1. Field of the Invention
The present invention relates to the polarization of light source. More specifically, the present invention provides a structure and method to produce polarized light applicable for display devices requiring polarized light source, such as liquid crystal display.
2. Description of the Prior Art
Light source currently used in a flat panel display is first distributed through a light guide to illuminate the entire area of the display. The light then passes through a polarizing film of the same size as the display area. An example of such device is provided in
Furthermore, as re-processing the reflected light involves multiple passes of the light back and forth between the reflector 106 and DBEF, the light passes through dispersing and absorbing elements such as structure 104 multiple times. The efficiency of light utilization is still very limited even with such conventional re-processing structures.
The present invention provides a structure and method to improve on both factors.
The present invention provides a method and structure to produce light polarization before the light entering the large area light guide typical used in a flat panel display. In this invention, the polarization is generated in a fairly confined area before distributing to illuminate a large area. Two orthogonal polarizations are created and directed to different paths. In one preferred embodiment, one component of the polarized light is re-directed to an optically active device to have its polarization modified to be the same as the first before merging into the optical path of the first component. High utilization of light and small area processing thus provide improved efficiency in both energy and material.
The present invention is herein described in detail with reference to the drawings.
The light guide 203 comprises light re-directing structures on one of its large faces 2032A. Such structures preserve the polarization, and direct the traversing light toward and to exist the opposite large face 2032B of the light guide.
The light source may further comprise structures such as reflector 2010 or collimator to direct light toward the light guide.
In a preferred embodiment, the polarizer assembly 302 may further comprise an optical active element 3023 positioned between the polarizer element 3022 and the optical guide 303.
In a preferred embodiment, said light guide 303 comprises a face 3031 of small area, and a face 3032 of large area. The apparatus is arranged so that the light emerging form the polarizer is directed into the light guide via the face 3031 of small area, and exiting the light guide via the face 3032 of large area.
In a preferred embodiment the polarizer assembly 302 further comprises an enclosure element 3024. Such enclosure element provides mechanical support to the elements of polarizer 3021 and 3022. One preferred embodiment of the enclosure element 3024 is a mechanical frame supporting the polarizer 302 and 3022. The mechanical frame is made to fix the polarizer in positions. Another preferred embodiment of the enclosure 3024 is a bonding chemical that bonds the polarizers into one unit.
In a preferred embodiment, the polarizer elements 3021 and 3022 are integrated as facets within the host 3024, and the integrated polarizer assembly 302 is constructed as a single slab or film. One preferred method of making such assembly is to immerse or embed polarizer 3021 and 3022 in transparent epoxy resin or polymer which is the host material. The host material is cured or solidified and molded into the shape of the assembly slab. Another preferred method of producing such embodiment is to immerse the polarizer 3021 and 3022 in polycarbonate plastic.
In a preferred embodiment, the optically active element comprises material that rotates a polarization by an angle. Examples of such optically active materials comprise quartz, calcite, and certain organic materials comprising polyamide, polyester and polyimide. The device is so prepared that rotates the polarization of light 410 by an amount equal to the angular difference between the two orthogonal polarizations so that the light 410 emerging from the device 4023 has its polarization aligned in the same orientation as the transmissive light 408.
In a preferred embodiment, the polarizing element comprises a plurality of alternating layers of different indices of refraction, thereby allowing one polarization to pass and reflecting the orthogonal polarization.
In another preferred embodiment, said polarizing elements comprise a plurality of repeating stacks; wherein each stack comprises at least two layers; wherein one of the two layers is optically anisotropic; wherein said two layers have substantially similar indices of refraction in one direction of polarization, and different indices of refraction in the other direction of polarization.
In another preferred embodiment, said polarizing elements comprise grating with parallel metal wires. In a preferred embodiment such metal wires stretch perpendicular to the light path, where the spacing between the metal wires and the thickness of the metal wires are in the same order of magnitude of the wavelength of the visible light.
In a preferred embodiment, the light source may be further structured with a plurality of light elements shown as 4011 and 4011A in
A preferred embodiment of the light guide is shown in
Various structures may be used to achieve the function of a polarizing apparatus of the present invention. Specific embodiments of the polarizing elements were provided in this description to illustrate the operation of the principles of this invention. The application of the principles of the present invention however is not limited by such examples. It is conceivable that various types of materials and structures may be used to construct such polarizing elements, and all such variations are embraced by the present invention.
Although various embodiments utilizing the principles of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other variances, modifications, and extensions that still incorporate the principles disclosed in the present invention. The scope of the present invention embraces all such variances, and shall not be construed as limited by the number of elements, number of layers, or specific direction and angles.
The present application claims priority of U.S. Provisional Patent Application No. 61/032,981, filed on Mar. 2, 2008.
Number | Date | Country | |
---|---|---|---|
61032981 | Mar 2008 | US |