Structurally reinforced panels

Information

  • Patent Grant
  • 6855652
  • Patent Number
    6,855,652
  • Date Filed
    Friday, August 24, 2001
    23 years ago
  • Date Issued
    Tuesday, February 15, 2005
    20 years ago
Abstract
A structurally reinforced panel and a method of forming the panel are disclosed. The reinforcement includes a fibrous woven material in a bondable plastic matrix.
Description
FIELD OF THE INVENTION

The present invention relates generally to a structurally reinforced panel of an automotive vehicle or other article of manufacture, and more particularly to a panel structurally reinforced with a structural matrix material and a woven fibrous material.


BACKGROUND OF THE INVENTION

For many years the transportation industry has been concerned with designing structural members that do not add significantly to the weight of a vehicle. At the same time, automotive applications require structural members capable of providing reinforcement to targeted portions of the vehicle such as vehicle panels. It is known to apply a layer of heat activated matrix material along with a fibrous reinforcement material to panels of automotive vehicles for structurally reinforcing the panels. However, the fibrous material that is presently used to achieve desired levels of reinforcement of the panels can be expensive. Additionally, desired levels of reinforcement may not be achieved with the presently used fibrous material unless the fabric has a sufficiently high weight. Thus, there is a need to replace the presently used fibrous material with a lower cost material that can be applied to vehicle panels along with the matrix material wherein the replacement material provides sufficient reinforcement to the panels, the matrix material or both. There is also a need to provide a fibrous material that can be applied to vehicle panels along with the matrix material wherein the fibrous material is lightweight, but continues to provide sufficient reinforcement to the panels.


SUMMARY OF THE INVENTION

The present invention satisfies one or more of these needs by providing a structurally reinforced panel. A fiberglass woven roving is bonded to at least part of the matrix material.


According to another embodiment, the present invention provides a composite material for reinforcing a panel portion of an automotive vehicle. The composite material includes a layer of matrix material and a fibrous material laminated to the matrix material. Preferably, the fibrous material is woven one or less times prior to lamination of the material upon the matrix material.


The present invention also provides a method of forming a structurally reinforced panel. The method includes a first step of providing a panel portion of the automotive vehicle. In another step, a layer matrix material is applied over at least part of a surface of the panel portion. In yet another step a fiberglass woven roving is laminated to at least part of the matrix material either before or after the matrix material is applied to the surface of the panel portion.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and inventive aspects of the present invention will become more apparent upon reading the following detailed description, claims and drawings, of which the following is a brief description:



FIG. 1 is an exploded perspective view of a layer of matrix material and a woven roving being applied to a metal panel of an automotive vehicle according to an aspect of the present invention.



FIG. 2 is a magnified view of a portion of the woven roving of FIG. 1 taken in the circle 2 of FIG. 1.



FIG. 3 is a sectional view of the portion of the woven roving of FIG. 2 taken along line 33.



FIG. 4 is a perspective view of the layer of matrix material and the woven roving of FIG. 1 as applied to the metal panel of FIG. 1.





DETAILED DESCRIPTION OF THE INVENTION

The invention relates to a structurally reinforced panel of an article, such as an automotive vehicle, a household or industrial appliance, furniture, storage containers or the like, and to a method of forming the panel. More particularly, the present invention relates to a reinforced panel of an automotive vehicle that includes a panel portion, a layer of matrix material applied (e.g., adhered or otherwise bonded) to at least part of a surface of the panel portion and a fibrous material (e.g., a woven roving) applied (e.g., laminated) to the matrix material. Preferably, the fibrous material of the panel portion provides a high strength to weight reinforcement material.


Referring to FIGS. 1-4, there is illustrated an exemplary embodiment of a structurally reinforced panel 10. The panel 10 includes a panel portion 12, a layer 14 of matrix material applied to at least part of a surface 16 of the panel portion 12 and fibrous material reinforcement 18 (e.g., fiberglass roving) applied to the layer 14 of matrix material.


