant coating is deposited onto the structure by electrolysis. The vehicle structure is then dried in an oven to cure the coating. The expandable material is preferably chosen so that it is activated to expand and develop adhesive properties by the conditions used in the oven employed to cure the coating. The expandable material will therefore expand under the curing conditions to provide both a foam that fills the space between the member and the interior walls of the hollow structural member and a strong bond between the reinforcing member and the interior wall of the hollow structural member. Typically the coated structure is cured at around 80 to 200° C. (e.g., 165° C.) for about 5 to 40 minutes (e.g., above 20 minutes) and accordingly the expandable adhesive material should be activated under these conditions. The automobile industry is however looking to use lower curing temperatures and shorter drying times and this may influence the choice of expandable materials.


If other components, for example bolts or other fasteners, are to pass through the reinforcing members during subsequent assembly, it may be necessary to take care to ensure that holes formed in the reinforcing member for the passage of the bolts are not blocked by the expansion of the expandable material.


The techniques of the present invention may be used for the reinforcement of any construction that is based on a hollow frame structure. They may for instance be used in the construction industry, in boats, in aircraft, and in railroad applications. The techniques are however particularly useful to provide reinforcement in automobiles including cars, trucks, buses, caravans and the like. The techniques are particularly useful in the current trend towards using lighter and sometimes weaker materials in the production of automobile sub frames where there is a greater need for reinforcement to compensate for the reduction in strength of the basic material and contribute to satisfy the safety requirements. This is particularly the case with the use of aluminum for the production of hollow sub frames of automobiles. Another application of the present invention is in the reinforcement of furniture (e.g., seating, cabinets, shelving, or the like), household or industrial applicances (e.g., a frame of a refrigerator, oven, dishwasher, laundry machine or the like), and storage containers.





BRIEF DESCRIPTION OF DRAWINGS

The present invention is illustrated by reference to the accompanying drawings in which



FIGS. 1A and 2A illustrate a reinforcement according to the prior art, FIG. 1A shows the system prior to activation of the expandable adhesive material and FIG. 2A shows the system after activation.



FIGS. 3A and 4A illustrate a reinforcement according to the present invention. FIG. 3A shows the system prior to activation of the expandable adhesive material and FIG. 4A shows the system after activation.



FIGS. 1B and 2B illustrate another form of a conventional reinforcement, FIG. 1B shows the system prior to activation of the expandable adhesive material and FIG. 2B shows the system after activation.



FIGS. 3B and 4B illustrate a reinforcement according to the present invention, FIG. 3B shows the system prior to activation of the expandable adhesive material and FIG. 4B shows the system after activation.



FIG. 5A illustrates the potential deformation of the reinforcing system of FIG. 2A when subject to a force in the direction showing by arrow ‘A’ and



FIG. 5B illustrates the potential deformation of the system of FIG. 4A when subjected to the same force.



FIG. 6A illustrates the potential deformation of the reinforcing system of FIG. 2B when subject to a force in the direction shown by arrow ‘A’ and



FIG. 6B illustrates the potential deformation of the reinforcing system of FIG. 4B when subjected to the same force.



FIG. 7 shows a moulded structural reinforcing member provided with a plurality of pairs of ribs between which the expandable adhesive material may be located.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 1A shows a cross section of a hollow structural member (e.g., for a vehicle) 4 in which is positioned a reinforcing member 2 with an ‘M’ shaped cross section. An expandable adhesive material 3 is provided on the surface of the reinforcing member 2 adjacent the inner surface of the structural member 4. FIG. 2A shows the same cross section as FIG. 1A but after expansion of the expandable adhesive 3 as may be accomplished by the curing step in the electrocoat process. FIG. 2A shows how the adhesive 3 expands between the reinforcing member 2 and the structural member 4 to provide a foam which bonds the reinforcing member and the structural member together.



FIG. 3A shows the same cross section of the hollow vehicle structural member 4 containing an ‘M’ shaped reinforcing member 2. In this instance the reinforcing member is provided with a pair of ribs 1 at the three positions where the expandable adhesive is provided. These pairs of ribs form grooves which contain the expandable adhesive 3. FIG. 4A shows how the expansion of the expandable adhesive is controlled by the ribs 1 to enable adequate adhesion between the structural member 2 and the reinforcing member 4 with a smaller amount of expandable adhesive than that required in the system of FIG. 1A. Comparison of FIGS. 5A and 5B show how the provision of the ribs 1 on the reinforcing member 2 (as in FIG. 5B) reduces the deformation of the reinforced structure when compared to the deformation of the system without the ribs of this invention which is shown in FIG. 5A.



