The present disclosure is directed to a method and tire structure for tire markings. More particularly to a recessed area on a tire with space for tire markings.
Present pneumatic tires may have markings such as brands, tire specifications, etc. on a sidewall or shoulder region of the tire. The sidewall and shoulder regions of non-pneumatic tires, however, do not have sufficient area for tire markings. Additionally, pneumatic and non-pneumatic tires may have markings at the edge of the tread and sidewall. Placing the markings at the edge of the tread and sidewall, however, subjects the markings to wear and tear and does not make the markings particularly visible from the side view.
In one embodiment, a non-pneumatic tire is disclosed. The non-pneumatic tire comprises a hub region having an axis of rotation, a support structure including an inner circumferential ring and an outer circumferential ring, and a tread layer extending circumferentially around the outer circumferential ring of the support structure. The tread layer has a shoulder with a cut out extending circumferentially around the entire tread layer wherein the cut out has at least one flat surface along the tread layer shoulder, and wherein the at least one flat surface is disposed at an angle of 45-135° with respect to an axial direction, and at least one indicia disposed on the at least one flat surface.
In another embodiment, a method for making a tire with areas for indicia markings shielded from abrasions is disclosed. The method comprises forming a tire, with a hub region and a support structure including an inner circumferential ring and an outer circumferential ring, providing a tread layer with a shoulder about the outer circumferential ring of the support structure forming a cut out extending circumferentially around the entire tread layer shoulder, wherein the cut out has at least one flat surface and is in the range of 45° to 135° with respect to an axial direction, providing indicia along the at least one flat surface, and curing the tire.
In yet another embodiment, a tire includes a hub region having an axis of rotation, an inner ring, and an outer ring. A support structure extends from the inner ring to the outer ring. The tire further includes a tread layer extending circumferentially around the outer ring, the tread layer extending over the width of the support structure. A flat surface is connected to the support structure and perpendicular to the tread layer. The tire also includes an applique affixed to the flat surface.
In the accompanying drawings, structures are illustrated that, together with the detailed description provided below, describe exemplary embodiments of the claimed invention. Like elements are identified with the same reference numerals. It should be understood that elements shown as a single component may be replaced with multiple components, and elements shown as multiple components may be replaced with a single component. The drawings are not to scale and the proportion of certain elements may be exaggerated for the purpose of illustration.
The following includes definitions of selected terms employed herein. The definitions include various examples or forms of components that fall within the scope of a term and that may be used for implementation. The examples are not intended to be limiting. Both singular and plural forms of terms may be within the definitions. Where the definitions include a reference to a tire, it should be understood to also reference a tire mold.
“Axial” or “axially” refer to a direction that is parallel to the axis of rotation of a tire.
“Bead” refers to the part of the tire that contacts the wheel and defines a boundary of the sidewall.
“Circumferential” and “circumferentially” refer to a direction extending along the perimeter of the surface of the tread perpendicular to the axial direction.
“Equatorial plane” refers to the plane that is perpendicular to the tire's axis of rotation and passes through the center of the tire's tread.
“Radial” and “radially” refer to a direction perpendicular to the axis of rotation of a tire.
“Sidewall” refers to that portion of the tire between the tread and the bead.
“Tread” refers to that portion of the tire that comes into contact with the road under normal inflation and load.
The non-pneumatic tire 200 also includes a support structure 206 that may be webbing or a spoke construction.
In alternative embodiments, the surfaces forming the cut out portion define an angle in the range of 45-135°. In such embodiments, the angle of the lateral surface with respect to the radial direction may be between −45 and +45, and the angle of the radial surface with respect to the radial direction may be between −45 and +45. In other embodiments, the cutout portion may be defined by an angle outside these ranges, so long as the tire stability is maintained.
In an alternative embodiment, the cut out portion could have three or more surfaces. While the cut out portion 202 is defined by straight surfaces in the illustrated embodiment, it should be understood that one or more of the surfaces may be curved.
The markings may be recessed onto the cut out portion 202. In another embodiment, the markings are stamped onto the cut out portion 202. In another embodiment, the markings may be molded onto the cut out portion 202. In another embodiment, the markings may be painted or applied with ink onto the cut out portion 202. In another embodiment, the markings may be applied to a decal, and the decal and applied to the cut out portion 202.
In an alternative embodiment (not shown), the tire can be a pneumatic tire with a circumferential tread region. In the pneumatic tire, the support structure is defined by a pair of sidewalls, and the hub region is defined by a pair of beads. In such an embodiment, a cut out portion is formed in the shoulder between the tread region and the sidewalls.
