Structure for preventing howling of shadow mask in cathode ray tube

Information

  • Patent Grant
  • 6590325
  • Patent Number
    6,590,325
  • Date Filed
    Monday, June 12, 2000
    24 years ago
  • Date Issued
    Tuesday, July 8, 2003
    21 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Patel; Vip
    • Quarterman; Kevin
    Agents
    • Birch, Stewart, Kolasch & Birch, LLP
Abstract
A structure for preventing howling of a shadow mask in a cathode ray tube. The tube includes a panel having a fluorescent material screen on an inside surface, a shadow mask for selecting a color of electron beams emitted from an electron gun, and frames each fastened to a long side of the shadow mask to support the shadow mask on the panel through connecting members for applying a tension to the shadow mask in a vertical direction. The shadow mask includes an effective surface having holes for selecting the color of the electron beams, non-effective surfaces which form no screen, and howling prevention members bent along short side edges of the non-effective surfaces in a horizontal front-to-back direction. This provides a high quality picture because howling is improved even at edge portions of the shadow mask owing to the enhanced moment of inertia and higher natural frequency of the edge portions of the shadow mask.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a structure of a shadow mask in a cathode ray tube for color picture tube and color monitor, and more particularly, to a structure for preventing howling of a shadow mask in a cathode ray tube, in which bent parts are extended in a horizontal front-to-back direction along short side edges of a non-effective surface of a shadow mask, to enhance a rigidity of an edge portion of the shadow mask, that increases a natural frequency, for improving howling characteristics of the edge portion of the shadow mask.




2. Background of the Related Art




In general, the cathode ray tube has howling caused by disturbances, such as external impacts, and sound waves, which make the shadow mask fastened to a main frame to vibrate so as to impede an exact focusing of electron beams onto respective pixels through holes in the shadow mask, that deteriorates a picture quality. In order to minimize the howling, though various methods are suggested, such as modifying a structure of the main frame, changing a material or structure of a spring which support the main frame, or the like, there is a limitation in elimination of the howling caused by the vibration of the shadow mask coupled with a vibration of the main frame to the root.





FIG. 1

illustrates a side section of a related art assembly of a panel and a shadow mask, and

FIG. 2

illustrates a detailed perspective view of an outer appearance of the shadow mask in

FIG. 1

, showing the panel


1


, the spring


2


, the main frame


3


, and the shadow mask


5


fitted in the cathode ray tube. The panel


1


has a fluorescent material screen on an inside surface thereof, and the shadow mask


5


selects a color from the electron beams emitted from an electron gun, and focuses onto respective pixels on the fluorescent material screen. To do this, the shadow mask


5


has an effective surface


7


having a plurality of holes


6


for focusing the electron beams onto respective pixels, and non-effective surfaces


8


on outer sides of the effective surface


7


. Edge parts of long sides of the shadow mask


5


are fastened to the main frame


3


. The shadow mask


5


is tightened from the main frame


3


, and in general the main frame


3


is supported on the panel


1


, a front glass of the cathode ray tube, by four plate springs


2


(left, right, top and bottom). Other than supporting the main frame


3


, as the plate spring


2


is required to attenuate external vibration, the plate spring


2


is designed thin so as to have a rigidity very smaller than the main frame


3


. If a tension to the shadow mask


5


is not enough, the howling is occurred caused by external vibration. In this instance, even if the shadow mask


5


vibrates in up and down directions by the external impact, though the howling at a central portion of the shadow mask


5


is not distinctive as incident angles of the electron beams are not great at the central portion, the howling at a peripheral portion of the shadow mask


5


is significant as incident angles of the electron beams are great at the peripheral portion. Therefore, as shown in

FIG. 3A

, for preventing the howling in the related art, there are springs


3


″ fitted to left and right sides of sub-frames


3


′, and damper wires


9


are connected to the left and right side springs, for restricting vibration of the shadow mask. However, the damper wires


9


on the effective surface


7


of the shadow mask block the electron beams, to show dark shadow across the screen, and increases cost. As an alternative to the spring fastening, as shown in

FIG. 3B

, clips


10


are fitted to the left and right outer portions of the effective surface


7


of the shadow mask


5


, for reducing an amplitude and a time period of the vibration by friction occurred between the shadow mask


5


and the clips


10


. However, this case has not so great effect of vibration attenuation, and the fitting process and formation of the clips increases cost.