The layer 14 of matrix material may be configured in any shape, design, or thickness corresponding to the dimensions of the selected panel portion 12 of the vehicle or as otherwise desired. Typically, the matrix material is selected so as to be activable under a desired condition to soften (e.g, melt), expand, foam or otherwise change states such that the matrix material can wet, and preferably bond to adjacent surfaces (e.g., the surfaces provided by the roving 18 and the panel portion 12). In one embodiment, the matrix material is also selected to cure during or after activation and, upon or after cure, form a relatively low density, low weight material with high strength characteristics such as high stiffness for imparting structural rigidity to reinforced region of the panel portion 12. Other desired characteristics of the matrix material might include high glass transition temperature (typically greater than 70 degrees Celsius), and good adhesion retention, particularly in the presence of corrosive or high humidity environments.


A number of structurally reinforcing matrix materials may be used to form the layer 14. The matrix material may be a thermoplastic, a thermoset or a blend thereof. According to one embodiment, the matrix material is as an epoxy-based material, an ethylene-based polymer, or a mixture thereof, which when compounded with appropriate ingredients (typically a blowing agent, a curing agent, and perhaps a filler), typically expands and cures in a reliable and predictable manner upon the application of heat or another activation stimulus.


Thus, according to one embodiment, the matrix material is a heat-activated, epoxy-based resin having foamable characteristics upon activation through the use of heat typically encountered in an e-coat or other paint oven operation. Preferably, the epoxy matrix material is such that upon being heated, it structurally bonds to adjacent surfaces. From a chemical standpoint for a thermally-activated material, such matrix material is usually initially processed as a thermoplastic material before curing. After curing, the matrix material typically becomes a thermoset material that is fixed and incapable of any substantial flowing. Examples of preferred formulations that are commercially available include those available from L&L Products, Inc. of Romeo, Mich., under the designations L-5204, L-5206, L-5207, L-5208, L-5209, L-5214, L-5222 and L-8000.


The layer 14 of matrix material may be formed using a variety of processing techniques, machines and the like. Possible processing techniques for the preferred materials include injection molding, blow molding, thermoforming, extrusion with a single or twin screw extruder or extrusion with a mini-applicator extruder. In a preferred embodiment, the layer 10 of matrix material is extruded using a twin-screw extruder and with the resulting layer 14 having a substantially continuous thickness or a variable thickness.


Though preferred matrix materials are disclosed other suitable art disclosed matrix material may be used in conjunction with the present invention. The choice of the matrix material used will be dictated by performance requirements and economics of the specific application and requirements. Examples of other possible matrix materials include, but are not limited to, polyolefin materials, copolymers and terpolymers with at one monomer type an alpha-olefin, phenol/formaldehyde materials, phenoxy material, polyurethane materials with high glass transition temperatures (including polyureas), and mixtures or composites (optionally including solid or porous metals). See also, U.S. Pat. Nos. 5,766,719; 5,755,486; 5,575,526; 5,932,680 (incorporated herein by reference).


Generally speaking, exemplary automotive vehicle applications may utilize technology and processes such as those disclosed in U.S. Pat. Nos. 4,922,596, 4,978,562, 5,124,186 and 5,884,960 and commonly owned, co pending U.S. application Ser. No. 09/502,686 filed Feb. 11, 2000, Ser. No. 09/524,961 filed Mar. 14, 2000, No. 60/223,667 filed Aug. 7, 2000, No. 60/225,126 filed Aug. 14, 2000, Ser. No. 09/676,443 filed Sep. 29, 2000, Ser. No. 09/676,335 filed Sep. 29, 2000, Ser. No. 09/676,725 filed Sep. 29, 2000, and particularly, Ser. No. 09/459,756 filed Dec. 10, 1999, all of which are expressly incorporated by reference.


