The present invention relates generally to packaging of microelectronic devices, and more specifically to packaging of radio frequency identification devices.
Most integrated circuits are manufactured on silicon substrate, and packaged in either plastic or ceramic material. These materials are rigid, relatively bulky and expensive for the manufacturing processes. But in certain applications, flexibility and low cost are of major concern. Radio frequency identification (RFID) devices are one of such applications. They have to be flexible enough to be attached to any surface, and cost low enough to compete with bar codes in merchandize management.
In general, there are three directions of technical development in order to realize the idea of flexible electronics. The first is to lower the temperature of current semiconductor production process, manufacturing transistors directly onto the plastic substrates. The second is to etch and to attach the electronic components, which are located on glass or silicon substrates, onto plastic substrates, in a process similar to the principle of printing boards. The third is to, with the use of new organic materials, produce organic thin-film transistor (OTFT) via printing or inkjet method.
Substrates for RFID devices are conventional soft material, such as paper or plastic. An antenna is first formed on the substrate by either printing, copper film etching or electron plating method. Then a RFID chip is fixed onto the antenna by gold wire welding or flip chip. Peel-to-peel process is normally used during the packaging and the manufacturing processes of RFID devices, which can be produced quickly in large quantities. But extra caution must be made on the alignment of the chips, ensuring the signal pins of the chips can accurately match the feed point on the antenna. Otherwise an additional welding manufacturing process must be implemented with gold wire welding, which reduces the speed of packaging and increase complexity of the manufacturing process.
How to rapidly and accurately carry out the packaging manufacturing process has become a very important issue in the production of radio frequency identification devices.
As such, what is desired is a rapid and accurate packaging manufacturing process for the RFID devices.
In view of the foregoing, the present invention provides a structure for packaging a RFID device. According to one aspect of the invention, the structure comprises a substrate, an antenna formed on the substrate, a RFID chip with a first side attached to the substrate and a second side having at least one signal pin exposed, at least one conductive contact plate placed on the substrate in contact with both the exposed signal pin and a portion of the antenna, and a protective film over the contact plate to secure the same to the substrate, wherein an electrical connection between the signal pin and the portion of the antenna is made through the contact plate.
According to another aspect of the present invention, the contact plate is attached to a substrate forming a connector strip prior to placing the contact plate on the signal pin and the portion of the antenna.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
The drawings accompanying and forming part of this specification are included to depict certain aspects of the invention. A clearer conception of the invention, and of the components and operation of systems provided with the invention, will become more readily apparent by referring to the exemplary, and therefore non-limiting, embodiments illustrated in the drawings, wherein like reference numbers (if they occur in more than one view) designate the same elements. The invention may be better understood by reference to one or more of these drawings in combination with the description presented herein. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale.
FIGS. 1A˜1C are a top and two side views, respectively, of a RFID device with an antenna formed on a substrate.
The following will provide a detailed description of a structure and method for packaging a radio frequency identification (RFID) device.
FIGS. 1A˜1C are a top and two side views, respectively, of a RFID device with an antenna 110 formed on a substrate 100.
Although the embodiment of the present invention described above employs a substrate 129 to support the contact plate 130 in forming the connector strip 128, one having skills in the art would realize that a bare metal foil may be placed directly in contact with the signal pin 125 and the contact pad 112. The subsequent protective film 140 serves to both secure the metal foil to the substrate 100 and protect the metal foil from being damaged in later processes or in application fields.
The above illustration provides many different embodiments or embodiments for implementing different features of the invention. Specific embodiments of components and processes are described to help clarify the invention. These are, of course, merely embodiments and are not intended to limit the invention from that described in the claims.
Although the invention is illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention, as set forth in the following claims.
The present application claims the benefit of U.S. Provisional Application Ser. No. 60/757,338, which was filed on Jan. 9, 2006, and titled “Method and System for Packaging RFID Devices”.
Number | Date | Country | |
---|---|---|---|
60757338 | Jan 2006 | US |