Structure jacking system and method

Information

  • Patent Grant
  • 6676335
  • Patent Number
    6,676,335
  • Date Filed
    Tuesday, November 7, 2000
    24 years ago
  • Date Issued
    Tuesday, January 13, 2004
    21 years ago
Abstract
A structure jacking system for raising a static structure, such as a building, to a desired level with respect to a supporting surface, such as the ground, includes a bracket that is attached to the structure and to a lifting assembly. The lifting assembly drives pier sections into the supporting surface and then elevates the structure once the pier assembly reaches the point of refusal. Once the structure reaches the desired level, the bracket is fixed to the pier assembly to retain the structure at the proper elevation. A preferred embodiment of the bracket includes a ledge having friction elements to inhibit relative movement between the bracket and the structure.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to the general art of hydraulic and earth engineering, and to the particular field of foundation underpinning. Most particularly, the invention relates to correcting settlement of a static structure, such as a building or element of a building.




2. Description of the Prior Art




As described in U.S. Pat. No. 5,246,311 (West, et al.), the disclosure of which is fully incorporated herein by reference, settling of static structures, such as buildings, is a common phenomenon and can have serious consequences, including damaging or weakening load bearing elements.




As also discussed in the West, et al. patent, the art contains disclosures of various solutions to the aforementioned settling problem. These solutions often include underpinning the structure by driving piers into the ground adjacent to the structure and attaching the structure to those piers after the structure has been elevated to a desired position. For example, one method includes drilling pier holes near strategic sites around the perimeter of a building structure to be repaired and placing piers of concrete to extend from the foundation of the building structure to bedrock and then fixing those placed piers to the building to support the building. While often difficult, heretofore, this was sometimes the only practical method of correcting a settling problem for a structure.




The West, et al. patent discloses a method for correcting the settling problem. The West, et al. patent discloses a system that comprises a plurality of elements each of which performs one of the functions required to correct the building settling problem.




The West, et al. system includes a pier-driving unit that is attached to the structure to be lifted and uses that structure as the base to drive a pier to a point of refusal. The West, et al. system further includes a bracket which is fixed to the building and a secondary system that is attached to the structure-affixed bracket after the pier has been driven to the point of refusal.




The West, et al. secondary system is actuated after the pier-driving unit is removed and, using the pier as a base, lifts the foundation or building to a desired position. The building-affixed bracket is then attached to the pier and the secondary system is removed.




As used herein, the term “point of refusal” means the lowest location beneath the surface of the supporting body, such as the ground, to which an element can be driven using a static structure on the supporting body (ground) as its base against which an element-driving force is exerted. For example, using a building as a base against which pier-driving force is exerted, a pier is driven into the ground supporting the building until the building's weight can no longer provide sufficient support for forcing the pier further into the ground. At that point, further pressure on the pier will no longer drive the pier further into the ground, but, instead, will lift the building. This is the point of refusal.




While the system disclosed in the West, et al patent works well, it can be improved by making that system easier and more efficient to manufacture, set up and use.




Furthermore, there are some situations where the bracket of the West, et al. system cannot be easily used. For example, in some situations, there is not room adjacent to the foundation to provide sufficient clearance for the foundation-supporting elements of the West, et al. system to be placed beneath the foundation. Thus, the foundation cannot be efficiently supported so the pier cannot be efficiently driven into the ground and the foundation efficiently lifted using the system disclosed in the referenced patent. The West, et al. system is not versatile enough to be most efficiently used in such a situation.




Thus, the system disclosed in the referenced West, et al. patent can be improved by making it more versatile. Still further, there are some situations when a foundation has simply dropped away from a building, and the entire building need not be moved, only the foundation needs to be lifted back into position subadjacent to the building. These situations may be fairly simple to remedy. However, the numerous parts of the referenced West, et al. system may somewhat vitiate the ease of correction, especially from a cost-effective basis.




Therefore, the system disclosed in the referenced West, et al. patent can be improved by improving the simplicity thereof and providing a system that is cost-effective in simple operations.