In applications where the matrix material is a heat activated material, such as when a thermally melting, expanding, or foaming material is employed, an important consideration involved with the selection and formulation of the material can be the temperature at which the material activates, cures or both. In most applications, it is undesirable for the material to activate at room temperature or the ambient temperature in a production or assembly environment. For automotive applications, it may be desirable for the matrix material to activate at higher processing temperatures, such as those encountered in an automobile assembly plant, when the matrix material is processed along with the automobile components at elevated temperatures. Exemplary temperatures encountered in an automobile assembly body shop oven may be in the range of 148.89° C. to 204.44° C. (300° F. to 400° F.), and paint shop oven temps are commonly about 93.33° C. (215° F.) or higher. If needed, for foaming or expanding type matrix materials, various blowing agent activators can be incorporated into the composition to cause expansion at different temperatures outside the above ranges.


Although many matrix materials may be heat activated, other matrix materials that are activated by another stimuli and are capable of bonding also can be used. Without limitation, such matrix material may be activated by temperature stimuli such as, pressure, chemically, or by other ambient conditions.


The woven roving 16 of the reinforced panel 10 is comprised of several strips 20 woven together as a sheet. Each strip 20 is formed of several fiberglass fibers that are grouped together to form the strip 20. The fibers of each strip 20 are generally untwisted, unwoven or generally extend parallel to one another. The lengths of the strips 20 are generally chosen based upon the application of the roving 18. Preferably, each strip 20 has a width that is between about 0.15 centimeters and about 8 centimeters. Even more preferable, each strip 20 has a width of between about 2 centimeters and 5 centimeters. Most preferably, each strip 20 has a width of about 3 to 4 centimeters. The roving 18 may be treated with a coupling agent to assist in securing the roving 18 to the layer 14 of matrix material. Additionally, the roving 18 may include stitching or other fastening mechanism across the widths of one or more of the strips 20 of the roving 18 to enhance the integrity of the roving 18.


The weight of the roving 16 may be varied depending upon the corresponding layer 14, panel portion 12 or both that the roving is being used with. The weight of the roving may be about 5 to about 15 ounces per square yard. In one embodiment, the weight of the roving is about less than about 20 ounces per square yard, and more preferably less than about 10 ounces per square yard. In a highly preferred embodiment, the weight of the roving is about less than 8 ounces per square yard. The roving may exhibit a relatively fine weave, although a more coarse weave is also useful. The particular weave may also be selected to suit a particular application, and preferably to avoid unnecessary handling of the fibres that potentially might affect their individual integrity. The roving 18, for instance, typically includes several fiberglass strands that are grouped together, but are not woven together. Thereafter, the roving 18 is formed by weaving the groups of unwoven strands together into a fabric. Such reduced handling of the strands tends to minimize structural defects in the strands, which, in turn, can strengthen the overall roving. In another embodiment, a twill might be selected wherein the fibers float over two intersections and under two intersections.


The thickness of the roving may range from about 1 mil or higher, and more preferably about 5 mils or higher, and still more preferably about 10 mils or higher. The woven roving 18 is applied or laminated to at least one side of the layer 14. Generally, the roving 18 may be positioned as desired upon the side of the layer 14. Preferably, the layer 14 is at least slightly tacky prior to its activation, cure or both such that the roving 18 can adhere to the layer 14 until the layer is activated. A pressure or force is typically applied to the roving 18, the layer 14 or both urging the roving 18 into intimate contact with layer 14.


In the preferred embodiment wherein the layer 14 is formed by extrusion, release paper may be applied to a side of layer 14 opposite the woven roving 18 while the layer 14 is still in its pre-activated tacky state. Thereafter, the roving 18, the release paper or both may be pressed into intimate contact with layer 14 using one or more rollers. Preferably, the side of the layer 14 covered by the release paper remains protected and at least partially tacky such that the release paper may be removed and the layer 14 may be applied to the panel portion 12.


The matrix material and the roving 18 may be applied generally as desired to the panel portion 12. Preferably, however, the matrix material and roving 18 are applied to panel portions to reduce deformation in selected areas. For targeting certain areas or for properly fitting the matrix material and roving upon a panel portion, preformed patterns may also be employed such as those made by molding, lay-up, or by extruding a sheet (having a flat or contoured surface) of matrix material, woven roving or both with or without release paper and then die cutting the sheet in accordance with a predetermined configuration.