SUMMARY OF THE INVENTION




Accordingly, the present invention is directed to a structure for preventing howling of a shadow mask in a cathode ray tube that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.




An object of the present invention is to provide a structure for preventing howling of a shadow mask in a cathode ray tube, which can improve howling caused by up and down vibration of a shadow mask even at side portions of the shadow mask.




Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.




To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, the structure for preventing howling of a shadow mask in a cathode ray tube having a panel with a fluorescent material screen on an inside surface thereof, the shadow mask for selecting a color of electron beams emitted from an electron gun, and frames each fastened to a long side of the shadow mask to support the shadow mask on the panel through connecting means for applying a tension to the shadow mask in a vertical direction, wherein the shadow mask includes an effective surface having holes for selecting the color of the electron beams, non-effective surfaces which form no screen, and howling prevention members bent along short side edges of the non-effective surfaces in a horizontal front-to-back direction.




It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.











BRIEF DESCRIPTION OF THE DRAWINGS




The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention:




In the drawings:





FIG. 1

illustrates a side section of a related art assembly of a panel and a shadow mask;





FIG. 2

illustrates a detailed perspective view of an outer appearance of the shadow mask in

FIG. 1

;





FIGS. 3A and 3B

illustrate examples of related art devices for preventing howling of a shadow mask, wherein





FIG. 3A

illustrates damper wires strapped around an effective surface of the shadow mask, and





FIG. 3B

illustrates clips fitted to non-effective surfaces of the shadow mask,





FIG. 4

illustrates a side view of a related art cathode ray tube with a partial cut away view;





FIGS. 5A and 5B

illustrate perspective views of a structure for preventing howling of a shadow mask in accordance with a preferred embodiment of the present invention, wherein





FIG. 5A

illustrates a frontal perspective view of a shadow mask assembly, and





FIG. 5B

illustrates a back side perspective view of a shadow mask assembly, and





FIGS. 6A and 6B

illustrate vibration modes of the shadow masks of the related art and the present invention, wherein





FIG. 6A

illustrates a vibration mode of the shadow mask of the related art which has no device for preventing howling, and





FIG. 6B

illustrates a vibration mode of the shadow mask of the present invention having a device for preventing howling(bent portions).











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

FIG. 4

illustrates a side view of a related art cathode ray tube with a partial cut away view, inclusive of a panel


11


, a funnel


15


, a shadow mask


20


, a fluorescent surface


25


, a deflection yoke


30


, a main frame


40


, springs


45


, an inner shield


50


, magnets


55


, and reinforcing bands


60


. As an external voltage is applied to an anode, the foregoing cathode ray tube has electron beams


35


emitted from an electron gun built-in a neck portion of the funnel


15


to hit onto a particular fluorescent surface


20


on an inside surface of the panel


11


, when the electron beams are deflected in an up, down, left, or right direction by the deflection yoke and pass through the hole


25


in the shadow mask


25


before the electron beams reach to the fluorescent surface


20


. And, for exact hitting by the electron beams


35


onto the fluorescent surface


20


, there are 2, 4, 6 polar magnets


55


for preventing deterioration of a color purity. For preventing burst collapse of the cathode ray tube by an external impact due to a high vacuum in the cathode ray tube, the panel


11


and the funnel


15


are designed to have a structure which can withstand high stress, and the reinforcing bands


60


are fitted to a skirt portion of the panel


11


for dispersing the stress to the cathode ray tube to the maximum, to secure an enough anti-impact capability.





FIGS. 5A and 5B

illustrate perspective views of a structure for preventing howling of a shadow mask in accordance with a preferred embodiment of the present invention, wherein

FIG. 5A

illustrates a frontal perspective view of a shadow mask assembly, and

FIG. 5B

illustrates a back side perspective view of a shadow mask assembly.




