The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
A first embodiment of a structure for sensing flow rate of refrigerant according to the present invention is described with reference to
As shown in
The cylinder block 11 and the front housing member 12 define a control pressure chamber 121. The front housing member 12 and the cylinder block 11 rotatably support a rotary shaft 18 with radial bearings 19, 20. The rotary shaft 18 projects from the control pressure chamber 121 to the outside, and receives power from a vehicle engine E, which is an external power source.
A rotary support 21 is fixed to the rotary shaft 18, and a swash plate 22 is supported on the rotary shaft 18. The swash plate 22 is permitted to incline with respect to and slide along an axial direction of the rotary shaft 18. A pair of guide holes 211 are formed in the rotary support 21, and a pair of guide pins 23 are formed on the swash plate 22. The guide pins 23 are slidably fitted in the guide holes 211. The engagement of the guide pins 23 with the guide holes 211 allows the swash plate 22 to be tiltable with respect to the axial direction of the rotary shaft 18 and rotatable together with the rotary shaft 18. The guide holes 211 slidably guide the guide pins 23, and the rotary shaft 18 slidably supports the swash plate 22. These actions permit the swash plate 22 to be inclined.
When the center of the swash plate 22 moves toward the rotary support 21, the inclination of the swash plate 22 increases. When contacting the swash plate 22, the rotary support 21 determines the maximum inclination of the swash plate 22. When in a position indicated by solid line in
A plurality of cylinder bores 111 extend through the cylinder block 11. Each cylinder bore 111 accommodates a piston 24. The rotation of the swash plate 22 is converted to reciprocation of the pistons 24 by means of shoes 25. Thus, each piston 24 reciprocates in the corresponding cylinder bore 111.
A suction chamber 131 and a discharge chamber 132 are defined in the rear housing member 13. The suction chamber 131 forms a suction pressure zone and the discharge chamber 132 forms a discharge pressure zone. Suction ports 141 are formed in a valve plate 14, a valve flap plate 16, and a retainer plate 17. Discharge ports 142 are formed in the valve plate 14 and a valve flap plate 15. Suction valve flaps 151 are formed on the valve flap plate 15, and discharge valve flaps 161 are formed on the valve flap plate 16. As each piston 24 moves from the top dead center to the bottom dead center (from the right side to the left side in
An electromagnetic displacement control valve 26 is installed in the rear housing member 13. The displacement control valve 26 is positioned in a supply passage 27 that connects the discharge chamber 132 to the control pressure chamber 121. The opening degree of the valve 26 is adjusted by a pressure in the suction chamber 131 and a duty ratio when an electromagnetic solenoid (not shown) of the valve 26 is powered. When a valve hole of the valve 26 is closed, refrigerant in the discharge chamber 132 is not sent to the control pressure chamber 121.
The control pressure chamber 121 communicates with the suction chamber 131 through a bleed passage 28 and refrigerant in the control pressure chamber 121 flows out to the suction chamber 131 through bleed passage 28. When the valve opening of the displacement control valve 26 becomes greater, the greater amount of refrigerant flows from the discharge chamber 132 through the supply passage 27 to the control pressure chamber 121, which increases pressure in the control pressure chamber 121. As a result, the inclination of the swash plate 22 and thus displacement of the compressor 10 are decreased. When the valve opening of the displacement control valve 26 becomes smaller, the smaller amount of refrigerant flow from the discharge chamber 132 through the supply passage 27 to the control pressure chamber 121, which decreases a pressure in the control pressure chamber 121. As a result, the inclination of the swash plate 22 and thus displacement of the compressor 10 are increased.
A base 29 is integrally formed with the cylinder block 11, which is a part of an entire housing of the compressor, to protrude from the outer circumferential surface 110 of the cylinder block 11. As illustrated in
As illustrated in
A permanent magnet 351 is attached to the moving body 35 and a magnetic detector 46 is provided on an outer surface of the muffler forming member 30. The magnetic detector 46 detects magnetic flux density of the permanent magnet 351. The magnetic flux density detected by the magnetic detector 46 is sent to a displacement control computer C1.
An upstream passage 39 is formed in valve plate 14 and cylinder block 11 to connect with the discharge chamber 132. A restriction hole 38 is formed in the gasket 31 to penetrate the gasket 31 in the thickness direction of the gasket 31 so that the upstream passage 39 and the muffler chamber 33 are connected.
As illustrated in
As illustrated in
Refrigerant in the discharge chamber 132 flows through the upstream passage 39, the restriction hole 38, and the muffler chamber 33 to the external refrigerant circuit 42. The upstream passage 39, the restriction hole 38, and the muffler chamber 33 form a refrigerant passage 50 (as shown in
As illustrated in
The restriction hole 38 restricts the flow of the refrigerant that flows from the upstream passage 39 through the restriction hole 38 to the muffler chamber 33. This results in a pressure difference between a pressure in the upstream passage 39 and a pressure in the muffler chamber 33. The pressure in the muffler chamber 33 is lower than the pressure in the upstream passage 39.