Preferably, the layer 14 is applied to the panel portion 12 in a solid or semi-solid state. However, the layer 14 may be applied to the surface 16 of the panel portion 12 in a fluid state using commonly known manufacturing techniques. The material 14 may be heated to a temperature that permits the matrix material to flow slightly to aid in wetting the surface 16 of the panel portion 12. Upon curing the layer 14 preferably hardens and adheres to the surface 16 of the panel portion 12. Alternatively, the layer 14 may also be applied by heat bonding/thermoforming or by co-extrusion.


As the layer 14 of matrix material is activated by heat or other stimulus, the layer 14 preferably wets the roving to promote integration of the roving 18 with the layer 14 such that the strands of fiberglass of each of the strips 20 tend to bond to the layer 14 and each other. In one embodiment, the wetting of the roving 18 can be advantageously enhanced by foaming or bubbling of the matrix material, which can enhance the integration of the roving 18 into the matrix material. In this manner, the roving 18 and the layer 14 are formed into a composite material 30. Preferably, the strength of the composite material 30 is greater than the sum of the strength of the matrix material and the roving 18.


Advantageously, the roving 18 provides an inexpensive reinforcement for the panel portion 12 and for the layer 14 of matrix material. Also advantageous, the roving 18 has shown surprisingly good strength and reinforcing characteristics such that the roving 18 may utilize lighter weight material while maintaining acceptable levels of reinforcement. It is contemplated that the panel portion 12, the roving 18 and the matrix material 14, after expansion, create a composite reinforced panel 10 whereby the overall panel 10 strength and stiffness are greater than the sum of the individual components. Advantageously, the roving 18 has been shown to exhibit desirable strength characteristics particularly after the layer 14 has been activated and cured to integrate the roving 18 with the matrix material.


Although the present invention has been described with the fibrous material provided as a roving, it is contemplated that the fibrous material may be provided in a different format that also minimizes handling, processing or both of the material. For example, it is contemplated that fiberglass strands or other fibrous material may be applied to the layer 14 of matrix material without any weaving operation. Accordingly, a first set of generally parallel fiberglass strands may be applied to the matrix material extending in a first direction followed by application of a second set of fiberglass strands to the matrix material, wherein the second set of strands extend in a direction that is skew (e.g., perpendicular) to the direction of extension of the first set of strands. After application of each set of strands or after application of both sets of strands, rollers may be used to laminate the strands upon the matrix material. Thereafter, the fiberglass strands and matrix material may be processed as described above to form a composite material.


In the embodiment disclosed, the layer 14 of matrix material and the woven roving 18 (i.e., the composite material 30) may be utilized in conjunction with panel portions 12 of an automotive vehicle, which may be included in, without limitation, front and rear quarter panels, door panels, floor pans, floor panels, roof panels, hood panels, trunk panels and the like as well as other portions of an automotive vehicle which may be adjacent to the interior of exterior of the vehicle to form a reinforced panel 10.


The preferred embodiment of the present invention has been disclosed. A person of ordinary skill in the art would realize however, that certain modifications would come within the teachings of this invention. Therefore, the following claims should be studied to determine the true scope and content of the invention.

