STRUCTURAL UNIT HAVING A CONTROL UNIT HOUSING AND A HYDRAULIC ASSEMBLY HOUSING

Abstract
A structural unit having a control unit housing and a hydraulic assembly housing is proposed. The control unit housing and the hydraulic assembly housing form a receiving chamber with a covering for at least one electrical component. The at least one electrical component is arranged in the receiving chamber in a sealed manner at least in the region of contact faces between the component and the chamber. For each component, one seal is applied in a fluid process and is assigned individually to the relevant electrical component to be arranged. The seal is applied in the region of the contact faces between the component and the covering of the electrical component, the control unit housing, and the hydraulic assembly housing.
Description
PRIOR ART

The invention relates to a structural unit having a control unit housing and a hydraulic assembly housing of the type defined in further detail by the preamble to claim 1.


In practice, a distinction can be made between hydraulic systems in which a control unit is located directly on a hydraulic assembly, and hydraulic systems with theses components disposed separately. In systems in which the control unit is located directly on the hydraulic assembly, a receiving chamber formed by the control unit housing and the hydraulic assembly housing for electrical components must be sealed off from such environmental factors as temperature, liquids such as oil or brake fluid, and mechanical loads such as dirt.


In the industry, sealing off the receiving chamber by way of sealing a contact face of the two housings by means of a fluid seal is known. In such an embodiment, it is disadvantageous that a great wall thickness of the housing is necessary, which entails high material costs.


For sealing off the receiving chamber, it is also known in the industry for the receiving chamber to be potted with a sealing composition. However, this requires using a large amount of material, which has an adverse effect on the weight of the entire structural unit. Moreover, the use of a large amount of material means correspondingly high material costs.


It is also known from the industry to seal off the electrical components located in the receiving chamber by way of individual seals, which are made in the form of inlay seals. With this kind of structural design, it is disadvantageously necessary to machine the contact faces for the inlay seals, which results in high machining costs and makes the assembly process difficult and expensive.


It is the object of the present invention to create a structural unit with a control unit housing and a hydraulic assembly housing in which sealing that is both economical and quickly installed is attained.


ADVANTAGES OF THE INVENTION

The invention provides a structural unit having a control unit housing and a hydraulic assembly housing, in which the control unit housing and the hydraulic assembly housing form a receiving chamber for at least one electrical component having a covering, and the at least one electrical component, at least in the region of its contact faces, is located in a sealed manner in the receiving chamber. According to the invention, it is provided that a seal, individually associated with the respective electrical component and applied by a fluid process, is located in the region of the contact faces, between the covering of the electrical component and the control unit housing and the hydraulic assembly housing, respectively.


By the use of a fluid seal, machining the contact faces for the seal can advantageously be avoided, thus reducing the machining times.


Also by means of the individual seal according to the invention, a low wall thickness of the housing little material can be attained without a contact face that requires sealing between the housings, and in the case of plastic manufacture, the extrusion device can be altered in such a way that the length that has to be deburred is kept short.


An especially simple embodiment of the seal is made possible by providing that the seal is disposed radially around a connection region where the electrical component is connected to the hydraulic assembly housing or to the control unit housing on the side toward the receiving chamber.


Expediently, the connection region where the electrical component is connected to the control unit housing and the hydraulic assembly housing is embodied such that the control unit housing and the hydraulic assembly housing have a recess, shaped to suit the circumferential contour of the electrical component, into which recess the electrical component is inserted, and the seal is disposed at least approximately annularly on the circumferential contour of the recess.


In an advantageous embodiment of the invention, the at least one electrical component can be embodied as an electromagnetic coil. The efficiency of the coil is advantageously improved when a fluid seal of the invention is used, because of the possibility of adhering to close axial tolerances, and as a result the thermal concept of the structural unit can be favorably affected.


The at least one electrical component can also be embodied as a connection plug whose covering is embodied as a sleevelike region of the control unit housing and that is solidly joined by one end to a bottom face that is defined by a side wall of the control unit housing.