In the illustrated embodiment, the undercut 302 extends from the outer surface of the tread 304 to the support structure 306. In an alternative embodiment, the undercut extends from an outer surface of the tread to an elevation radially above the support structure.
The undercut 302 has an angle in the range of 45-135° with respect to the radial direction. The markings may be placed on the surface of the undercut. In the illustrated embodiment, the undercut 302 extends continuously around the entire tire. In an alternative embodiment, the undercut only extends around a portion of the tire.
As with the embodiments discussed above with reference to
The markings may be recessed onto the beveled edge 402. In another embodiment, the markings are stamped onto the beveled edge 402. In another embodiment, the markings may be molded onto the beveled edge 402. In another embodiment, the markings may be painted or applied with ink onto the beveled edge 402. In another embodiment, the markings may be applied to a decal and applied to the beveled edge 402.
As with the other embodiments discussed above, in an alternative to the
A flat surface 606 for indicia or tire markings is disposed along the support structure 604. In the illustrated embodiment, a single flat surface 606 extends along a portion of the support structure 604. In an alternative embodiment, a flat surface extends circumferentially around the entire support structure. In another alternative embodiment, a plurality of flat surfaces are spaced about the support structure.
The flat surface 606 may be formed on the support structure 604 by a molding or 3D printing process. Alternatively, the flat surface 606 may be formed separately from, and then attached to the support structure 604. In such an embodiment, the flat surface 606 may be attached to the support structure 604 with adhesive, a fastener (such as bolts or screws), or other known attachment means.
In one embodiment, the flat surface 606 is constructed of the same material as the support structure 604. In an alternative embodiment, the flat surface 606 and the support structure 604 are constructed of different materials.
The hub includes a plurality of spokes 706. A flat surface 708 for indicia or tire markings is disposed along the spokes 706. In the illustrated embodiment, a single flat surface 708 extends along a portion of the spokes 706. In an alternative embodiment, a flat surface extends circumferentially around all of the spokes. In another alternative embodiment, a plurality of flat surfaces are spaced about the spokes.
The flat surface 708 may be formed on the spokes 706 by a molding or 3D printing process. Alternatively, the flat surface 708 may be formed separately from, and then attached to the spokes 706. In such an embodiment, the flat surface 708 may be attached to the spokes 706 with adhesive, a fastener (such as bolts or screws), or other known attachment means.
In one embodiment, the flat surface 708 is constructed of the same material as the spokes 706. In an alternative embodiment, the flat surface 708 and the spokes 706 are constructed of different materials.
A ring 806 is disposed between the tire and the hub. In one embodiment, the ring 806 is the inner ring of the non-pneumatic tire. In an alternative embodiment, the ring 806 is an outer ring of the hub. In yet another embodiment, the ring is separate from and attached to the non-pneumatic tire and the hub.
In the illustrated embodiment, pair of flat surfaces 808 for indicia or tire markings extend from the ring 806. The flat surfaces 808 extend in a substantially radial direction. While a pair of flat surfaces 808 are shown in the illustrated embodiment, it should be understood that any number of flat surfaces may extend from the ring. For example, the flat surface may be a flange that extends circumferentially about the entire ring.
In one embodiment, the flat surface 808 is constructed of the same material as the webbing 804. In an alternative embodiment, the flat surface 808 and the webbing 804 are constructed of different materials.
To the extent that the term “includes” or “including” is used in the specification or the claims, it is intended to be inclusive in a manner similar to the term “comprising” as that term is interpreted when employed as a transitional word in a claim. Furthermore, to the extent that the term “or” is employed (e.g., A or B) it is intended to mean “A or B or both.” When the applicants intend to indicate “only A or B but not both” then the term “only A or B but not both” will be employed. Thus, use of the term “or” herein is the inclusive, and not the exclusive use. See, Bryan A. Garner, A Dictionary of Modern Legal Usage 624 (2d. Ed. 1995). Also, to the extent that the terms “in” or “into” are used in the specification or the claims, it is intended to additionally mean “on” or “onto.” Furthermore, to the extent the term “connect” is used in the specification or claims, it is intended to mean not only “directly connected to,” but also “indirectly connected to” such as connected through another component or components.
While the present disclosure has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the disclosure, in its broader aspects, is not limited to the specific details, the representative system and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/055331 | 10/9/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62746024 | Oct 2018 | US |