FIGS. 1B and 2B show an automobile structural member 4 of similar cross section to that in the previous figures. In this instance the structural member contains a ‘U’ shaped reinforcing member 2. In FIG. 1B the structural reinforcing member 2 is provided with expandable adhesive 3 at the corners of the ‘U’ shape. FIG. 2B shows how the expandable adhesive can expand across the cavity between the structural member 4 and the reinforcing member 2 in order to bond the two together.



FIG. 3B shows a system of the present invention in which a longitudinal protrusion 1 is formed in the base of the ‘U’ shaped member 2 and the expandable adhesive is provided to abut up against the protrusion 1. FIG. 4B shows the system of FIG. 3B after expansion of the expandable adhesive.



FIGS. 6A and 6B, show the deformation of the structural member 4 which occurs when the systems illustrated in FIG. 2B and FIG. 4B respectively are subjected to the same compression strength in the direction of the arrow A.



FIG. 7 shows a reinforcing member moulded from glass reinforced nylon employing the system illustrated in FIGS. 1B and 2B. The member consists of a structural reinforced component 5 provided with a labyrinth of reinforcing internal ribs 6. A series of pairs of ribs 7, 7; 8, 8; 9, 9 etc. are moulded into the external surface of the moulding. Expandable adhesive material (not shown) may then be deposited in the grooves formed between the pairs of ribs according to the present invention. The expandable adhesive material may also be located in channels 10 so that its expansion in a transverse direction is controlled by the ribs as shown by reference 3 in FIG. 4A. The moulding may then be used to provide structural reinforcement within a structure, such as a vehicle sub frame in the manner described herein.


The invention accordingly provides both ribbed mouldings containing unfoamed expandable adhesive and the reinforced hollow member containing the ribbed moulding bonded to the internal surface of the hollow structural member by the expanded adhesive.


Though illustrated herein by reference to M and U shape structures, other like structures may be employed that incorporate those shapes inverted, sideways, or the like (e.g., a W-shape would constitute an M-shape herein). Other letter shapes or geometries may be employed as well.


As illustrated the systems of the present invention enable improved or comparable reinforcement to be achieved whilst using a smaller amount of expandable adhesive material.