If the at least one electrical component is embodied as a magnet valve affixed to the hydraulic assembly housing, then the regulation tolerance of the magnet valve is advantageously improved by the close axial tolerances that are attainable with a fluid seal.


Further advantages and advantageous features of the subject of the invention can be learned from the description, drawings, and claims.





DRAWINGS

One exemplary embodiment of a structural unit designed according to the invention is shown in simplified in the drawings and described in further detail in the ensuing description. Shown are:



FIG. 1, a highly simplified three-dimensional view of a structural unit with a control unit housing and a hydraulic assembly housing of a motor vehicle brake system;



FIG. 2, a simplified perspective view of the control unit housing of FIG. 1 shown by itself;



FIG. 3, a schematic longitudinal section through a sleevelike region of the control unit housing, with a fastening means disposed in it for connection to the hydraulic assembly housing in an assembly state;



FIG. 4, a schematic longitudinal section through a sleevelike region of the control unit housing of FIG. 3, with the fastening means in the installed state;



FIG. 5, the sleevelike region of FIG. 4, with a connection plug guided by the fastening element;



FIG. 6, a schematic longitudinal section through a coil and a magnet valve in a receiving chamber, in the installed state;



FIG. 7, an enlarged fragment of FIG. 6 which in further detail shows the fixation and sealing of the coils on the control unit housing;



FIG. 8, an enlarged fragment of FIG. 6 which in further detail shows the fixation of the coils to the hydraulic assembly housing;



FIG. 9, a simplified three-dimensional view of a hydraulic assembly housing with magnet valves affixed to it;



FIG. 10, a rear view of the control unit housing of FIG. 2, with a cap and a printed circuit board contained in the cap; and



FIG. 11, a simplified sectional view of a region of the control unit housing of FIG. 6.





DESCRIPTION OF THE EXEMPLARY EMBODIMENT

In FIG. 1, a structural unit 1 is shown which forms a regulator of a vehicle brake system, not further shown, and has as its main components a hydraulic assembly 3, with an electric motor 11, and a control unit 5. In a known manner, piston pumps, magnet valves 8, hydraulic reservoirs, damper chambers, and similar hydraulic components are inserted into the hydraulic assembly 3 and hydraulically interconnected. The control unit 5, which has an electronic regulating circuit in the form of a printed circuit board 42 that triggers the piston pumps, the electric motor 11 connected to them, and the magnet valves 8 of the hydraulic assembly 3, is connected to the hydraulic assembly 3.


The connection of the control unit 5 to the hydraulic assembly 3 is made via a connection of the control unit housing 7 of the control unit 5 to a hydraulic assembly housing 9 of the hydraulic assembly 3.


The control unit housing 7 shown in further detail in FIG. 2 is embodied with sleevelike regions, in the form of a first tube 15A and a second tube 15B, which on their respective ends remote from a bottom face 18 of the control unit 7 each have a respective slit 16A and 16B, extending in the longitudinal direction of the tubes, for increasing the elasticity. The tubes 15A and 15B are each solidly connected on one end to the bottom face 18, which is defined by a side wall 13 of the control unit housing 7. In the direction of their ends pointing away from the bottom face of the control unit housing 7, the tubes 15A, 15B each narrow in diameter; a stepped shoulder 17 serves to narrow the diameter.


The bottom face 18 of the control unit housing 7 here has eight round recesses 20 for receiving individual coils 40, and the recesses 20 centrally have a concentric through hole 22 for the magnet valve 8 and, in the vicinity of their circumference, two elongated slits 23A, 23B for contact plugs 41A, 41B, which serve to connect the coils 40 to the printed circuit board 42.


As can be seen from FIGS. 10 and 11, the printed circuit board 42 is integrated with a cap 32 on the back side of the control unit housing 7; the cap is sealingly affixed, via a welded or glued connection, to a frame 14 of the control unit housing 7 that extends away from the side of the bottom face 18 remote from the tubes 15A, 15B, so that for connecting the cap 32 to the control unit housing 7, screws outside the side walls 13 of the control unit housing 7 can be dispensed with.