SUMMARY OF THE INVENTION




These, and other objects are achieved by a static structure jacking or lifting system that includes a one-piece, monolithic bracket that is expeditiously attached to the structure to be lifted and to a simple system which is used to drive a pier through a sleeve on the bracket and into the ground beneath the structure to be lifted. The same bracket is used to support the structure during and after raising of the structure to a desired position. The bracket is simply placed beneath the structure to be lifted and is held in place by friction. An alternative bracket is also simple to attach to the structure and is easily attached to the system for raising the structure. The alternative bracket is used in situations where access. subadjacent to the structure is limited or prevented. The alternative bracket is fixed to the structure by attaching means, such as bolts, for attaching the structure to the bracket. However, with the exception of the bracket, which is a simple, one-piece, monolithic element in both cases, the overall system is the same for both situations




The one-piece, monolithic configuration of the bracket simplifies the system and makes manufacture thereof efficient while making set up and use more efficient than the system disclosed in the referenced patent. The use of friction or attaching means to fix the bracket to the foundation makes the system embodying the present invention quite versatile as compared to other systems. The simplicity and minimum number of elements of the present system makes it more amenable to simple jobs than prior systems.




OBJECTS AND ADVANTAGES OF THE INVENTION




The principal objects and advantages of the present invention include: providing a structure jacking system and method; providing such a system and method which are efficient to set up and use; providing such a system and method which are adaptable to various field conditions; providing such a system and method which securely grip a foundation wall for raising same; providing such a system and method which provide long-term foundation stability; providing such a system and method which can be used with relatively little training; providing such a system and method which are versatile in application to various foundation conditions; and providing such a system and method which utilize relatively common and easily-fabricated equipment, components and assemblies for installation.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a front perspective view of a bracket used in the foundation jacking system embodying the present invention.





FIG. 2

is a front elevational view of the bracket.





FIG. 3

is a side elevational view of the bracket.





FIG. 4

is a rear elevational view of the bracket.





FIG. 5

is perspective view of the bracket in combination with a lifting assembly.





FIG. 6

is a front elevational view of the bracket in combination with the lifting assembly with a portion of the lifting assembly broken away for clarity of illustration.





FIG. 7

is a side elevational view of the bracket in combination with the lifting assembly.





FIG. 8

is a rear elevational view of the bracket in combination with the lifting assembly.





FIG. 9

is a rear elevational view of the foundation jacking system embodying the present invention in a lift/drive configuration with a pier in place and the bracket connected to the lifting assembly.





FIG. 10

is a rear elevational view of the system in a structure support configuration with the bracket affixed to a pier.





FIG. 11

is a front elevational view of the bracket affixed to a pier in a foundation-supporting configuration.





FIG. 12

is a plan view taken along section A—A of FIG.


8


.





FIG. 13

is a plan view taken along section B—B of FIG.


8


.





FIG. 14

is side elevational view of an alternative form of the bracket having an angled bottom shoe.





FIG. 15

is a rear elevational view of another alternative form of the system which is used in situations where there is very little or no clearance beneath the structure to be elevated.





FIG. 16

is a plan view taken along line


16





16


of FIG.


15


.





FIG. 17

is an elevational view of a simple situation in which a foundation has fallen away from the rest of the structure.





FIG. 18

illustrates an excavated area adjacent to a structure to be elevated as a first step in carrying out the method embodying the present invention.





FIG. 18A

illustrates a bracket positioned in a lifting configuration adjacent to the structure as a step in the method of the present invention.





FIG. 18B

illustrates a lifting assembly connected to the in-place bracket as a step in the method of the present invention.





FIG. 18C

illustrates a pier driver mounted on the lifting assembly and piers in position to be driven into the ground supporting the structure as well as a pier driven into the ground as a step in the method of the present invention.





FIG. 18D

illustrates the step of the method of the present invention in which the structure has been elevated after the piers have been driven into the ground to the point of refusal.





FIG. 18E

illustrates a step in the method of the present invention in which the lifting assembly has been removed and the bracket is affixed to the pier assembly and to the structure to hold the structure in the desired elevated position.





FIG. 19A

illustrates a step in the method of the present invention after an area adjacent to the structure to be jacked has been excavated and in which an alternative form of the bracket is used.





FIG. 19B

illustrates another step in the method of the present invention in which a bracket is affixed to the structure to be lifted.





FIG. 19C

illustrates another step in the method using the alternative form of the invention in which a lifting assembly is attached to the alternative form of the bracket and piers are driven into the ground supporting the structure.