Claims
  • 1. A structurally reinforced panel for an article, comprising: (a) a panel; (b) a woven roving, having a weight of less than about 20 ounces per square yard, adjoining said panel; and (c) a matrix material for carrying said woven roving, said matrix material being bonded to said panel, over at least part of a surface of said panel.
  • 2. A structurally reinforced panel as in claim 1, wherein said woven roving weighs less than 15 ounces per square yard.
  • 3. A structurally reinforced panel as in claim 1, wherein said woven roving weighs less than 10 ounces per square yard.
  • 4. A structurally reinforced panel as in claim 1, wherein said woven roving weight less than about 8 ounces per square yard.
  • 5. A structurally reinforced panel as in claim 1, wherein said matrix material is epoxy-based.
  • 6. A structurally reinforced panel as in claim 1, wherein said matrix material is expandable to assist in integrating said woven roving with said matrix material.
  • 7. A composite material for reinforcing a panel of an automotive vehicle, comprising: a) a woven roving strip, having a weight of less than about 10 ounces per square yard, a width of between about 2 and about 5 cm and a thickness of greater than about 5 mils; b) an expandable epoxy-based matrix material, thermally activable in a temperature range of about 300° F. to 400° F. for carrying said woven roving, said matrix material being bondable to said panel over at least part of a surface of said panel; and c) a release layer laminated to a side of said matrix material for protecting said side of said matrix material prior to bonding said side of said matrix material to said panel.
  • 8. A composite material as in claim 7, wherein said roving strip weighs less than 15 ounces per square yard.
  • 9. A composite material as in claim 7, wherein said roving strip material weighs less than 10 ounces per square yard.
  • 10. A composite material as in claim 7, wherein said roving strip weighs less than about 8 ounces per square yard.
  • 11. A composite material as in claim 7, wherein said roving strip includes an e-glass.
  • 12. A composite material as in claim 7, wherein said roving strip includes an S2-glass.
  • 13. A structurally reinforced panel as in claim 1, wherein the woven roving is formed of fiberglass strands and the panel is formed of metal.
  • 14. A structurally reinforced panel as in claim 1, wherein the matrix material is selected from an epoxy-based material, an ethylene-based polymer, or a mixture thereof.
  • 15. A structurally reinforced panel as in claim 1, wherein the matrix material is an epoxy-based material.
  • 16. A structurally reinforced panel for an automotive vehicle, comprising: (a) a metal panel, the metal panel being a part of the automotive vehicle; (b) a fibrous reinforcement material adjoining said panel, wherein: i) the reinforcement material is comprised of a plurality of strips woven together as a sheet; and ii) each of the plurality of strips is formed of several fibers which are grouped together, but which are generally unwoven relative to each other; and (c) a matrix material for carrying said fibrous reinforcement material, said matrix material being bonded to said panel, over at least part of a surface of said panel wherein; i) the matrix material is a heat activated foamable material for assisting in integrating the fibrous reinforcement material with the matrix material.
  • 17. A structurally reinforced panel as in claim 16, wherein the fibers for the fibrous reinforcement material are fiberglass.