As can also be seen from FIGS. 6 and 7, a fluid seal 45 and 46, preferably of silicone, is applied to a circumference of the recess 20; the first seal 45 serves to seal off the coils 40 from the control unit housing 7, and the second seal 46 serves to seal off the coils 40 from the hydraulic assembly housing 9. Upon being introduced into the recess 20, the coil 40 snaps into an indentation 28 located in the recess 20 and is affixed to that indentation.



FIGS. 3 and 4, of the similarly embodied tubes 15A and 15B, show as an example the first tube 15A of the control unit housing 7, of which tube a region remote from the bottom face 18 is guided through a bore 10 of the hydraulic assembly housing 9. The control unit housing 7 is introduced into the bore 10 in the hydraulic assembly housing 9 far enough that the coils 40 placed in the control unit housing 7 rest on the hydraulic assembly housing 9.


A boltlike pin 26 is shown in FIG. 3 in an assembly position and in FIG. 4 in the installed state; this pin has an insertion chamfer 26B on its end remote from the bottom face 18 of the control unit housing 7 and has a radially widened portion 26A on its end oriented toward the bottom face 18 of the control unit housing 7.


In the installed state, the pin 26 widens the tube 15A in the region of its narrowed diameter 17 and presses the tube 15A in the bore of the hydraulic assembly housing 9 against the hydraulic assembly housing 9, so that the tube 15A and thus the control unit housing 7 are affixed to the hydraulic assembly housing 9. In the installed state, the pin is introduced so far into the tube 15A of the control unit housing that the radially widened portion 26A of the pin 26 rests on the shoulder 17 of the tube 15A of the control unit housing 7.


As can be seen from FIG. 5, the pin 26, provided with a through opening 26C, in the version shown, in a preassembled state, is pressed into a connection plug of the motor 30, so that the connection plug 30 in the installed state is guided by the tube 15A of the control unit housing 7.


For sealing off the tube 15A containing the connection plug 30 from the hydraulic assembly housing 9, a third fluid seal 47 is applied radially around the bore 10 of the hydraulic assembly housing 9, into which bore the tube 15A, containing the connection plug 30, is guided in the installed state.


The cross-linking and curing of the seal 47, applied or dispensed by the fluid process and which spreads out radially upon an insertion of the tube 15A into the bore 10 of the hydraulic assembly housing 9, can advantageously be done, as with the seals 45, 46 as well, at room temperature, since the control unit housing 7 is retained mechanically on the hydraulic assembly housing 9 via the pin 26.


As can be learned from FIG. 9, radially around the magnet valves 8 that are hydraulically closely wedged to the hydraulic assembly housing 9, a respective indentation 28 is provided in the hydraulic assembly housing 9 for receiving the coils 40, and the coils 40 are located in this indentation in the installed state. The coils 40 determine the spacing between the control unit housing 7 and the hydraulic assembly housing 9.



FIGS. 6 and 8 show the fluid seal 46, distributed radially around the individual indentations 28, and this seal, upon introduction of the coils 40 into the indentations 28, cures at room temperature. The axial tolerances of the coil 40 in the installed state are very close, favorably affecting the efficiency of the coils 40 and the thermal concept of the entire structural unit and improving the regulation quality of the magnet valves 8, guided by the coils 40 in the installed state, compared with inlay seals.


As a result of the sealing off according to the invention of the receiving chamber 12 formed by the control unit housing 7 and the hydraulic assembly housing 9, a medium can flow through the receiving chamber 12 in the installed state without the electrical components coming into contact with the medium.