FIG. 19D

illustrates another step in the method using the alternative form of the bracket in which the building has been elevated to its desired height with respect to the ground, and the topmost pier is cut off flush with the topmost edge of the sleeve on the bracket and a pier stop plate has been inserted to hold the bracket on the pier assembly.





FIG. 19E

shows a step in the method using the alternative form of the bracket in which the structure-affixed bracket is fixed to the pier assembly to support the structure in the desired elevated position with respect to the ground.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




I. Introduction and Environment




As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION




Other objects, features and advantages of the invention will become apparent from a consideration of the following detailed description and the accompanying drawings.




A system


10


for jacking or elevating a static structure, such as a building or foundation or the like, is shown in

FIG. 5

as including a one-piece, monolithic structure-engaging bracket


12


which is fixed to a structure (such as a structure S, not shown in

FIG. 5

, but which is indicated in other figures, such as

FIGS. 12 and 13

) to be elevated and to a simple lifting assembly


14


which includes a pier-driving element


16


, such as a hydraulic ram or the like. As will be more fully discussed below, a pier (not shown in

FIG. 5

, but see other figures such as

FIGS. 9-11

) is driven by pier-driving element


16


of assembly


14


to the point of refusal after which the structure is elevated using assembly


14


and the elevated structure is attached to the pier via bracket


12


.




As mentioned above, system


10


is attached to a structure S to be elevated by means of bracket


12


, and using structure S as a base against which pier-driving force is exerted, a pier is driven into the ground supporting structure S until the pier reaches a point of refusal. Continued application of pier-driving force elevates structure S with respect to the now stationary pier. When the structure has been elevated to a desired position, the structure-attached bracket


12


is fixed to the pier and lifting assembly


14


is removed. Appropriate backfill and landscaping can then be performed. As also discussed above, system


10


includes a minimum number of simple elements. As such, system


10


is efficient to manufacture, set up and use as well as being versatile and amendable to cost-effective use in simple operations.




Referring to

FIGS. 1-4

, it can be seen that one-piece, monolithic structure-engaging bracket


12


includes a body


20


having a surface


22


that will be located immediately adjacent to a side surface of a structure that is to be elevated using system


10


when bracket


12


is in place. A ledge


24


extends outwardly from surface


22


and has a surface


26


which engages a bottom surface of the structure being elevated when bracket


12


is in place on the structure. The structure thus engages bracket


12


at surfaces


22


and


26


and is supported thereon. As can be seen in

FIGS. 2 and 3

, ledge


24


is also supported by elements, such as ledge-supporting brackets


30


and


32


since ledge


24


will be supporting the weight of the structure.




Bracket


12


further includes friction elements, such as element


33


, on surface


26


of ledge


24


to increase the frictional engagement between bracket


12


and the structure being elevated.




The friction elements can be roughened portions of surface


26


, such as area


33


′ or actual strips of frictional material incorporated in ledge


24


as suitable.




In one form of system


10


, the means for attaching the structure to bracket


12


consists entirely of the frictional engagement between the structure and bracket


12


. This makes the overall system efficient to manufacture and to use. The frictional engagement between the bracket and the structure can be increased by placing friction elements, such as friction strip


33


or defining roughened area


33


′ on each surface of the bracket that engages the structure, including surface


22


of body


20


. Any suitable material can be used for friction strips


33


′ and one skilled in the art of materials will understand what the best material is. Therefore, no specific material will be described herein. Any suitable roughness factor can be used for the roughened areas as well.




As is best shown in

FIGS. 1

,


3


and


4


, bracket


12


also includes two side channel elements


34


and


36


as well as sleeve


40


. Sleeve


40


is hollow and preferably is cylindrical and is sized to have an inner diameter that will slidably accommodate a pier that is used to elevate and support the structure. Sleeve


40


is located on rear surface


41


of body


20


and has an outer diameter that is essentially equal to the width dimension of the side channel elements


34


and


36


and thus is not visible in

FIGS. 1 and 3

, but is indicated in phantom lines in FIG.


3


.