  • 18. A structurally reinforced panel as in claim 16, wherein each of the plurality of strips has a width between about 0.15 centimeters and about 8 centimeters.
  • 19. A structurally reinforced panel as in claim 16, wherein the panel is a body panel and is selected from a quarter panel, a door panel, a roof panel, a hood panel or a trunk panel and wherein the matrix material activates at a temperature typically encountered in an e-coat or painting operation.
  • 20. A structurally reinforced panel as in claim 16, wherein the matrix material is an epoxy-based material.
  • 21. A structurally reinforced panel as in claim 16, wherein the matrix material is selected from an epoxy based material, an ethylene-based polymer or a mixture thereof.
  • 22. A structurally reinforced panel for an automotive vehicle, comprising: (a) a metal panel, the metal panel being a body panel of the automotive vehicle, the body panel being selected from a quarter panel, a door panel, a roof panel, a hood panel, a trunk panel or a floor panel; (b) a fibrous reinforcement material having a weight of less than about 20 ounces per square yard, adjoining said panel, wherein: i) the reinforcement material is comprised of a plurality of strips woven together as a sheet; ii) each of the plurality of strips is formed of several fiberglass fibers which are grouped together, but which are generally unwoven relative to each other and which extend substantially parallel to each other; and iii) each of the plurality of strips has a width between about 0.15 centimeters and about 8 centimeters; and (c) a matrix material selected from an epoxy based material, an ethylene-based polymer or a mixture thereof, for carrying said fibrous reinforcement material, said matrix material being bonded to said panel, over at least part of a surface of said panel wherein; i) the matrix material is a heat activated foamable material for assisting in integrating the fibrous reinforcement material with the matrix material; and ii) the matrix material activates at a temperature typically encountered in an e-coat or painting operation.
  • 23. A structurally reinforced panel as in claim 22, wherein said woven roving weighs less than 15 ounces per square yard.
  • 24. A structurally reinforced panel as in claim 22, wherein said woven roving thickness about 5 mils or higher.
US Referenced Citations (111)
Number Name Date Kind
3868796 Bush Mar 1975 A
4378395 Asoshina et al. Mar 1983 A
4444818 Tominaga et al. Apr 1984 A
4451518 Miura et al. May 1984 A
4463870 Coburn, Jr. et al. Aug 1984 A
4476183 Holtrop et al. Oct 1984 A
4610836 Wycech Sep 1986 A
4687697 Cambo et al. Aug 1987 A
4695343 Wycech Sep 1987 A
4732806 Wycech Mar 1988 A
4751249 Wycech Jun 1988 A
4769391 Wycech Sep 1988 A
4813690 Coburn, Jr. Mar 1989 A
4822011 Goldbach et al. Apr 1989 A
4836516 Wycech Jun 1989 A
4853270 Wycech Aug 1989 A
4861097 Wycech Aug 1989 A
4901500 Wycech Feb 1990 A
4908930 Wycech Mar 1990 A
4910067 O'Neill Mar 1990 A
4922596 Wycech May 1990 A
4923902 Wycech May 1990 A
4978562 Wycech Dec 1990 A
4995545 Wycech Feb 1991 A
5124186 Wycech Jun 1992 A
5266133 Hanley et al. Nov 1993 A
5290079 Syamal Mar 1994 A
5358397 Ligon et al. Oct 1994 A
5373027 Hanley et al. Dec 1994 A
5506025 Otto et al. Apr 1996 A
5575526 Wycech Nov 1996 A
5577784 Nelson Nov 1996 A
5755486 Wycech May 1998 A
5766719 Rimkus Jun 1998 A
5806919 Davies Sep 1998 A
5851626 McCorry et al. Dec 1998 A
5884960 Wycech Mar 1999 A
5888600 Wycech Mar 1999 A
