1. Field of the Invention
The present disclosure generally relates to the field of building construction. More particularly, the present disclosure relates to devices and methods for building a tilt-wall building.
2. Related Art
The building and construction industry has previously employed a technique for forming walls in which structural studs are embedded in concrete. A primary challenge with this technique is to embed the studs in concrete in such a way as to minimize or eliminate any separation between the studs and the concrete once the wall is formed. One means of addressing this challenge has been through the design of the structural studs themselves.
U.S. Pat. No. 6,151,858 to Ruiz, et al (“Ruiz”) discloses an example of one such design for a structural stud. The stud disclosed in Ruiz has a number of tabs extending outwardly from the side walls of the stud, and each of the tabs is derived as a cut-out portion of the side wall. The tabs are L-shaped and are folded out from the side wall, along a bend line that is generally at right angles to the longitudinal axis of the stud. One problem with the machinery needed to form the tabs in Ruiz is that two strikes are required to form the tabs: one strike to punch the tab out of the side wall and another strike to form the L-shape in the tab.
U.S. Publication No. 2005/0055967 to Kariakin (“Kariakin”) discloses an example of another design for a structural stud. Kariakin describes a number of problems with the design disclosed in Ruiz, including that the L-shaped tabs are difficult to punch out from the side wall of the stud due to the extreme right angle required which joins the two legs of the L-shape together. Kariakin also discloses that another problem with the L-shaped tab design is that the surrounding concrete does not completely engage the tab surface area, particularly around the right angle joint. Kariakin attempts to overcome these problems by employing tabs that are substantially curved in side elevational view such that the tabs are half U-shaped. The tabs in Kariakin are said to be formed by means of a rolling guide with a punch that pierces a portion of the side wall in order to force the section outward to define the tab.
What is needed is a structural stud that provides improved adhesion between the stud and the surrounding concrete such that separation between the stud and the concrete is further minimized in comparison to the examples disclosed above and elsewhere in the prior art. What is further needed is a structural stud which can be formed by a device and a process that is less expensive and has less problems than the devices and processes by which other studs are formed.
The referenced shortcomings are not intended, to be exhaustive, but rather are among many that tend to impair the effectiveness of previously known techniques for designing structural studs; however, those mentioned here are sufficient to demonstrate that the methodologies appearing in the art have not been altogether satisfactory and that a significant need exists for the techniques described and claimed in this disclosure.
Embodiments of the present disclosure include a structural stud that allows for improved adhesion between the stud and the surrounding concrete. A further benefit of the structural stud of certain embodiments of the present disclosure is that it can be formed by a device and a process that is less expensive and has less problems than the devices and processes by which other studs are formed. In certain embodiments, the structural stud of the present disclosure comprises a stud having a sidewall and a tab punched out of the sidewall, the tab comprising: a tab leg that is substantially planar and is connected to the sidewall, at one end of the tab leg, and that projects outwardly from the sidewall at an angle of less than ninety degrees to the sidewall; and a tab foot extending from the tab leg and curving either away from or toward a hole in the sidewall created by the tab punched out of the sidewall. In some embodiments, the hole in the sidewall is defined by a base side and a top side, the base side has a greater length than the top side, and the tab leg extends from the base side. In certain embodiments, the structural stud comprises a plurality of tabs. In still other embodiments, the plurality of tabs is spaced such that the gap between successive tab leg connections to the sidewall is less than about six inches. In other embodiments, the gap between successive, tab leg connections to the sidewall is about four inches.
Embodiments of the present disclosure also include a method of forming a structural stud comprising obtaining a stud having a sidewall; striking the sidewall of the stud with a punch; and forcing the punch into a die, creating a tab punched out of the sidewall, the tab comprising: a tab leg that is substantially planar and is connected to the sidewall at one end of the tab leg, and that projects outwardly from the sidewall at an angle of less than ninety degrees to the sidewall; and a tab foot extending from the tab leg and curving either away from or toward a hole in the sidewall created by the tab punched out of the sidewall. In some embodiments, the hole created in the sidewall is defined by a base side and a top side, the base side has a greater length than the top side, and the tab leg extends from the base side. In other embodiments, the sidewall, of the stud is struck with a plurality of punches, creating a plurality of tabs in the sidewall. In certain embodiments, the plurality of tabs is spaced such that the gap between successive tab leg connections to the sidewall is less than about six inches. In still other embodiments, the gap between successive tab leg connections to the sidewall is about four inches. In yet another embodiment, the tab is created in one strike of the sidewall with the punch.
