1) Field of the Invention
The present invention relates to a structure for fastening by a screw, and more particularly to a structure for fastening thin plates made of, for example, metal, by the screw.
2) Description of the Related Art
In a process of a rolled threading, if an ordinary tapping screw species 3 of a forming type, which is prescribed by JIS (Japanese Industrial Standard) is used, a tip 26 of the prepared hole widens as illustrated by dotted lines 27 in FIG. 8. Thus, it is impossible to secure a useful thread length, and results in a decrease in a failure torque of a female thread. Furthermore, a fastening performance is largely influenced by variations of a shear drop portion 28 in a screwing position, which is caused by the protruding method. Moreover, a great pressing power is required to perform a burring.
However, it has been believed impossible to apply a method of fastening by a screw to a thin metal sheet that is as thin as, for example, 0.6 millimeter, even if the burring is applied to the first material 24, if the tapping screw species 3 prescribed by JIS is used. In other words, it has been believed that fastening by a screw is impractical as the failure torque of the female thread is too low. The failure of the female thread of the burring type that uses the metal sheet having a thickness of 0.8 millimeter occurred in less than ten repeated fastenings, when the screw species 3 is fastened.
There is a method of fastening the thin metal sheets with a screw species 1 without burring. However, it is impossible to fasten repeatedly because an axial force is too low. The axial force is a force to press a second material to the first material. In other words, it is impossible to apply the method to a portion where securing of the axial force (a contact force) and prevention of loosening are required, from a viewpoint of safety rules, which are applied to all positions to be screwed in office automation apparatuses.
Meanwhile, in view of an environmental consideration, an increasing reference number of apparatuses has been recycled. Repeated usability of the screws is required for recycling. Moreover, energy saving effect is expected by reducing a weight of the apparatus.
A tapping screw of the forming type for the thin metal sheets that has a single-start thread at a lead portion and double-start threads at the useful thread portion is conceived as a screw that can fasten the thin metal sheets without the burring.
The tapping screw with the single-start thread and the double-start threads, however, is flawed for being low in axial force. The failure of the female thread can occur in an attempt to increase the fastening torque under a condition that the thread is relatively larger in diameter, and especially the thickness of the sheet metal is as thin as 0.6 millimeter.
It is an object of the present invention to at least solve the problems in the conventional technology.
A structure according to one aspect of the present invention is for fastening a second material to a first material by a tapping screw having a male thread. The first material includes a hole with a surface in which a female thread is formed as the tapping screw is screwed in; and a concave portion around the hole.
A structure according to another aspect of the present invention includes a first material having a first hole with a surface; and a concave portion around the first hole; a second material having a second hole; and a tapping screw to be inserted into the second hole and screwed in the first hole to form female thread on the surface of the first hole and to fasten the second material to the first material.
A method according to still another aspect of the present invention is a method for forming a first material that fastens a second material with a tapping screw having a male thread, the method includes forming a hole in the first material for screwing the tapping screw, wherein the hole has a surface in which a female thread is formed as the tapping screw is screwed in; and forming a concave portion in the first material around the hole.
The other objects, features and advantages of the present invention are specifically set forth in or will become apparent from the following detailed descriptions of the invention when read in conjunction with the accompanying drawings.
Exemplary embodiments of the arrangement according to the present invention will be explained below with reference to the accompanying drawings.
Therefore, direction of the tapping screw 1 is corrected so as to become a right angle with a second material when the useful thread portion 7 reaches the second material, even if the tapping screw 1 is tilted against the second material at first, because resistance of one side increases. In addition, the tapping screw 1 easily traces the threads previously made because the lead portion 6 has single-start threads, this is considered to function extremely effectively in a repeated fastening.
The diameters and depths of the concave portions 14 and 21 in the both
In
Incidentally, the failure of the female thread occurs due to a lack of flexural strength of the female thread as a distance between an edge of the female thread and a portion to be pressed of the second material increases. In the case the thickness of the sheet is 0.6 millimeter, when a prepared hole of 3.5 millimeters (diameter)×5 millimeters (depth) is used, under a fastening torque of 1.1 N·m failures of the female thread occurred frequently without the concave, while no failure of the female thread occurred with the concave.