Holes


44


,


46


and


48


are defined through sleeve


40


in a radial direction and serve a purpose that will be understood from the ensuing disclosure. Further holes, such as hole


50


, are defined through body


20


adjacent to side channels


34


and


36


for further affixing bracket


12


to the structure if desired. Suitable fasteners, such as are used in the building industry can be used to fix bracket


12


to the structure. As will be understood from the teaching of this disclosure, the three holes


44


,


46


and


48


are easily used in a variety of situations and thus provide system


10


with versatility and simplicity.




One-piece bracket


12


is formed of materials used in the building industry and which are strong enough to carry out the function of bracket


12


. The one-piece, monolithic nature of bracket


12


makes it extremely strong while remaining efficient to manufacture reliable and cost effective.




Referring next to

FIGS. 5-9

, lifting assembly


14


is seen to include a cage assembly


51


which connects lifting assembly


14


to bracket


12


during a pier driving step and a structure elevating step. Lifting assembly


14


further includes two straps


52


and


54


which are each attached at lower ends


56


and


58


to cage assembly


51


and at upper ends


60


and


62


respectively to a cross brace


64


which supports a pier-driving element


66


thereon.




Cage


51


includes two side elements


70


and


72


which are respectively connected to straps


52


and


54


as by bolts


74


or the like, and which are attached to sleeve


40


by a fastener, such as a bolt


76


extending through a hole defined in a cross strap


80


which is part of side elements


70


and


72


and is engagingly fixed to sleeve


14


via hole


46


in sleeve


40


. A bottom shoe


82


is also included in cage


51


.




Referring to

FIGS. 5

,


6


and


9


, pier-driving element


16


includes a ram


86


which engages an upper or superior end of a pier section to drive that pier section into the ground in a manner well known to those skilled in the well drilling art. Pier-driving element


16


includes appropriate fluid and electrical circuits and systems, as will be known to those skilled in the well drilling and earth engineering arts. A fluid line


67


is indicated in

FIG. 5

by way of example only. The pier section is driven through sleeve


40


in direction D. When the pier section has reached its limit with respect to lifting assembly


14


, another pier section is inserted into assembly


14


between straps


52


and


54


so the lower or inferior end of the newly-inserted pier section abuts the superior end of the just-driven pier section and the superior end of the newly-inserted pier section is engaged by ram


86


. Suitable locking elements can be used to fix one pier section to adjacent pier sections. Section locking elements are well known to those skilled in the well drilling art and will not be discussed and are not shown in the figures for ease of illustration. Pier sections are inserted as needed until the overall pier assembly, which now comprises a plurality of pier sections as will be understood by those skilled in the well drilling art, is driven to the desired depth or to the point of refusal. The pier sections are indicated in

FIGS. 9-11

as pier section P


1


being the newly-inserted pier section, pier section P


2


being the just-driven pier section and pier section PN being a previous pier section that has been driven and is engaged by a pier section still in lifting assembly


14


. As indicated in

FIGS. 10 and 11

, a final pier section Px is the pier section slidably accommodated in sleeve


40


when the overall pier assembly reaches the point of refusal.




Bracket


12


is fixedly attached to the pier assembly by means of a fastener, such as bolts


90


and


92


, being placed through holes


44


and


48


in sleeve


40


and into fixing engagement with pier section Px as indicated in FIG.


10


. Any portion of pier section Px extending above sleeve


40


, indicated in

FIG. 10

as portion Pxu, can be removed by simply cutting that portion off above sleeve


40


if desired.




Once the structure has been elevated and affixed to the pier assembly, lifting assembly


14


can be removed from attachment to bracket


12


and then completely removed from the area. Backfill, landscaping, and the like can then be performed such as discussed in the referenced West, et al. patent and as known to those skilled in the art of hydraulic and earth engineering.




As will be understood from the foregoing, bracket


12


can be further affixed to the structure by bolts or the like extending through holes


50


in body


20


. One or more spacers, such as spacer


93


shown in

FIG. 12

, can also be used to further ensure proper positioning of bracket


12


. The spacers are not shown in

FIG. 9

for clarity of illustration.




As will be best understood from

FIGS. 18-18E

, the operation of the system


10


is as follows.