Embodiments of the present disclosure also include a device for forming a structural stud comprising a punch for striking a sidewall of the stud and a die into which the punch is forced, where striking the sidewall with the punch and forcing the punch into the die creates a tab punched out of the sidewall, the tab comprising: a tab leg that is substantially planar and is connected to the sidewall at one end of the tab leg, and that projects outwardly from the sidewall at an angle of less than ninety degrees to the sidewall; and a tab foot extending from the tab leg and curving either away from or toward a hole in the sidewall created by the tab punched Out of the sidewall. In some embodiments, the hole in the sidewall is defined by a base side and a top side, the base side has a greater length than the top side, and the tab leg extends from the base side. In other embodiments, the device comprises a plurality of punches and dies and creates a plurality of tabs in the sidewall. In certain embodiments, the plurality of tabs is spaced such that the gap between successive tab leg connections to the sidewall is less than about six inches. In still other embodiments, the gap between successive tab leg connections to the sidewall is about four inches. In yet another embodiment, the device is capable of creating the tab in one strike of the sidewall with the punch.
Embodiments of the present disclosure also include a method of building a tilt-wall building comprising: obtaining a plurality of structural studs, each stud comprising: a stud having a sidewall; and a tab punched out of the sidewall, the tab comprising: a tab leg that is substantially planar and is connected to the sidewall at one end of the tab leg, and that projects outwardly from the sidewall at an angle of less than ninety degrees to the sidewall; and a tab foot extending from the tab leg and curving either away from or toward a hole in the sidewall created by the tab punched out of the sidewall; combining the plurality of structural studs with a structural mesh on a substantially horizontal surface such that the studs and mesh are substantially parallel to each other and to the substantially horizontal surface and there are voids formed between the structural studs; embedding the structural studs and structural mesh in concrete to form a panel; and raising the panel such that it is substantially perpendicular to the ground. In some embodiments, the method further comprises laying lifting anchors in the voids formed between the structural studs prior to embedding the structural studs and structural mesh in concrete; embedding the structural studs, structural mesh, and lifting anchors in concrete to form a panel, such that a portion of each lifting anchor is exposed; and using the lifting anchors to raise the panel. In other embodiments, the method further comprises laying support anchors in the voids formed between the structural studs prior to embedding the structural studs and structural mesh in concrete; embedding the structural studs, structural mesh, and support anchors in concrete to form a panel, such that a portion of each support anchor is exposed; and attaching supports to the support anchors.
Embodiments of the present disclosure also include a panel comprising a plurality of structural studs, each stud comprising a stud having a sidewall; and a tab punched out of the sidewall, the tab comprising; a tab leg that is substantially planar and is connected to the sidewall at one end of the tab leg, and that projects outwardly from the sidewall, at an angle of less than ninety degrees to the sidewall; and a tab foot extending from the tab leg and curving either away from or toward a hole in the sidewall created by the tab punched out of the sidewall; and a structural mesh, where the plurality of structural studs and the structural mesh are embedded in concrete. In some embodiments, the panel further comprises at least one lifting anchor embedded in the concrete, while in other embodiments the panel further comprises at least one support anchor embedded in the concrete.
In other embodiments, the present disclosure comprises a structural stud comprising: a stud having a sidewall; a vertical tab punched out of the sidewall and a vertical hole resulting from the vertical tab, the tab comprising a tab leg that is substantially planar and is connected to the sidewall at one end of the tab leg, and that projects outwardly from the sidewall at an angle of less than ninety degrees to the sidewall; and a tab foot extending from the tab leg of the vertical tab punched out of the sidewall and curving either away from or toward the vertical hole in the sidewall resulting from the vertical tab punched out of the sidewall; and a horizontal tab punched out of the sidewall and a horizontal hole resulting from the horizontal tab, the tab comprising a tab leg that is substantially planar and is connected to the sidewall at one end of the tab leg, and that projects outwardly from the sidewall at an angle of less than ninety degrees to the sidewall; a tab foot extending from the tab leg of the horizontal tab punched out of the sidewall and curving either away from or toward the horizontal hole in the sidewall resulting from the vertical tab punched out of the sidewall; where the end of vertical tab that is connected to the sidewall is substantially perpendicular to the end of the horizontal tab that is connected to the sidewall.
In another embodiment, the vertical hole is defined by a base side and a top side, the base side has a greater length than the top side, and the vertical tab leg extends from the base side; and the horizontal hole is defined by a base side and a top side, the base side has a greater length than the top side, and the horizontal tab leg extends from the base side.