Claims
  • 1-8. (canceled)
  • 9. A structural unit comprising: a control unit housing;a hydraulic assembly housing;a receiving chamber formed by the control unit housing and the hydraulic assembly housing;a covering for the receiving chamber;at least one electrical component located in a sealed manner in the receiving chamber;a seal individually associated with each of the at least one electrical component, wherein the seal is applied by a fluid process, and the seal is located between contacting faces of the electrical component and the covering, the control unit housing, and the hydraulic assembly housing, respectively.
  • 10. The structural unit as defined by claim 9, wherein the seal is disposed radially around a connection region, where the electrical component is connected to the hydraulic assembly housing or to the control unit housing on a respective side toward the receiving chamber.
  • 11. The structural unit as defined by claim 10, wherein the connection region where the electrical component is connected to the control unit housing is embodied such that the control unit housing has a recess shaped to suit the circumferential contour of the electrical component, into which recess the electrical component is inserted, and the seal is disposed at least approximately annularly on the circumferential contour of the recess.
  • 12. The structural unit as defined by claim 10, wherein the region where the electrical component is connected to the hydraulic assembly housing is embodied such that the hydraulic assembly housing has a recess shaped to suit the circumferential contour of the electrical component, into which recess the electrical component is inserted, and the seal is disposed at least approximately annularly on the circumferential contour of the recess.
  • 13. The structural unit as defined by claim 9, wherein the at least one electrical component is embodied as an electromagnetic coil.
  • 14. The structural unit as defined by claim 10, wherein the at least one electrical component is embodied as an electromagnetic coil.
  • 15. The structural unit as defined by claim 11, wherein the at least one electrical component is embodied as an electromagnetic coil.
  • 16. The structural unit as defined by claim 12, wherein the at least one electrical component is embodied as an electromagnetic coil.
  • 17. The structural unit as defined by claim 9, wherein the at least one electrical component is embodied as a connection plug between an electric motor on the hydraulic assembly received by the hydraulic assembly housing and an electrical regulator of a control unit received by the control unit housing.
  • 18. The structural unit as defined by claim 10, wherein the at least one electrical component is embodied as a connection plug between an electric motor on the hydraulic assembly received by the hydraulic assembly housing and an electrical regulator of a control unit received by the control unit housing.
  • 19. The structural unit as defined by claim 11, wherein the at least one electrical component is embodied as a connection plug between an electric motor on the hydraulic assembly received by the hydraulic assembly housing and an electrical regulator of a control unit received by the control unit housing.
  • 20. The structural unit as defined by claim 12, wherein the at least one electrical component is embodied as a connection plug between an electric motor on the hydraulic assembly received by the hydraulic assembly housing and an electrical regulator of a control unit received by the control unit housing.
  • 21. The structural unit as defined by claim 13, wherein the at least one electrical component is embodied as a connection plug between an electric motor on the hydraulic assembly received by the hydraulic assembly housing and an electrical regulator of a control unit received by the control unit housing.
  • 22. The structural unit as defined by claim 16, wherein the at least one electrical component is embodied as a connection plug between an electric motor on the hydraulic assembly received by the hydraulic assembly housing and an electrical regulator of a control unit received by the control unit housing.
  • 23. The structural unit as defined by claim 17, wherein the covering of the connection plug is embodied as a sleevelike region of the control unit housing, which region by one end is solidly connected to a bottom face defined by a side wall of the control unit housing.
  • 24. The structural unit as defined by claim 18, wherein the covering of the connection plug is embodied as a sleevelike region of the control unit housing, which region by one end is solidly connected to a bottom face defined by a side wall of the control unit housing.
  • 25. The structural unit as defined by claim 19, wherein the covering of the connection plug is embodied as a sleevelike region of the control unit housing, which region by one end is solidly connected to a bottom face defined by a side wall of the control unit housing.
  • 26. The structural unit as defined by claim 20, wherein the covering of the connection plug is embodied as a sleevelike region of the control unit housing, which region by one end is solidly connected to a bottom face defined by a side wall of the control unit housing.
  • 27. The structural unit as defined by claim 22, wherein the covering of the connection plug is embodied as a sleevelike region of the control unit housing, which region by one end is solidly connected to a bottom face defined by a side wall of the control unit housing.
  • 28. The structural unit as defined by claim 9, wherein the at least one electrical component is embodied as a magnet valve affixed to the hydraulic assembly housing.
Priority Claims (1)
Number Date Country Kind
102006005185.8 Feb 2006 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2007/050026 1/3/2007 WO 00 7/15/2008