Claims
  • 1. A structural reinforcing member for reinforcing a hollow structural member comprising: a plastic reinforcing member having on the surface thereof an expandable material that is substantially dry to the touch prior to activation; wherein the surface of the reinforcing member is provided with at least one extension; wherein the at least one extension is integrally molded with the carrier and of the same material as the carrier; wherein the at least one extension, upon insertion of the reinforcing member within the hollow structural member, both opposes and approaches an internal surface of the hollow structural member; wherein the expandable material is located against the at least one extension such that the at least one extension locally guides the expansion of the expandable material toward the internal surface of the hollow structural member; and wherein the at least one extension is selected from ribs, raised embossments or a part of a stamped area.
  • 2. A structural reinforcing member according to claim 1 in which the exterior profile shape of the reinforcing member conforms substantially to the cross section of the hollow structural member.
  • 3. A structural reinforcing member according to claim 2 in which the size of the reinforcing member including the expandable material is such that there is a clearance not more than 1 cm between the outer surfaces of the reinforcing member and the internal surface of the hollow structural member.
  • 4. A structural reinforcing member according to claim 1 in which the reinforcing member is an injection molded plastic and has an internal structure that is selected from cellular, honeycomb or ribbed.
  • 5. A structural reinforcing member according to claim 1 which the extensions are of increased thickness relative to adjoining sections of the reinforcing member.
  • 6. A structural reinforcing member according to claim 1 provided with small lugs, which enable the structural reinforcing member to stand away from the interior walls of the hollow structural member.
  • 7. A structural reinforcing material according to claim 3 in which the clearance is 2 to 10 mm.
  • 8. A structural reinforcing member according to claim 1 in which the reinforcing member is made from filled polyamide.
  • 9. A structural reinforcing member according to claim 8 which the filler is selected from glass fibre or carbon fibre.
  • 10. A structural reinforcing member according to claim 1 in which the reinforcing member is made from a thermosetting resin.
  • 11. A structural reinforcing member according to claim 1 in which the expandable material can be activated to both expand and to act as an adhesive when heated.
  • 12. A structural reinforcing member according to claim 11 in which the expandable material can be activated at a temperature of a curing step in an electrocoat process.
  • 13. A structural reinforcing member according to claim 1 in which the expandable material is an adhesive material a foamable epoxy-base resin.
  • 14. A structural reinforcing member according to claim 1 in which the expandable material is applied to at least a portion of the surfaces of the rigid reinforcing member that will be adjacent to two non-parallel surfaces of the interior surface of the hollow structural member.
  • 15. A structural reinforcing member according to claim 14 which the expandable :material is applied over part of each of the top and bottom and the sides of the reinforcing member.
  • 16. A structural reinforcing according to claim 1 in which the extensions comprise at least two ribs and the expandable material is provided between the ribs.
  • 17. A structural reinforcing member according to claim 16 in which a series of pairs of ribs are intermittently provided along one or more of the surfaces of the reinforcing member.
  • 18. A structural reinforcing member for reinforcing a hollow structural member comprising: a pair of opposing rib mouldings extending the length of said structural reinforcing member, said pair of rib mouldings being integral with said structural reinforcing member and being formed of the same material as said structural reinforcing member; unfoamed expansive adhesive material contained between said opposing ribs and said structural reinforcing member; wherein the reinforcing member is an injection molded plastic and has an internal structure that is selected from cellular, honeycomb or ribbed; wherein said unfoamed expansive adhesive material can be activated to both expand and to act as an adhesive when heated; wherein said unfoamed expansive adhesive material is dry and not tacky to the touch prior to activation of said material; wherein said structural reinforcing member further comprises at least one lug attached to said structural reinforcing member and locating said member within said hollow structural member when said structural reinforcing member is placed within said hollow structural member and said opposing rib mouldings approach an internal surface of the hollow structural member prior to activation of said material; and wherein said opposing rib mouldings are bonded to said internal surface of said hollow structural member after activation of said material.