5894071 Merz et al. Apr 1999 A
5932680 Heider Aug 1999 A
5985435 Czaplicki et al. Nov 1999 A
5992923 Wycech Nov 1999 A
6003274 Wycech Dec 1999 A
6006484 Geissbuhler Dec 1999 A
6033300 Schneider Mar 2000 A
6058673 Wycech May 2000 A
6068424 Wycech May 2000 A
6079180 Wycech Jun 2000 A
6092864 Wycech et al. Jul 2000 A
6096403 Wycech Aug 2000 A
6099948 Paver, Jr. Aug 2000 A
6103341 Barz et al. Aug 2000 A
6103784 Hilborn et al. Aug 2000 A
6131897 Barz et al. Oct 2000 A
6149227 Wycech Nov 2000 A
6150428 Hanley, IV et al. Nov 2000 A
6165588 Wycech Dec 2000 A
6168226 Wycech Jan 2001 B1
6189953 Wycech Feb 2001 B1
6196621 VanAssche et al. Mar 2001 B1
6197403 Brown et al. Mar 2001 B1
6199940 Hopton et al. Mar 2001 B1
6232433 Narayan May 2001 B1
6233826 Wycech May 2001 B1
6237304 Wycech May 2001 B1
6253524 Hopton et al. Jul 2001 B1
6263635 Czaplicki Jul 2001 B1
6270600 Wycech Aug 2001 B1
6272809 Wycech Aug 2001 B1
6276105 Wycech Aug 2001 B1
6281260 Hanley, IV et al. Aug 2001 B1
6287666 Wycech Sep 2001 B1
6296298 Barz Oct 2001 B1
6303672 Papalos et al. Oct 2001 B1
6305136 Hopton et al. Oct 2001 B1
6311452 Barz et al. Nov 2001 B1
6315938 Jandali Nov 2001 B1
6319964 Blank et al. Nov 2001 B1
6321793 Czaplicki et al. Nov 2001 B1
6332731 Wycech Dec 2001 B1
6341467 Wycech Jan 2002 B1
6348513 Hilborn et al. Feb 2002 B1
6358584 Czaplicki Mar 2002 B1
6368438 Chang et al. Apr 2002 B1
6372334 Wycech Apr 2002 B1
D457120 Broccardo et al. May 2002 S
6382635 Fitzgerald May 2002 B1
6383610 Barz et al. May 2002 B1
6389775 Steiner et al. May 2002 B1
6406078 Wycech Jun 2002 B1
6413611 Roberts et al. Jul 2002 B1
6419305 Larsen Jul 2002 B1
6422575 Czaplicki et al. Jul 2002 B1
H2047 Harrison et al. Sep 2002 H
6451231 Harrison et al. Sep 2002 B1
6455146 Fitzgerald Sep 2002 B1
6467834 Barz et al. Oct 2002 B1
6471285 Czaplicki et al. Oct 2002 B1
6474722 Barz Nov 2002 B2
6474723 Czaplicki et al. Nov 2002 B2
6475577 Hopton et al. Nov 2002 B1
6482486 Czaplicki et al. Nov 2002 B1
6482496 Wycech Nov 2002 B1
6502821 Schneider Jan 2003 B2
6519854 Blank Feb 2003 B2
6523857 Hopton et al. Feb 2003 B1
6523884 Czaplicki et al. Feb 2003 B2
6546693 Wycech Apr 2003 B2
6561571 Brennecke May 2003 B1
6575526 Czaplicki et al. Jun 2003 B2
20020074827 Fitzgerald et al. Jun 2002 A1
Foreign Referenced Citations (51)
Number Date Country
0 236 291 Sep 1987 AT
42 26 988 Feb 1994 DE
198 12 288 May 1999 DE
198 56 255 Jan 2000 DE
198 58 903 Jun 2000 DE
0 061 131 Sep 1982 EP
0 611 778 Aug 1994 EP
0 775 721 May 1997 EP
0 891 918 Jan 1999 EP
0 893 331 Jan 1999 EP
0 893 332 Jan 1999 EP
1 072 647 Jan 2001 EP
1 122 156 Aug 2001 EP
0 893 332 Mar 2002 EP
2 749 263 Dec 1997 FR
2 061 196 May 1981 GB
2 375 328 Nov 2002 GB
WO 9532110 Nov 1995 WO
WO 9702967 Jan 1997 WO
WO 9743501 Nov 1997 WO
WO 9850221 Nov 1998 WO
WO 9908854 Feb 1999 WO
WO 9928575 Jun 1999 WO
WO 9936243 Jul 1999 WO
WO 9948746 Sep 1999 WO
WO 9950057 Oct 1999 WO
WO 9961216 Dec 1999 WO
WO 9961281 Dec 1999 WO
WO 0012571 Mar 2000 WO
WO 0012595 Mar 2000 WO
WO 0013876 Mar 2000 WO
WO 0013958 Mar 2000 WO
WO 0020483 Apr 2000 WO
WO 0027920 May 2000 WO
WO 0037243 Jun 2000 WO
WO 0037302 Jun 2000 WO
WO 0037554 Jun 2000 WO
WO 0039232 Jul 2000 WO
WO 0040629 Jul 2000 WO
WO 0040815 Jul 2000 WO
WO 0043254 Jul 2000 WO
WO 0046461 Aug 2000 WO
WO 0052086 Sep 2000 WO
WO 0055444 Sep 2000 WO
WO 0068041 Nov 2000 WO
WO 0154936 Aug 2001 WO
WO 0156845 Aug 2001 WO
WO 0157130 Aug 2001 WO
WO 0171225 Sep 2001 WO
WO 0183206 Nov 2001 WO
WO 0188033 Nov 2001 WO
Related Publications (1)
Number Date Country
20030039792 A1 Feb 2003 US