In other embodiments, the structural stud comprises a plurality of vertical tabs and resulting vertical holes and horizontal tabs and resulting horizontal holes. In another embodiment, the vertical, tabs and vertical holes and the horizontal tabs and horizontal holes are positioned in an alternating arrangement on the sidewall such that there is a horizontal, tab and horizontal hole between each vertical tab and vertical hole. In yet another embodiment, the horizontal holes and the vertical holes are spaced such that the distance between the centers of successive vertical and horizontal holes is less than about 6 inches. In still another embodiment, the horizontal holes and the vertical holes are spaced such that the distance between the centers of successive vertical and horizontal holes is about 4 inches.
In other embodiments, the present disclosure comprises a method of building a tilt-wall building comprising: obtaining a plurality of structural studs, each stud comprising: a stud having a sidewall; a vertical tab punched out of the sidewall and a vertical hole resulting from the vertical tab, the tab comprising a tab leg that is substantially planar and is connected to the sidewall at one end of the tab leg, and that projects outwardly from the sidewall at an angle of less than ninety degrees to the sidewall; and a horizontal tab punched out of the sidewall and a horizontal hole resulting from the horizontal tab, the tab comprising a tab leg that is substantially planar and is connected to the sidewall, at one end of the tab leg, and that projects outwardly from the sidewall at an angle of less than ninety degrees to the sidewall; where the end of vertical tab that is connected to the sidewall is substantially perpendicular to the end of the horizontal tab that is connected to the sidewall; combining the plurality of structural studs with a structural mesh on a substantially horizontal surface such that the studs and mesh are substantially parallel to each other and to the substantially horizontal surface and there are voids formed between the structural studs; embedding the structural studs and structural mesh in concrete to form a panel; and raising the panel such that it is substantially perpendicular to the ground.
In still other embodiments, the present disclosure comprises a panel comprising: a plurality of structural studs, each stud comprising: a stud having a sidewall; a vertical tab punched out of the sidewall and a vertical hole resulting from the vertical tab, the tab comprising a tab leg that is substantially planar and is connected to the sidewall at one end of the tab leg, and that projects outwardly from the sidewall at an angle of less than ninety degrees to the sidewall; and a horizontal tab punched out of the sidewall and a horizontal hole resulting from the horizontal tab, the tab comprising a tab leg that is substantially planar and is connected to the sidewall at one end of the tab leg, and that projects outwardly from the sidewall at an angle of less than ninety degrees to the sidewall; where the end of vertical tab that is connected to the sidewall is substantially perpendicular to the end of the horizontal tab that is connected to the sidewall; and a structural mesh, where the plurality of structural studs and the structural mesh are embedded in concrete.
Descriptions of well known processing techniques, components, and equipment are omitted so as not to unnecessarily obscure the present methods and devices in unnecessary detail. The descriptions of the present methods and devices are exemplary and non-limiting. Certain substitutions, modifications, additions and/or rearrangements falling within the scope of the claims, but not explicitly listed in this disclosure, may become apparent to those or ordinary skill in the art based on this disclosure.
Additional embodiments of the present disclosure, and details associated with those embodiments, are described below.
The following drawings illustrate by way of example and not limitation. Identical reference numerals do not necessarily indicate an identical structure. Rather, the same reference numeral may be used to indicate a similar feature or a feature with similar functionality. Every feature of each embodiment is not always labeled in every figure in which that embodiment appears, in order to keep the embodiments clear. The drawings form part of the present specification and are included to further demonstrate certain aspects of the present disclosure. The disclosure may be better understood by reference to one or more of these drawings in combination with the description of illustrative embodiments presented herein:
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”, “contain” (and any form of contain, such as “contains” and “containing”), and “include” and any form of include, such as “includes” and “including”) are open-ended linking verbs. As a result, a structural stud, device, or method that “comprises,” “has,” “contains,” or “includes” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements or steps. Likewise, an element of a structural stud, device, or method that “comprises,” “has,” “contains,” or “includes” one or more features possesses those one or more features, but is not limited to possessing only those one or more features. Furthermore, a structure that is configured in a certain, way must be configured in at least that way, but also may be configured in a way or ways that are not specified.
The terms “a” and “an” are defined as one or more than one unless this disclosure explicitly requires otherwise. The terms “substantially” and “about” are defined as at least close, to (and includes) a given value or state (preferably within 10% of, more preferably within 1% of, and most preferably within 0.1% of).