After proper excavation E is defined adjacent to a structure S to be elevated (see

FIG. 18

) with respect to a reference level RL on supporting means such as ground G, bracket


12


is positioned as illustrated in

FIG. 18A

with ledge


24


immediately subadjacent to a bottom surface of the structure and, as illustrated in

FIG. 18B

, lifting assembly


14


is attached to bracket


12


via cage


51


, cross strap


80


, fastener


76


and fastener-receiving hole


46


. Reference level RL can be established using a method and equipment known to those skilled in the surveying art based on the teaching of this disclosure. As indicated in

FIG. 18C

, a first pier section is inserted between straps


52


and


54


, ram


86


and slidably through sleeve


40


and into the ground supporting the structure. Frictional engagement is sufficient to hold the ledge of bracket


12


in place beneath structure S. Once all is in place, pier-driver


66


is activated to use the structure as a base against which to drive, and to drive the pier sections through sleeve


40


and into the ground until the point of refusal is reached. As illustrated in

FIG. 18D

, at that time, force on the pier sections is applied to elevate the structure to the desired level with respect to the ground, or other such supporting body. After the structure has been elevated, as illustrated in

FIG. 18E

, bracket


14


is fixedly attached to the last pier section via sleeve


40


with fasteners, such as bolts


90


and


92


, or the like, extending through holes


44


and


48


in sleeve


40


and into fixed engagement with the pier section Px.




Once bracket


12


is fixed to the pier section, lifting assembly


14


is removed. Additional fasteners, such as bolts or the like, can be used to further attach bracket


12


to the structure via holes


50


in body


20


. The final assembly is shown in

FIGS. 10 and 18E

, and the top section of pier section Px can be removed if desired to make the top of the last pier section flush with the top end edge


40


T (see

FIG. 4

) of sleeve


40


. Backfill, and the like can then be placed around the bracket as discussed in the referenced West, et al. patent.




As discussed above, some situations prevent or severely restrict the use of a bracket having a ledge, such as ledge


24


.




System


10


works well in such situations and needs only a slight modification to the bracket assembly. The modification is shown in

FIGS. 15 and 16

and is indicated as system


10


′. Alternative system


10


′ includes a one-piece, monolithic bracket


12


′ that is fixed to a structure S′ (see also FIGS.


19


A-


19


E), such as a building or a foundation or the like, to be elevated and which is used in connection with lifting assembly


14


. Lifting assembly


14


is as described above. Bracket


12


′ has been modified to account for the restrictive condition that there is no room subadjacent to structure S′ to accommodate a ledge such as ledge


24


of bracket


12


. Accordingly, bracket


12


′ has no ledge. In order to fix bracket


12


′ to the structure to be elevated, guide brackets


100


and


102


are fixed to structure S′ and have channels


104


and


106


to slidably accommodate side channel elements


34


′ and


36


′ which extend rearwardly from surface


41


′ of body


20


′ of bracket


12


′ as is best seen in FIG.


16


. Fasteners, such as bolt


110


, are used to attach brackets


100


and


102


to the structure.




Additional fasteners can be used and extend through holes in the bracket body


20


′ as indicated at hole


50


′ in

FIG. 15

to further fix bracket


12


′ to the structure.




Bracket


12


′ includes a sleeve which is similar to sleeve


40


and slidably receives pier sections in the manner described above. The pier sections are driven by pier-driving element (not shown in

FIG. 15

, but see,

FIG. 5

) having a ram


86


in the manner described above. As shown in

FIG. 15

, bracket


12


′ further includes two abutment elements


112


and


114


positioned to have the end edges


116


and


118


respectively located immediately superadjacent to a plane containing end edge


120


of sleeve


40


′ when bracket


12


′ is in a structure elevating orientation. Sleeve


40


′ has two holes


44


′ and


46


′ each of which accommodates a fastener, such as bolt


122


to temporarily fix bracket


12


′ to a pier section Px after the structure has been elevated as will be understood from the following discussion.




Pier sections are driven into the ground supporting the structure in the manner discussed above with reference to system


10


until a point of refusal is reached. At that time, further driving force applied to the pier assembly will elevate the structure. Once structure S′ is elevated, or jacked, to the desired height with respect to the ground, bolts


122


are inserted through holes


44


′ and


46


′ to temporarily fix bracket


12


′ to the pier system via pier section Px as is indicated in FIG.


15


.




After the temporary attachment of the bracket to the pier system, the lifting assembly is removed, and pier Px is cut off flush with end edge


120


of sleeve


40


′. A stop plate


130


is interposed between ends


116


and


118


and end


120


as indicated in FIG.