Referring to

FIG. 5A

, there is the main frame


40


fastened along long sides of the shadow mask


25


for supporting the shadow mask, and supplementary frames


42


fitted to the main frame


40


, fitted to a top side and a bottom side of the shadow mask


25


, in a vertical direction spaced from the shadow mask


25


. The shadow mask


25


includes an effective surface


27


having a plurality of holes


26


, non-effective surfaces


28


on the outer sides of the effective surface


27


having no holes


26


, and bent parts


29


, howling prevention members, each formed along an edge of a short side of each of the non-effective surfaces


28


in a Z-axis direction. As shown in the drawings, the bent parts


29


, the howling prevention members, are thin and long plates each fitted along a short side of the non-effective surface


28


of the shadow mask


25


in a Z-axis direction at a fixed angle. As shown in

FIG. 5B

, in the shadow mask having an up and down vertical direction tension T as the main frame


40


is fastened thereto along top and bottom long side edges thereof, the bent parts extended in a horizontal front-to-back direction from the left and right side edges of the non-effective surfaces


28


enhances a rigidity of the short side portions of the non-effective surfaces, that improves the howling.




The natural frequency ‘f’ of the shadow mask may be expressed as follows.











f
1



(
Hz
)


=



λ
1
2


2





π






L
2








E






I
y


ρ


.






(
1
)













where, λ=4.73004074,




f: natural frequency of the shadow mask,




E: modulus of elasticity,




I: moment of inertia,




ρ: mass per unit length, and




L: length of the shadow mask.












I
y

=


1
3

×

[


t
·


(


B
2

-
Z

)

3


+


B
1

·

Z
3


-


B
3

·


(

Z
-
t

)

3



]



,








where
,






B
1

=


b
1

+


1
2


t



,






B
2

=


b
2

+


1
2


t



,













B
3

=


b
1

-


1
2


t



,





Z
=



B
2
2

+


B
3


t



2
·

(


b
1

+

b
2


)




,













(
2
)













b


1


: a horizontal length of a non-effective surface extending in both the front-to-back and side-to-side directions,




b


2


: a horizontal front-to-back length of a bent part,




b


3


: a vertical length of an effective surface,




b


4


: A horizontal side-to-side length of an effective surface,




t: a thickness of the bent part.




In general, for shadow masks of identical material, identical lengths, and identical modulus of elasticity, the greater the amount of inertia, the higher the natural frequency and rigidity. When the left and right non-effective surfaces are bent as shown in

FIG. 5B

for enhancing the moment of inertia ‘I’, the natural frequency ‘f’ of the shadow mask is increased. However, though the longer the horizontal front-to-back length b


2


of the bent part


29


, a howling prevention member, the greater the X-axis moment of inertia ‘I’ and the higher the natural frequency ‘f’, a Y-axis moment of inertia I becomes the lower as can be known from the equation (2) below, there may be vibration occurred at the bent parts


29


.











f
1

=


1

2





π


·


λ
1


b
2
2


·


D
ρ




,




(
3
)













where, λ


1


=3.52−0.0967β+0.03β


2


−4.76×10


−3


β


3


,







β
=


b
2


b
3



,





D
=


E
·

t
3



12


(

1
-

v
2


)




,










ν: Poisson's ratio




An optimal horizontal front-to-back length b


2


of the bent part


29


, at which the X-axis moment of inertia ‘I’ that gives a direct influence to the howling is great and the Y-axis moment of inertia ‘I’ of each of the bent parts is not small, can be derived from the equations (1) and (2). That is, in a case when the horizontal front-to-back length b


2


of the bent part


29


is below a 10% of a horizontal front-to-back and side-to-side length b


1


of the non-effective surface


28


, the X-axis moment of inertia ‘I’ is not great enough to provide a satisfactory effect of natural frequency ‘f’ increase coming from the enhancement of the rigidity. Different from this, in a case when the horizontal front-to-back length b


2


of the bent part


29


is greater than a 60% of a horizontal front-to-back and side-to-side length b


1


of the non-effective surface


28


, the Y-axis moment of inertia ‘I’ is small, such that the horizontal front-to-back length b


2


of the bent part


29


causes vibration. Accordingly, the horizontal front-to-back length b


2


of the bent part


29


should be set to be between 10%˜60% of a horizontal front-to-back and side-to-side length b


1


of the non-effective surface


28


, for obtaining a high effect of the natural frequency ‘f’ increase coming from the enhanced rigidity. As an angle of bending of the bent part


29


makes almost no difference to the moment of inertia, the bending is carried out only considering workability. By the way, though the bent parts


29


, howling prevention members, are fastened to the shadow mask


25


along the short side edges of the non-effective surface


28


, the non-effective surfaces


28


may be extended more in the short sides in fabrication of the shadow mask


25


, to form the bent parts


29


as one unit with the shadow mask


25


.