One embodiment of the present disclosure is the version of the present structural stud shown in
Another embodiment of the structural stud of the present disclosure is shown in
While
With regard to the size and number of the tabs, in some embodiments, the size and number of the tabs is such that the total surface area of the sidewall divided by the total surface area of the holes created by the tabs results in a ratio of less than about 9.6. More particularly, the ratio is any of the following: 9.6, 9.5, 9.4, 9.3, 9.2, 9.1, 9.0, 8.9, 8.8, 8.7, 8.6, 8.5, 8.4, 8.3, 8.2, 8.1, 8.0, 7.9, 7.8, 7.7, 7.6, 7.5, 7.4, 7.3, 7.2, 7.1, 7.0, 6.9, 6.8, 6.7, 6.6, 6.5, 6.4, 6.3, 6.2, 6.1, 6.0, 5.9, 5.8, 5.7, 5.6, 5.5, 5.4, 5.3, 5.2, 5.1, 5.0, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4.0, 3.5, 3.0, 2.5, 2.0, and 1.5, or any range derivable within these numbers.
In other embodiments, the size and number of tabs is such that the total surface area of the holes created by the tabs is greater than about 10% of the total surface area of the sidewall. More particularly, the total surface area of the holes created by the tabs is any of the following percentages of the total surface area of the sidewall: 10.1%, 1.0.2%, 10.3%, 10.4%, 10.5%, 10.6%, 10.7%, 10.8%, 10.9%, 11.0%, 11.1%, 11.2%, 11.3%, 11.4%, 11.5%, 11.6%, 11.7%, 11.8%, 11.9%, 12.0%, 12.1%, 12.2%, 12.3%, 12.4%, 12.5%, 12.6%, 1.2.7%, 12.8%, 1.2.9%, 13.0%, 13.1%, 13.2%, 13.3%, 1.3.4%, 13.5%, 1.3.6%, 13.7%, 13.8%, 13.9%, 14.0%, 14.1%, 14.2%, 14.3%, 14.4%, 14.5%, 14.6%, 14.7%, 14.8%, 14.9%, 15.0%, 15.1%, 15.2%, 15.3%, 15.4%, 15.5%, 15.6%, 15.7%, 15.8%, 15.9%, 16.0%, 17%, 18%, 19%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, or 70%, or any range derivable within these numbers.
In some embodiments, the present disclosure comprises methods and devices for forming a structural stud. The device used in certain embodiments of the method comprises a punch and die mechanism to form the tabs in the sidewall of the structural stud according to certain embodiments of the present disclosure. A major advantage of some embodiments of these methods and devices is that only one strike by the punch and die mechanism is needed to form the tabs of the present structural studs. An embodiment of the tabs formed by the methods and devices are depicted in
The present disclosure also provides a method of building a tilt-wall building that incorporates embodiments of the structural, stud described above. Embodiments of a tilt-wall panel formed according to certain embodiments of the present method are depicted in
Another embodiment of the structural stud of the present disclosure is shown in
The vertical tabs 207 and 209 comprise tab legs 223 and 225 that are substantially planar and are connected to the sidewall 205 at one end of the tab legs 223 and 225. The tab legs 223 and 225 project outwardly from the sidewall 205 at an angle of less than ninety degrees to the sidewall 205. Having the tab legs 223 and 225 project outwardly at an angle of less than ninety degrees results in improved adhesion between the structural stud and the surrounding concrete. The vertical tabs 207 and 209 also comprise tab feet 227 and 229 extending from the tab legs 223 and 225 and curving away from vertical holes 211 and 213 created by the vertical tabs 207 and 209 punched out of the sidewall 205. Having the tab feet 227 and 229 curve away from the vertical holes 211 and 213 in the sidewall 205 further results in improved adhesion between the structural stud and the surrounding concrete. In some embodiments, the vertical holes 211 and 213 in the sidewall 205 are defined by base sides 231 and 233 and top sides 235 and 237, the base sides have a greater length than the top sides, and the tab legs 223 and 225 extend from the base sides 231 and 233.