15


. Stop plate


130


is formed of very heavy material and will support the structure on the pier system as bolts


90


and


92


support the structure on the pier system in system


10


as described above Once. stop plate


130


is in place, bolts


122


can be removed as can guide brackets


100


and


102


if desired.




The method of elevating or jacking structure S′ with respect to a reference level RL on supporting means such as ground G, using system


10


′ is illustrated in

FIGS. 19A-19E

. It is noted that reference level RL can be established in using any method known to one skilled in the surveying art. As shown in

FIG. 19A

, after appropriate excavation E′ adjacent to structure S′ to be elevated, guide brackets


100


and


102


. Next, as indicated in

FIG. 19C

, lifting assembly


14


is attached to bracket


12


′ in the manner described above with regard to system


10


(see, e.g., FIG.


5


), pier section are placed as describe above, and are driven into the ground using pier-driver


16


to the point of refusal with a pier section P(x−1) being indicated as the penultimate pier section driven into the ground to the point of refusal. As indicated in

FIG. 19D

, after the point of refusal has been reached, structure S′ is elevated on final pier section Px with respect to a reference level RL on supporting means, such as ground G, bolts


122


are set, the lifting assembly is removed, and pier section Px is cut off flush with end


120


of sleeve


40


′. Pier section P(x+1) is then formed by cutting pier section Px and is removed. Stop plate


130


is interposed between ends


116


and


118


of abutment elements


112


and


114


and end


120


of sleeve


12


′ to support structure S′ on the piers via bracket


40


′.




As illustrated in

FIG. 19E

, further fasteners, such as bolts


140


are used to fixedly attach bracket


12


′ to structure S′. Fasteners


122


can be left in place if desired. An additional fastener can be used in some instances and is indicated in

FIG. 19E

as extra fastener


122


′. The extra fastener is indicated in

FIG. 19E

only as an alternative form of the system


10


′ and is not needed in all cases but is shown only for the purpose of completeness. Excavation E′ can be backfilled and landscaped as discussed in the referenced West, et al. patent.




Yet another alternative form of the structure elevating system is shown in

FIG. 14

as system


10


″. System


10


″ is identical to system


10


in all respects except bracket


12


″ of system


10


″ includes a bottom shoe


82


″ that is oriented at an oblique angle with respect to body


22


″ of bracket


12


″ when lifting assembly


14


″ is attached to bracket


12


″. By being oriented at an oblique angle with respect to the body of bracket


12


″, bottom shoe


82


″ directs force during pier driving from the lifting assembly upwardly as indicated by arrow


140


to enhance the attachment between ledge


24


″ and the structure being elevated. The preferred form of bracket


12


″ includes an angle of between


120


and


130


. However, other angles can be used without departing from the scope of the present disclosure. As will be understood from the teaching of this disclosure, bracket


12


″ can also be used in conjunction with system


10


′ by removing ledge


24


″ and carrying out the method described above with regard to

FIGS. 19A-19E

.




As discussed above, some jobs are quite simple. The system disclosed herein is amenable to such easy jobs. One such job includes a situation where a basement or a foundation wall has simply dropped away from the remainder of the structure. This situation is illustrated in

FIG. 17

where foundation F has dropped a distance R below a properly located structure Sp. Any of the systems


10


,


10


′ or


10


″ can be used to raise foundation F back into a desired position with respect to the bottom of structure Sp.




It is understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangements of parts described and shown.




II. Skeletal Structural System 4




It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.