FIGS. 6A and 6B

illustrate vibration modes of the shadow masks of the related art and the present invention, wherein

FIG. 6A

illustrates a vibration mode of the shadow mask of the related art which has no device for preventing howling, and

FIG. 6B

illustrates a vibration mode of the shadow mask of the present invention having a device for preventing howling.




Referring to

FIG. 6A

, in general since the shadow mask


5


is, not only a wide and thin plate, but also has a tension ‘T’ applied only in a vertical direction, vibration is liable to occur caused by an external disturbance at left and right portions of the non-effective surfaces


28


. Therefore, if the main frame vibrates, the central portion of the shadow mask


5


fastened to the main frame shows a weak vibration, but the left, and right portions thereof vibrate strongly at a fixed frequency. However, as shown in

FIG. 5B

, if the bent parts


29


, vibration prevention members, are formed along short sides of the non-effective surfaces


28


of the shadow mask


25


, rigidities of the left and right edge portions of the non-effective surfaces


28


are enhanced, such that the natural frequencies ‘f’ of the left and right edge portions of the non-effective surfaces


28


become greater than the natural frequency of the shadow mask


25


. According to this, as shown in

FIG. 6B

, even if there is vibration occurred at the shadow mask


25


, the vibration of the shadow mask


25


and the vibration of the howling prevention members


29


are offset, to attenuate the vibrations because the howling prevention members have vibrations different from the shadow mask


25


.




As has been explained, the structure for preventing howling of a shadow mask in a cathode ray tube of the present invention has the following advantage.




The bent parts extended from left and right edges of the shadow mask having a vertical tension applied thereto in a horizontal front-to-back direction provides a greater moment of inertia and natural frequency of edge portions of the shadow mask, that improves howling caused by up and down vibration at the edge portions of the shadow mask, thereby minimizing beam landing errors in which the electron beams can not properly pass through the holes in the edge portions of the shadow mask due to the vibration of the shadow mask caused by an external disturbance, and improving the howling.




It will be apparent to those skilled in the art that various modifications and variations can be made in the structure for preventing howling of a shadow mask in a cathode ray tube of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.



Claims
  • 1. A structure for preventing howling of a shadow mask in a cathode ray tube including a panel including a fluorescent material screen on an inside surface thereof, the shadow mask for selecting a color of electron beams emitted from an electron gun, and frames each fastened to a long side of the shadow mask to support the shadow mask on the panel through connecting means for applying a tension to the shadow mask in a vertical direction, wherein the shadow mask comprises:an effective surface having holes for selecting the color of the electron beams; non-effective surfaces which form no screen; and howling prevention members separate from said frames bent along short side edges of the non-effective surfaces in a horizontal front-to-back direction.
  • 2. A structure as claimed in claim 1, wherein the howling prevention member has a horizontal front-to-back length b2 defined to be 0.1×b1≦b2≦0.6b1, where the b1 denotes a horizontal front-to-back and side-to-side length of the non-effective surface.
  • 3. A structure as claimed in claim 1, wherein the howling prevention member is a bent form of a plate formed as one unit with the shadow mask, of the same material with the shadow mask.
  • 4. A structure as claimed in claim 1, wherein the howling prevention member enhances a moment of inertia of the shadow mask and increases the natural frequency of the shadow mask.
  • 5. The structure as claimed in claim 1, wherein the howling prevention members are plates.
Priority Claims (1)
Number Date Country Kind
99-21687 Jun 1999 KR
US Referenced Citations (15)
Number Name Date Kind
4495437 Kume et al. Jan 1985 A
4551651 van der Ven Nov 1985 A
4933595 Hens Jun 1990 A
5103132 Van Der Bolt et al. Apr 1992 A
5289080 Park Feb 1994 A
5557162 Han Sep 1996 A
5644192 Ragland, Jr. Jul 1997 A
5932957 Ragland, Jr. Aug 1999 A
6025676 Ohama et al. Feb 2000 A
6046535 Jung Apr 2000 A
6104132 Nose et al. Aug 2000 A
6218772 Shimizu et al. Apr 2001 B1
6225735 Nakagawa et al. May 2001 B1
6323589 Inoue et al. Nov 2001 B1
6333594 Nakagawa et al. Dec 2001 B1
Foreign Referenced Citations (2)
Number Date Country
01095443 Apr 1989 JP
08264114 Oct 1996 JP