The present invention relates generally to structures and construction but more particularly to a structure for hiding and protecting from damage HVAC and other rooftop mechanical equipment.
On large commercial buildings HVAC and related mechanical equipment can be found on the roof. In some instances, during the design phase, architects may incorporate some decorative elements designed for hiding such equipment from view. Recently, some municipalities have amended their building codes so that it makes it mandatory for buildings to hide such equipment. This new rule applies to new and existing buildings. This means that existing buildings have to be retrofitted with some kind of structure having some aesthetic values. In both cases, installing a structure for hiding rooftop mechanical equipment is not always an easy task. First, trying to install a new structure on a rooftop without adversely affecting the roof surface is a challenge, as one does not want a leaky roof as a result of having installed such a structure. Also, a roof is not always level because rainwater drainage requires a slope, which adds a level of difficulty when trying to build a level structure. The added structure must not be too heavy so as to add weight beyond what the building was designed for. The mechanical equipment should not bear the load of the structure. For example in
This is likely to void any manufacturer warranty. This may not be important for some residential homeowners but applying the teachings of this patent onto commercial HVAC equipment would also void any warranty and not be at all recommended.
Because HVAC equipment needs to exchange air, it cannot be sequestered into a closed structure, there has to be an opening for air exchange and since the purpose of the structure is to hide the equipment, the only way to have an opening is from the top. So, without a roof, and without the possibility of attaching the four walls of the structure to the equipment, how can one make sure that the structure will not be blown by the wind? The installer of such structure cannot drill holes into the roof and cannot use the HVAC as anchoring means. Options are quite limited and thus far, the prior art has not found a solution that provides for a securely attached decorative structure. A decorative structure that can withstand strong wind, and a decorative structure that does not impede the ingress and egress of air flow in and around the HVAC equipment so that it works properly.
Finally, special openings and access ways must be provided so that maintenance can be done unimpeded by accessing the equipment from the outside as well as getting inside the structure so as to also be able to walk around and service various parts of the equipment. No adaptive structural system that can provide such features exists. Consequently, there is therefore room for improvement in that area.
In one aspect of the invention a structure for hiding and protecting from damage HVAC and other rooftop mechanical equipment is provided, comprising a plurality of pre-cut, adjustable metallic frame and support members essentially consisting of vertical support members, horizontal frame members, top frame members, and bottom retaining members, wherein the plurality of pre-cut, adjustable metallic frame and support members are configured to surround the rooftop equipment while providing a passageway enabling a user to provide maintenance on the rooftop equipment. Each bottom retaining member is comprised of a base portion, a reinforcement member, and a connecting member wherein the connecting member is mechanically fastened either to an existing roof curb forming part of the building the structure is on or to a base portion of the rooftop equipment.
In a preferred embodiment, the top frame members are extendible in length via extensions, wherein the extensions are configured and sized to slide and engage with the top frame members.
In yet another preferred embodiment, the connecting member take the wind pressure coming onto the bottom of one side of the screen and transfers it from the screen onto the bottom retaining member, and wind pressure applied to the upper half of the screen is transferred by way of the top frame members onto the vertical support members located on the opposite side of the structure, from there, the force follows the vertical support members downwardly until the forces are transferred via the base portion and reinforcement member onto the bottom retaining member.
The structure for hiding rooftop equipment of claim 1, wherein the plurality of pre-cut, adjustable metallic frame and support members are extruded or cold formed from a selected metallic material in a shape selected from the group consisting of: square, rectangular, “Omega” or “C” shaped.
In yet another preferred embodiment, the extensions may be locked in place with fasteners via a plurality of aligned openings provided on the extensions and the top frame members.
In still another preferred embodiment, each vertical support members rest on a pancake configured to spread the load eliminating potential roof damage.
In another embodiment, the vertical support and vertical frame members include hooks enabling the installation of a screen, wherein the screen is configured to hide the roof equipment.