  • 19. The structural reinforcing member according to claim 18 in which the exterior profile shape of said reinforcing member conforms substantially to the interior cross section of said hollow structural member.
  • 20. The structural reinforcing member according to claim 18 in which the size of said reinforcing member including the expandable material is such that there is a clearance of not more than 1 cm between said opposing rib mouldings of said reinforcing member and said interior wall of said hollow structural member.
  • 21. The structural reinforcing member according to claim 18 in which the expandable material can be activated at a temperature of a curing step in an electrocoat process.
  • 22. The structural reinforcing material according to claim 20 in which the clearance is 2 to 10 mm.
  • 23. The structural reinforcing member according to claim 18 in which the reinforcing member is made from a polyamide that includes a fibrous filler.
  • 24. The structural reinforcing member according to claim 18 in which the expandable material is applied over part of each of the top and bottom and the sides of the reinforcing member.
  • 25. The structural reinforcing member according to claim 18 wherein an external surface of the reinforcing member has opposite edges and the ribs are located between the opposite edges.
  • 26. The structural reinforcing member according to claim 18 wherein the structural reinforcing member has cross-section shape selected from an M-shape, a U-shape or a W-shape.
  • 27. A structural reinforcing member for reinforcing a hollow structural member comprising: a plastic reinforcing member having an external surface; a series of pairs of opposing ribs spaced apart along a length of the structural reinforcing member wherein each pair of ribs forms a groove therebetween and wherein each rib of the pairs of ribs extends transverse relative to the length of the reinforcing member and wherein each rib of the pairs of ribs is integrally molded of the same material as the reinforcing member; unfoamed expansive adhesive material contained within the groove between the ribs of each pair of opposing ribs: wherein the unfoamed expansive adhesive material can be activated to both expand and to act as an adhesive when heated; wherein said unfoamed expansive adhesive material is dry and not tacky to the touch prior to activation of said material; wherein the unfoamed expansive adhesive material is flush with a distal end of each rib for each pair of opposing ribs prior to activation; wherein said structural reinforcing member further comprises at least one lug attached to said structural reinforcing member and locating said member within said hollow structural member when said structural reinforcing member is placed within said hollow structural member and each pair of opposing ribs approaches an internal surface of the hollow structural member prior to activation of said material; wherein the structural reinforcing member includes a labyrinth of internal reinforcing ribs; and wherein each pair of opposing ribs is bonded to said internal surface of said hollow structural member after activation of said material.
  • 28. The structural reinforcing member according to claim 1 wherein the expandable material includes a first portion spaced laterally from a second portion with the at least one extension therebetween.
  • 29. The structural reinforcing member according to claim 18 wherein the reinforcing member includes at least five ribs.
  • 30. The structural reinforcing member according to claim 18 wherein the reinforcing member includes an additional pair of opposing rib mouldings extending the length of said structural reinforcing member, said pairs of rib mouldings being spaced apart laterally from each other.
Priority Claims (1)
Number Date Country Kind
0111151 May 2001 GB national
US Referenced Citations (127)
Number Name Date Kind
3868796 Bush Mar 1975 A
4463870 Coburn, Jr. et al. Aug 1984 A
4536541 Latham Aug 1985 A
4610836 Wycech Sep 1986 A
4695343 Wycech Sep 1987 A
4732806 Wycech Mar 1988 A
4751249 Wycech Jun 1988 A
4769391 Wycech Sep 1988 A
4769951 Kaaden Sep 1988 A
4813690 Coburn, Jr. Mar 1989 A
4836516 Wycech Jun 1989 A
4853270 Wycech Aug 1989 A
4861097 Wycech Aug 1989 A
4901500 Wycech Feb 1990 A
4908930 Wycech Mar 1990 A
4922596 Wycech May 1990 A
4923902 Wycech May 1990 A
4978562 Wycech Dec 1990 A
4995545 Wycech Feb 1991 A
5124186 Wycech Jun 1992 A
5194199 Thum Mar 1993 A
