The present invention relates to a structure for reducing intermodulation interference in satellite signal transmission, in which a frequency of a signal having fixed bandwidth is subtracted from an oscillating frequency of a first-stage common local oscillator to generate a mid-band; and a frequency of the generated mid-band is added to an oscillating frequency of a second-stage local oscillator, and then subtracted from an oscillating frequency of a third-stage local oscillator to generate another mid-band. Second and third harmonic differences between the second-stage and third-stage local oscillators do not fall in the two mid-bands, so that an intermodulation interference is avoided.
The mixers 2a′ and 2b′ for the vertical and horizontal signals, respectively, receive oscillating frequencies of two different local oscillators 3′ and 4′, and separately mix the received oscillating frequencies with the above-mentioned signals having fixed bandwidth to generate two different mid-bands, which are filtered at a low-pass filter 5′ and a high-pass filter 6′, respectively, to remove noises therefrom.
The filtered signals are then sent to a multiplex adder 7′ to execute an addition operation. The resultant signals are then transmitted via a cable 8′.
In the above-described structure, the oscillating frequencies of the two local oscillators 3′, 4′ isolate the vertical and the horizontal signal from each other to generate two non-repeated mid-bands. However, an intermodulation interference would occur if the oscillating frequencies were not properly selected.
To enable better understanding of many drawbacks of the conventional satellite signal transmission apparatus of
A second harmonic difference between the oscillating frequencies of the vertical and the horizontal local oscillator 3′, 4′ is (2×5.75)GHz−(2×5.15)GHz=1200 MHz and a third harmonic difference between the oscillating frequencies of the vertical and the horizontal local oscillator 3′, 4′ is (3×5.75)GHz−(3×5.15)GHz=1800 MHz. The above two harmonic differences of 1200 MHz and 1800 MHz fall in band ranges from 950 to 1450 MHz and from 1500 to 2050 MHz, respectively, as shown in
It is therefore a primary object of the present invention to provide a structure for reducing intermodulation interference in satellite signal transmission. The structure includes a first-stage common local oscillator for executing a frequency subtraction operation to generate a mid-band, and a second-stage local oscillator for executing a frequency addition operation to add the frequency of the generated mid-band to an oscillating frequency of the second-stage local oscillator, and a third-stage local oscillator for executing a frequency subtraction operation to subtract a frequency of the resultant signal from an oscillating frequency of the third-stage local oscillator to generate another better mid-band. As a result, second and third harmonic differences between the second-stage and third-stage local oscillators do not fall in the ranges of the two mid-bands, and the problem of intermodulation interference can therefore be avoided.
To achieve the above and other objects, the present invention mainly includes receiving antennas for receiving vertical and horizontal polarized signals from a satellite, an RF amplifying system for amplifying and down-converting the received signals, mixers for separately subtracting frequencies of the vertical and horizontal signals from an oscillating frequency of a first-stage common local oscillator, mid-frequency amplifiers and low-pass filters for amplifying and filtering the signals output by the mixers to generate a mid-band, an intermodulation system including a mixer for adding a frequency of the horizontal signal output from the mid-frequency amplifier to an oscillating frequency of a second-stage local oscillator, a band-pass filter for filtering and isolating the signal output from the mixer, and another mixer for subtracting a frequency of the signal output from the band-pass filter from an oscillating frequency of a third-stage oscillator, a high-pass filter for filtering noises from the signal output from another mixer to generate a better and non-repeated optimal mid-band, so that second and third harmonic differences between the second-stage and third-stage local oscillators do not fall in the ranges of the two mid-bands to avoid intermodulation interference, and a multiplex adder for combining the two mid-bands for transmitting via a single cable.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
Please refer to
The receiving antennas 1 separately receive vertical and horizontal polarized signals transmitted from a satellite. The received signals are amplified and down-converted at the RF amplifying system A, that is formed from amplifiers 11, 12, and then sent to two band-pass filters 13 for filtering, in order to generate two signals with fixed bandwidth. The filtered signals are then sent to the mixers 2a and 2b.
The mixers 2a, 2b for the vertical and the horizontal signal receive an oscillating frequency of a first-stage common local oscillator 3 and execute a frequency subtraction operation to separately subtract the frequencies of the above-mentioned two signals with fixed bandwidth from the oscillating frequency of the first-stage common local oscillator, so as to generate two mid-bands. The first-stage common local oscillator 3 is a structure that reduces elements and costs of the satellite signal transmission structure of the present invention. A mid-frequency signal of one of the two generated mid-bands is amplified at a first mid-frequency amplifier 4 and filtered at a first low-pass filter 5 to remove noises therefrom, so as to generate a better mid-band thereof. Amid-frequency signal of the other mid-band is sent to and amplified at a second mid-frequency amplifier 4 and filtered at a second low-pass filter 5 to remove noises therefrom, and the filtered signal is sent to the intermodulation system 9.
The intermodulation system 9 includes mixers 2c and 2d, a second-stage local oscillator 91, a band-pass filter 93, and a third-stage local oscillator 92. The intermodulation system 9 is characterized in that it executes a frequency addition operation at the mixer 2c to add the frequency of the mid-frequency signal sent to the system 9 to the oscillating frequency of the second-stage local oscillator 91, and the resultant signal is then filtered and isolated at the band-pass filter 93. And, a frequency subtraction operation is executed at the mixer 2d to subtract a frequency the resultant signal from the oscillating frequency of the third-stage local oscillator 92 to generate another better mid-band, which is filtered at the high-pass filter 8 to remove noises therefrom. The filtered signal and the previously mentioned mid-band signal are then together sent to the multiplex adder 6 and then transmitted via the single cable 7.
To enable an even better understanding of many advantages of the present invention, an example of the present invention will now be described in more details with reference to the accompanying drawings. Please refer to
The second harmonic difference between the second-stage local oscillator 91 and the third-stage local oscillator 92 is 2×5150 MHz−2×4420 MHz=1460 MHz; and the third harmonic difference between the second-stage local oscillator 91 and the third-stage local oscillator 92 is 3×5150 MHz−3×4420 MHz=2190 MHz.
The second and the third harmonic difference of 1460 MHz and 2190 MHz do not fall in the band ranges from 950 to 1450 MHz and from 1680 to 2180 MHz, respectively, as shown in
The present invention has been described with a preferred embodiment thereof and it is understood that many changes and modifications in the described embodiment can be carried out without departing from the scope and the spirit of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5959592 | Petruzzelli | Sep 1999 | A |
6424817 | Hadden et al. | Jul 2002 | B1 |
6526278 | Hanson et al. | Feb 2003 | B1 |
20030083034 | Motoyama | May 2003 | A1 |