Such a raised platform forms part of the building and is made specifically to add a layer over the rooftop so that mechanically fastening the HVAC equipment does not damage the roof. But the side of this raised platform, which, like the rest of the raised platform, or the bottom of the HVAC structure, is designed for securely holding mechanical fasteners, allows for the bottom retaining member to be securely fastened. The webbing section forming part of the retaining member allows for forces, such as wind pressure, to be transferred from the vertical walls of the structure perpendicularly onto the retaining member.
Moreover, wind pressure applied to the upper half of the walls is transferred by way of top transfer beams onto the other vertical members forming part of the wall on the opposite side and the forces follow the vertical beam downwardly until the forces are transferred via the base portion onto the retaining member. The weight of the structure is not borne by the HVAC but rather by footings resting on the rooftop. The footings have their load spread over a wide area by way of pancakes having a rubberized underside and resting on top of a membrane made out of the same material as the roof membrane. This ensures that there is no damage to the roof and that it can also bear the load.
Additionally these footings not only have the advantage of distributing the weight of the screen on the roof, they also allow the screen to be level with the building. In most cases, roofs have a slope and the ventilation units are installed according to this roof slope. It is not uncommon to have a 3-4 inch difference between one side of a unit and the other side.
Access to the inside existing screens has always been a challenge. Most of the time, you must either remove a louver, as seen in
In one embodiment, wherein the plurality of pre-cut, adjustable metallic frame and support members are extruded or cold formed from a selected metallic material in a shape selected from the group consisting of square, rectangular, or “C” shaped. In one embodiment, top frame members are extendible in length via extensions, wherein the extensions are configured and sized to slide and engage with the top frame members. In another embodiment, the extensions may be locked in place with fasteners via a plurality of aligned openings provided on the extensions and the top frame members. In yet another embodiment, each vertical support members rest on a pancake configured to spread the load eliminating potential roof damage. In one embodiment, the vertical support and vertical frame members include hooks enabling the installation of a screen, wherein the screen is configured to hide the roof equipment.
It should be noted that the term HVAC is to be interpreted as to mean any rooftop equipment that needs to be hidden. HVAC is just used here as a shorthand rather than a limitation.
The following description is provided to enable any person skilled in the art to make and use the invention and sets forth the best modes contemplated by the inventor of carrying out their invention. Various modifications, however, will remain readily apparent to those skilled in the art, since the general principles of the present invention have been defined herein to specifically provide a structure for hiding HVAC and other rooftop mechanical equipment.
Referring now more particularly to
In one embodiment, the frame and support members are size, shaped, and joined such that the HVAC and rooftop mechanical equipment is surrounded, yet still providing access around the equipment such that maintenance workers can perform any necessary maintained on the equipment when needed. The challenge with this type of design is that generally, structures of this type would require diagonal braces for structural strength. However, diagonal braces as seen in the prior art of
In one embodiment, the top frame members 20 are extendible in length via extensions 24, which are configured and sized to slide and engage with the top frame members 20. In one embodiment, the extension are locked in place using metal screws that pass through holes (typically two aligned on each side and one on top) made into the extension 24 and piercing through the top frame member 20. The bottom retaining members 22 and top frame members 20 connect with the vertical support members 14 by way of pins 15 passing through grooves 17 as illustrated in
In order to set a screen 30 level in relation to a building rather than the slope of a rooftop 54, as seen in
In one embodiment, hooks 32 are provided on the vertical support members 14, enabling the installation of the screen 30 (best seen in
There are three ways that a service person can access to the inside of the screen:
1) As seen in
2) One corner is left open as per
3) There is a door on one of the walls as per
No matter which way is used, access is always easy.
In a preferred embodiment, the structure is not secured directly to the roof, but rather by utilizing the existing roof curb 21, best seen in
As best seen in
This validation ensures that the roof curb 21 or the bottom of the HVAC structure can bear any environmental load, such as wind applied to the structure. If the test is successful, bolt 44 is removed and bottom retaining member 22 is installed and the bolt with a washer is bolted in. Once the bottom retaining member 22 is installed, the rest of the structure may be assembled.