As illustrated in
When the flow rate of refrigerant that flows through the upstream passage 39, the restriction hole 38, and the muffler chamber 33 is increased, the differential pressure becomes greater. Thus, the moving body 35 moves in a direction from the first pressure chamber 341 to the second pressure chamber 342. When the flow rate of refrigerant that flows through the upstream passage 39, the restriction hole 38, and the muffler chamber 33 is decreased, the differential pressure becomes smaller. Thus, the moving body 35 moves in a direction from the second pressure chamber 342 to the first pressure chamber 341. The magnetic flux density detected by the magnetic detector 46 reflect the location of the moving body 35, and thus, the flow rate of discharged refrigerant that flows through the upstream passage 39, the restriction hole 38, and the muffler chamber 33.
The pressure introduction chamber 34, the moving body 35, the compression spring 37, and the magnetic detector 46 form the differential pressure-type flow rate sensor 49.
As illustrated in
The displacement control computer C1 transmits the torque data of the compressor 10 that are measured based on the information on the magnetic flux density to a engine control computer C2. The engine control computer C2, based on the torque data, controls the speed of the engine to an appropriate value.
The present embodiment has the following advantages.
The restriction hole 38 is provided in the planar gasket 31 to extend through the gasket 31. This facilitates formation of the restriction hole 38 by pressing. Thus, the restriction hole 38 that has a desired size corresponding to the flow passage area can be formed with high accuracy. If a gasket 31 having a thickness that corresponds to a desired length of the restriction hole 38 is used, the resultant hole 38 should have the desired length. In this regard, the restriction hole 38 may also be formed with high accuracy.
The smaller the flow passage area of the pressure introduction passage 40 for introducing pressure into the upstream passage 39 to the first pressure chamber 341, the less the effect that hydrodynamic pressure from the discharged refrigerant flowing in the upstream passage 39 will have on the flow rate sensor 49. The configuration that the opening 41, which is a part of the pressure introduction passage 40, is provided in the gasket 31 is advantageous in making the flow passage area of the opening 41 small.
If the pressure introduction passage is formed by forming a space in a structure by die molding and then forming a pressure introduction passage by extending the passage from the space with a drill, the volume of the muffler chamber 33 will be limited by the space. Meanwhile, when the pressure introduction passage 40 is formed in the muffler forming member 30 in the form of a straight passage, the pressure introduction passage 40 may be readily formed by drilling the muffler forming member 30 from the bottom side and no such space is required. Therefore, the volume of the muffler chamber 33 may be made greater.
The gasket 31 is suitable for easily providing the restriction hole 38 and the opening 41.
Pressure in the muffler chamber 33 is introduced into the second pressure chamber 342, which is open to the muffler chamber 33. The structure that connects the muffler chamber 33 with the second pressure chamber 342 is simple. The fact that the muffler chamber 33 is a downstream passage of the refrigerant passage 50 facilitates introduction of the pressure in the downstream passage to the sensor 49.
The gasket includes a metal plate 311 as a core member. This is advantageous in improving accuracy of pressing the hole.
Referring to
In the second embodiment, the muffler chamber 51 is recessed in the base 29 (or cylinder block 11) so as to communicate with the muffler chamber 33. The muffler chamber 51 is a part of the downstream passage and contributes to improvement in noise reduction by increasing the volume of the entire muffler chamber 51.
The invention may be embodied in the following forms.
The passage forming member may be provided between the external refrigerant circuit 42 and the suction chamber 131. In such a case, a differential pressure-type flow rate sensor 49 in the passage forming member senses the flow rate of refrigerant that flows from the external refrigerant circuit 42 into the suction chamber 131.
The first pressure chamber 341 and the second pressure chamber 342 in the sensor 49 may be interchanged.
The moving body 35 in the sensor 49 may be a bellows or a diaphragm.
A seal ring may be placed between the base 29 and the muffler forming member 30 to seal around the restriction hole 38 of the partition plate.
A seal ring may be placed between the base 29 and the muffler forming member 30 to seal around the opening 41 of the partition plate.
The muffler forming member 30 may be attached to the outer circumferential surface of the front housing 12 or that of the rear housing 13 instead of the outer circumferential surface of the cylinder block 11. Alternatively, the muffler forming member 30 may be attached to two or more of the cylinder block 11, the front housing 12, and the rear housing 13.
The gasket 31 may be formed by attaching resin layers to both sides of the metal plate 311.
The present examples and embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-224204 | Aug 2006 | JP | national |