Claims
  • 1. A structure jacking system, which includes:a) a support bracket including a body, an extension extending in a first direction from said body and a guide sleeve mounted on said body and accessible from a second direction opposite said first direction, said extension having an extension upper surface engageable with a lower surface of a structure to be lifted, said extension upper surface including a roughened area thereon for inhibiting relative movement between said extension upper surface and the lower surface of the structure; b) a lifting assembly with upper and lower ends and including a lifting head at said upper end and a connecting frame at said lower end; and c) a pipe pier extending through said guide sleeve and adapted for driving engagement by said lifting head; wherein d) said system has a lift configuration with said support bracket connected to said connecting frame and a support configuration with said support bracket connected to said pipe pier.
  • 2. The structure jacking system as in claim 1, wherein said body comprises a channel member with a web connected to said extension and a pair of flanges extending from said web in said second direction.
  • 3. In a structure jacking system having a lifting assembly with upper and lower ends, a drive head connected to the upper end and a cage connected to the lower end, the cage for connecting the lifting assembly to a structure engaging bracket attachable to a structure to be raised, the lifting assembly receiving a pier to be driven downwardly adjacent the structure by the drive head until the structure is raised to a predetermined level, the pier being securable to the structure engaging bracket to retain the structure at the predetermined level; an improved structure engaging bracket comprising:a) an upright channel member having a web and, a pair of side flanges extending outwardly from said web in a first direction along opposed sides thereof; b) a guide sleeve connected to said web between said side flanges and having an aperture sized to slidably receive the pier; and c) means for engaging said structure to be raised. wherein said means for engaging comprises a ledge connected to said web and extending outwardly therefrom in a second direction opposite said first direction, said ledge having a ledge upper surface for engaging a lower surface of the structure, and wherein said ledge upper surface includes at least one roughened area thereon for inhibiting relative movement between said ledge upper surface and the lower surface of the structure.
  • 4. The structure engaging bracket as in claim 3, wherein said means for engaging comprises one or more holes passing through said web and one or more fasteners receivable through said holes and engageable with a vertical surface of said structure.
  • 5. In a structure jacking system having a lifting assembly with upper and lower ends, a drive head connected to the upper end and a cage connected to the lower end, the cage for connecting the lifting assembly to a structure engaging bracket attachable to a structure, the lifting assembly receiving a pier to be driven downwardly adjacent the structure by the drive head until the structure is raised to a predetermined level, the pier being securable to the structure engaging bracket to retain the structure at the predetermined level; an improved structure engaging bracket comprising:a. an upright channel member having a web and a pair of side flanges extending outwardly from said web in a first direction along opposed sides thereof; b. a guide sleeve connected to said web between said side flanges and having an aperture sized to slidably receive the pier; c. a ledge connected to said channel member and extending outwardly therefrom in a second direction opposite said first direction, said ledge having a ledge upper surface for engaging a lower surface of the structure, said ledge upper surface having at least one roughened area thereon for inhibiting relative movement between said ledge upper surface and the lower surface of the structure.
  • 6. In a structure jacking system having a lifting assembly with upper and lower ends, a drive head connected to the upper end and a cage connected to the lower end, the cage for connecting the lifting assembly to a structure engaging bracket attachable to a structure, the lifting assembly receiving a pier to be driven downwardly adjacent the structure by the drive head until the structure is raised to a predetermined level, the pier being securable to the structure engaging bracket to retain the structure at the predetermined level; an improved structure engaging bracket comprising:a base having a wall with side flanges extending in a first direction; a. a guide sleeve connected to said wall between said side flanges and having an aperture sized to slidably receive the pier; a ledge connected to said base and extending outwardly therefrom in a second direction opposite said first direction, said ledge having a ledge upper surface for engaging a lower surface of the structure, said ledge upper surface having at least one roughened area thereon for inhibiting relative movement between said ledge upper surface and the lower surface of the structure.
US Referenced Citations (23)
Number Name Date Kind
3852970 Cassidy Dec 1974 A
4634319 May Jan 1987 A
4673315 Shaw et al. Jun 1987 A
4708528 Rippe Nov 1987 A
4711603 Rippe, Jr. et al. Dec 1987 A
4765777 Gregory Aug 1988 A
4800700 May Jan 1989 A
4854782 May Aug 1989 A
4911580 Gregory et al. Mar 1990 A
4925345 McCown, Jr. et al. May 1990 A
5006015 Stephens et al. Apr 1991 A
5123209 Nally Jun 1992 A
5135335 Stephens et al. Aug 1992 A
5154539 McCown, Sr. et al. Oct 1992 A
5171107 Hamilton et al. Dec 1992 A
5234287 Rippe, Jr. Aug 1993 A
5246311 West et al. Sep 1993 A
5492437 Ortiz Feb 1996 A
5499482 Goff Mar 1996 A
5722798 Gregory Mar 1998 A
5800094 Jones Sep 1998 A
5951206 Gregory Sep 1999 A
6193442 May Feb 2001 B1