Such a roof curb 21 forms part of the building and is made specifically to add a layer over the roof top so that mechanically fastening the HVAC equipment will not damage the roof. But the side of this roof curb 21, which, like the rest of the roof curb 21 or the bottom of the HVAC structure are designed for securely holding mechanical fasteners, allows for the bottom retaining member 22 to be securely fastened. The connecting member 36 allows for forces, such as wind pressure, to be transferred from the screen 30 of the structure perpendicularly onto the bottom retaining member 22. Moreover, wind pressure applied to the upper half of the screen 30 is transferred by way of top frame members 20 onto the other vertical support members 14 forming part of the wall on the opposite side and the forces follow the vertical support members 14 downwardly until the forces are transferred via the base portion 34 and reinforcement member 35 onto the bottom retaining member 36. The weight of the structure is not borne by the HVAC but rather by footings 40 resting on the rooftop. The footings 40 have their load spread over a wide area by way of pancakes 28 having a rubberized underside and resting on top of a membrane made out of the same material as the roof membrane. This ensures that there is no damage to the roof 54 and that it can also bear the load.
This transfer of forces from one side to the other, and down to the bottom retaining members 22, as best seen in
Although the invention has been described in considerable detail in language specific to structural features and or method acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary preferred forms of implementing the claimed invention. Stated otherwise, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting. Therefore, while exemplary illustrative embodiments of the invention have been described, numerous variations and alternative embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention.
It should further be noted that throughout the entire disclosure, the labels such as left, right, front, back, top, bottom, forward, reverse, clockwise, counter clockwise, up, down, or other similar terms such as upper, lower, aft, fore, vertical, horizontal, oblique, proximal, distal, parallel, perpendicular, transverse, longitudinal, etc. have been used for convenience purposes only and are not intended to imply any particular fixed direction or orientation. Instead, they are used to reflect relative locations and/or directions/orientations between various portions of an object.
In addition, reference to “first,” “second,” “third,” and etc. members throughout the disclosure (and in particular, claims) are not used to show a serial or numerical limitation but instead are used to distinguish or identify the various members of the group.
The present application is a Continuation In Part claiming priority on patent application Ser. No. 16/265,998, filed on Feb. 2, 2019 entitled “STRUCTURE FOR HIDING AND HVAC AND OTHER ROOFTOP MECHANICAL EQUIPMENT”, the disclosure of which is hereby incorporated in its entirety at least by reference.
Number | Name | Date | Kind |
---|---|---|---|
3222841 | Lipof | Dec 1965 | A |
3708153 | Triem | Jan 1973 | A |
4860918 | Wuyten et al. | Aug 1989 | A |
5129239 | Thurman | Jul 1992 | A |
5664384 | Cullinan | Sep 1997 | A |
5848507 | Bozich | Dec 1998 | A |
5862637 | Bruce | Jan 1999 | A |
6138993 | Mitchell, Jr. et al. | Oct 2000 | A |
6205719 | Bruce | Mar 2001 | B1 |
6478166 | Hung | Nov 2002 | B2 |
6758015 | Clasen et al. | Jul 2004 | B2 |
6782668 | Bruce | Aug 2004 | B2 |
7059088 | Lattanzio | Jun 2006 | B2 |
7310920 | Hovey, Jr. | Dec 2007 | B2 |
7757510 | Rosete et al. | Jul 2010 | B2 |
8528875 | Wilson, Jr. | Sep 2013 | B2 |
8800243 | Reid | Aug 2014 | B2 |
20060117668 | Forbis, Sr. | Jun 2006 | A1 |
20080083239 | Meyer | Apr 2008 | A1 |
20090014044 | Hartman | Jan 2009 | A1 |
20090019789 | Gephart et al. | Jan 2009 | A1 |
20170121966 | Jiang | May 2017 | A1 |
Number | Date | Country |
---|---|---|
3023133 | May 2019 | CA |
Number | Date | Country | |
---|---|---|---|
20200392728 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16265998 | Feb 2019 | US |
Child | 16884200 | US |