5266133 Hanley et al. Nov 1993 A
5288538 Spears Feb 1994 A
5358397 Ligon et al. Oct 1994 A
5373027 Hanley et al. Dec 1994 A
5506025 Otto et al. Apr 1996 A
5575526 Wycech Nov 1996 A
5598610 Torigoe et al. Feb 1997 A
5631027 Takabatake May 1997 A
5660116 Dannawi et al. Aug 1997 A
5755486 Wycech May 1998 A
5819408 Catlin Oct 1998 A
5884960 Wycech Mar 1999 A
5888600 Wycech Mar 1999 A
5892187 Patrick Apr 1999 A
5894071 Merz et al. Apr 1999 A
5941597 Horiuchi et al. Aug 1999 A
5985435 Czaplicki et al. Nov 1999 A
5992923 Wycech Nov 1999 A
6003274 Wycech Dec 1999 A
6006484 Geissbuhler Dec 1999 A
6033300 Schneider Mar 2000 A
6059342 Karwai et al. May 2000 A
6068424 Wycech May 2000 A
6079180 Wycech Jun 2000 A
6092864 Wycech et al. Jul 2000 A
6096403 Wycech Aug 2000 A
6099948 Paver, Jr. Aug 2000 A
6103341 Barz et al. Aug 2000 A
6103784 Hilborn et al. Aug 2000 A
6131897 Barz et al. Oct 2000 A
6146565 Keller Nov 2000 A
6149227 Wycech Nov 2000 A
6150428 Hanely, IV et al. Nov 2000 A
6165588 Wycech Dec 2000 A
6168226 Wycech Jan 2001 B1
6189953 Wycech Feb 2001 B1
6196621 VanAssche et al. Mar 2001 B1
6199940 Hopton et al. Mar 2001 B1
6232433 Narayan May 2001 B1
6233826 Wycech May 2001 B1
6237304 Wycech May 2001 B1
6247287 Takabatake Jun 2001 B1
6253524 Hopton et al. Jul 2001 B1
6263635 Czaplicki Jul 2001 B1
6270600 Wycech Aug 2001 B1
6272809 Wycech Aug 2001 B1
6276105 Wycech Aug 2001 B1
6281260 Hanley, IV et al. Aug 2001 B1
6287666 Wycech Sep 2001 B1
6296298 Barz Oct 2001 B1
6303672 Papalos et al. Oct 2001 B1
6305136 Hopton et al. Oct 2001 B1
6311452 Barz et al. Nov 2001 B1
6315938 Jandali Nov 2001 B1
6319964 Blank et al. Nov 2001 B1
6321793 Czaplicki et al. Nov 2001 B1
6332731 Wycech Dec 2001 B1
6341467 Wycech Jan 2002 B1
6348513 Hilborn et al. Feb 2002 B1
6357819 Yoshino Mar 2002 B1
6358584 Czaplicki Mar 2002 B1
6368438 Chang et al. Apr 2002 B1
6372334 Wycech Apr 2002 B1
D457120 Broccardo et al. May 2002 S
6382635 Fitzgerald May 2002 B1
6383610 Barz et al. May 2002 B1
6389775 Steiner et al. May 2002 B1
6406078 Wycech Jun 2002 B1
6413611 Roberts et al. Jul 2002 B1
6419305 Larsen Jul 2002 B1
6422575 Czaplicki et al. Jul 2002 B1
6435601 Takahara Aug 2002 B2
H2047 Harrison et al. Sep 2002 H
6444713 Pachl et al. Sep 2002 B1
6451231 Harrison et al. Sep 2002 B1
6455146 Fitzgerald Sep 2002 B1
6467834 Barz et al. Oct 2002 B1
6471285 Czaplicki et al. Oct 2002 B1
6474722 Barz Nov 2002 B2
6474723 Czaplicki et al. Nov 2002 B2
6475577 Hopton et al. Nov 2002 B1
6482486 Czaplicki et al. Nov 2002 B1
6482496 Wycech Nov 2002 B1
6502821 Schneider Jan 2003 B2
6519854 Blank Feb 2003 B2
6523857 Hopton et al. Feb 2003 B1
6523884 Czaplicki et al. Feb 2003 B2
6546693 Wycech Apr 2003 B2
6561571 Brennecke May 2003 B1
6573309 Reitenbach et al. Jun 2003 B1
6575526 Czaplicki et al. Jun 2003 B2
6607238 Barz Aug 2003 B2
6619727 Barz et al. Sep 2003 B1
6634698 Kleino Oct 2003 B2
6641208 Czaplicki et al. Nov 2003 B2
6668457 Czaplicki Dec 2003 B1
20010020794 Ishikawa Sep 2001 A1
20010042353 Honda et al. Nov 2001 A1
20020033617 Blank Mar 2002 A1
20020033618 Kwon Mar 2002 A1
20020053179 Wycech May 2002 A1
20020054988 Wycech May 2002 A1
20020074827 Fitzgerald et al. Jun 2002 A1
20030057737 Bock et al. Mar 2003 A1
20030062739 Bock Apr 2003 A1
20030069335 Czaplicki et al. Apr 2003 A1
Foreign Referenced Citations (66)
Number Date Country
197 03 429 Aug 1998 DE
19812288 May 1999 DE
19856255 Jan 2000 DE
19858903 Jun 2000 DE
0 236 291 Sep 1987 EP
0 383 498 Aug 1990 EP
0611778 Aug 1994 EP
0 611 778 Aug 1994 EP
0 834 442 Apr 1998 EP
0891918 Jan 1999 EP
0893331 Jan 1999 EP
0893332 Jan 1999 EP
1 006 022 Jun 2000 EP
1 084 816 Mar 2001 EP
1 122 152 Aug 2001 EP
1 122 156 Aug 2001 EP
0893332 Mar 2002 EP
1 208 954 May 2002 EP
1 256 512 Nov 2002 EP
1 006 022 Sep 2003 EP
1 362 683 Nov 2003 EP
1 362 769 Nov 2003 EP
2 749 263 Dec 1997 FR
2 083 162 May 1982 GB
2 375 328 Nov 2002 GB
4-300716 Oct 1992 JP
10-53156 Feb 1998 JP
2001-48055 Feb 2001 JP
02001191949 Jul 2001 JP
WO8906595 Jul 1989 WO
WO9532110 Nov 1995 WO
WO9702967 Jan 1997 WO
WO9743501 Nov 1997 WO
WO9836944 Aug 1998 WO
WO9850221 Nov 1998 WO
WO9908854 Feb 1999 WO
WO9928575 Jun 1999 WO
WO9948746 Sep 1999 WO
WO9950057 Oct 1999 WO
WO 9961280 Dec 1999 WO
WO 9961289 Dec 1999 WO
WO0003894 Jan 2000 WO
WO0012571 Mar 2000 WO
WO0012595 Mar 2000 WO
WO0013876 Mar 2000 WO
WO0013958 Mar 2000 WO
WO0020483 Apr 2000 WO
WO0027920 May 2000 WO
WO0037302 Jun 2000 WO
WO0037554 Jun 2000 WO
WO0039232 Jul 2000 WO
WO0040629 Jul 2000 WO
WO0040815 Jul 2000 WO
WO0043254 Jul 2000 WO
WO0052086 Sep 2000 WO
WO0055444 Sep 2000 WO
WO0046461 Aug 2001 WO
WO0154936 Aug 2001 WO
WO0156845 Aug 2001 WO
WO0171225 Sep 2001 WO
WO0183206 Nov 2001 WO
WO 0188033 Nov 2001 WO
WO 02055923 Jul 2002 WO
WO 03042024 May 2003 WO
WO 03047951 Jun 2003 WO
WO 03089221 Oct 2003 WO
Related Publications (1)
Number Date Country
20020174954 A1 Nov 2002 US