The horizontal tabs 215 and 217 comprise tab legs 239 and 241 that are substantially planar and are connected to the sidewall 205 at one end of the tab legs 239 and 241. The tab legs 239 and 241 project outwardly from the sidewall 205 at an angle of less than ninety degrees to the sidewall 205. Having the tab legs 239 and 241 project outwardly at an angle of less than ninety degrees results in improved adhesion between the structural stud and the surrounding concrete. The horizontal tabs 215 and 217 also comprise tab feet 243 and 245 extending from the tab legs 239 and 241 and curving toward horizontal holes 219 and 221 created by the horizontal tabs 215 and 217 punched out of the sidewall 205. Having the tab feet 243 and 245 curve toward the horizontal holes 219 and 221 in the sidewall 205 further results in improved adhesion between the structural stud and the surrounding concrete. In some embodiments, the horizontal holes 219 and 221 in the sidewall 205 are defined by base sides 247 and 249 and top sides 251 and 253, the base sides have a greater length than the top sides, and the tab legs 239 and 241 extend from the base sides 247 and 249. In the embodiment shown in
In the embodiment shown in
While
All of the methods and devices disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the methods and devices of this disclosure, have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the methods and devices and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit, and scope of the disclosure. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the disclosure as defined by the appended claims.
The claims are not to be interpreted as including means-plus- or step-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase(s) “means for” or “step for,” respectively.
This application is a continuation of U.S. patent application Ser. No. 12/888,211 filed on Sep. 22, 2010, now issued as U.S. Pat. No. 8,919,064, hereby incorporated by reference in its entirety, which is a divisional application of U.S. patent application Ser. No. 11/673,356, filed Feb. 9, 2007, now U.S. Pat. No. 7,823,350, hereby incorporated by reference in its entirety, which claims the benefit of U.S. Provisional Patent Application No. 60/772,106 filed Feb. 10, 2006, hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
682316 | Caldwell | Sep 1901 | A |
717923 | Rapp | Jan 1903 | A |
802727 | Alsohuler | Oct 1905 | A |
815292 | Hegbom | Mar 1906 | A |
855240 | Forsyth | May 1907 | A |
1004859 | Dowd | Oct 1911 | A |
1685247 | Selway | Sep 1928 | A |
1814202 | Winget | Jul 1931 | A |
1815065 | Lucy | Jul 1931 | A |
1885883 | Young | Nov 1932 | A |
1938871 | Smith | Dec 1933 | A |
1946690 | Haines | Feb 1934 | A |
1960961 | Thomas | May 1934 | A |
2014419 | Voigt | Sep 1935 | A |
2027799 | Wharton | Jan 1936 | A |
2044216 | Klages | Jun 1936 | A |
2209514 | Drummond | Jul 1940 | A |
2590807 | Voslamber | Mar 1952 | A |
3108406 | Ellis | Oct 1963 | A |
3236932 | Grigas et al. | Feb 1966 | A |
3303627 | Mora | Feb 1967 | A |
3312032 | Ames | Apr 1967 | A |
3802147 | O'Konski | Apr 1974 | A |
3839839 | Tillisch et al. | Oct 1974 | A |
3896650 | O'Konski | Jul 1975 | A |
3940899 | Balinski | Mar 1976 | A |
D257709 | Lewis | Dec 1980 | S |
4241555 | Dickens et al. | Dec 1980 | A |
4753053 | Heard | Jun 1988 | A |
4763867 | Hungerford, Jr. | Aug 1988 | A |
4856246 | Shimasaki | Aug 1989 | A |
4885884 | Schilger | Dec 1989 | A |
4918894 | Page | Apr 1990 | A |
4930278 | Staresina et al. | Jun 1990 | A |
5060434 | Allison | Oct 1991 | A |
5230191 | Mayrand | Jul 1993 | A |
5390457 | Sjolander | Feb 1995 | A |
5414972 | Ruiz et al. | May 1995 | A |
5676486 | Keith | Oct 1997 | A |
5697506 | Peickert | Dec 1997 | A |
5743497 | Michael | Apr 1998 | A |
5953876 | Agar | Sep 1999 | A |
6151858 | Ruiz et al. | Nov 2000 | A |
6401423 | Bergeron et al. | Jun 2002 | B1 |
6631589 | Friedman et al. | Oct 2003 | B1 |
6647691 | Becker et al. | Nov 2003 | B2 |
6708459 | Bodnar | Mar 2004 | B2 |
6845594 | Harber | Jan 2005 | B2 |
7051484 | Nanayakkara | May 2006 | B2 |
7278244 | Rubio | Oct 2007 | B1 |
20020194812 | Attalla | Dec 2002 | A1 |
20050055967 | Kariakin | Mar 2005 | A1 |
20060144009 | Attalla | Jul 2006 | A1 |
20070245657 | Valle et al. | Oct 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20150204069 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
60772106 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11673356 | Feb 2007 | US |
Child | 12888211 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12888211 | Sep 2010 | US |
Child | 14584359 | US |