In
As is clear from the results of the experiments, an improvement of approximately 30% of a loosening torque performance is seen under a diameter of the prepared holes measured in this experiment. The reason for this may be deformations at the concaves 14 and 21 function and prevent loosening of the tapping screws same as conical washers.
Incidentally, in the case the thickness of the female thread is 0.8 millimeter, an average failure torque of the female thread was 1.4 2 N·m without the concave, and the average failure torque of the female thread was 2.14 N·m with the concave, and loosening torque performance has improved by about 30% with the concave. In the case when the thickness of the sheet was 0.8 millimeter, an average loosening torque was 0.58 N·m without the concave, and was 0.77 N·m with the concave.
Thus, it has become possible to apply a 0.6 millimeter thick steel sheet to a portion where an axial force is required, which is impossible to apply before, because fastening the steel sheet by a screw is impossible. As a result, it has become possible to replace a 0.8 millimeter thick sheet by a 0.6 millimeter thick sheet. This has made not only a large cost cutting but also energy saving possible. Moreover, even the thickness of the sheet is 0.6 millimeter, the failure torque of the female thread and repeated fastening performances have improved drastically, and also reusability has improved compared with those of 0.8 millimeter thick sheet and burring combination.
Furthermore, when 0.8 millimeter thick sheet is used, by a change from parts made by burring to parts made by methods of this invention, a production method is changed from burring to half blanking. Thus, a pressing power is reduced, machinability improves, and repeated fastening performances improve drastically. Moreover, in the case a 1.0 millimeter thick sheet, it has become possible to fasten the sheet by merely drilling the sheet instead of burring as before. If a higher failure torque of the female thread is required, the machinability improves by applying the half blanking.
In other words, if the second material is thin, a bite of imperfect part of a male thread to the female thread is reduced, which enables the first material to fasten without the burring in the female thread. Thus, it is possible to make a good use of characteristics of the forming type tapping screw, for the thin metal sheet, a lead portion thereof is of single-start thread and a useful thread thereof is of double-start threads. Needless to say, same effects can be obtained when other types of tapping screws are used. The second material is not limited to metal, but any other material including plastics.
As explained above, a structure for fastening metal sheets by a screw related to the present invention has effects of being possible of fastening with a secured axial force of the screw and of improving a loosening prevention performance.
The present document incorporates by reference the entire contents of Japanese priority documents, 2002-266964 filed in Japan on Sep. 12, 2002 and 2003-203482 filed in Japan on Jul. 30, 2003.
Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art which fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2002-266964 | Sep 2002 | JP | national |
2003-203482 | Jul 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4174148 | Obuch et al. | Nov 1979 | A |
4189763 | Suzuki et al. | Feb 1980 | A |
4572658 | Suzuki et al. | Feb 1986 | A |
4747033 | Yasuda | May 1988 | A |
4782369 | Yasuda et al. | Nov 1988 | A |
4891739 | Yasuda | Jan 1990 | A |
4906081 | Yasuda | Mar 1990 | A |
4949120 | Yasuda et al. | Aug 1990 | A |
5057863 | Yasuda | Oct 1991 | A |
5166704 | Yasuda | Nov 1992 | A |
5280362 | Noguchi et al. | Jan 1994 | A |
5309182 | Mama et al. | May 1994 | A |
5355153 | Yasuda | Oct 1994 | A |
5376994 | Mama et al. | Dec 1994 | A |
6164684 | Lehman | Dec 2000 | A |
6467990 | Kremsler et al. | Oct 2002 | B1 |
Number | Date | Country |
---|---|---|
37 36 364 | Sep 1988 | DE |
37 26 405 | Feb 1989 | DE |
1 249 725 | Oct 1971 | GB |
6-25564 | Apr 1994 | JP |
10-141342 | May 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20040126184 A1 | Jul 2004 | US |